首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalence of obesity is increasing alarmingly to epidemic proportions in children and adolescents, especially in industrialized countries. The finding that overweight children, especially girls, tend to mature earlier than lean children has led to the hypothesis that the degree of body fatness may trigger the neuroendocrine events that lead to the onset of puberty. Obese children have high leptin levels, and these may play a role in their earlier onset of puberty. Leptin receptors have been identified in the hypothalamus, gonadotrope cells of the anterior pituitary, and ovarian follicular cells, as well as Leydig cells. Leptin accelerates gonadotropin-releasing hormone (GnRH) pulsatility in hypothalamic neurons, and it has a direct effect on the anterior pituitary. Leptin administration at low doses may have a permissive, threshold effect on the central networks that regulate gonadotropin secretion. However, at high levels, such as those in obese people, it can have an inhibitory effect on the gonads. Children with obesity also have increased adrenal androgen levels, which may be involved in the accelerated growth of these children before puberty. Recent data indicate that leptin has a specific role in stimulating the activity of enzymes essential for the synthesis of adrenal androgens. Children with exogenous obesity frequently show an increase in height velocity with tall stature for age despite low growth hormone levels. Our group has shown that leptin acts as a skeletal growth factor, with a direct effect on skeletal growth centers, in the mice mandibular condyle, a model of endochondral ossification. In summary, obesity is associated with early puberty. Elevated leptin levels might have a permissive effect on the pubertal process and pubertal growth.  相似文献   

2.
OBJECTIVE: Leptin is an adipocyte-derived hormone, which is the product of the obese gene and it is thought to play important roles in pubertal development and maintenance of reproductive function in the female. In a study using adult male or female rats, it was found that leptin stimulated the secretion of gonadotropin directly from the pituitary in a dose-related manner. However, there is no study in juvenile female rats before puberty. METHODS: In this study, we cultured pituitary cells from 4-, 6- and 8-week-old female Wistar rats with leptin (0-10(-7)mol/l) and gonadotropin-releasing hormone (GnRH) (0 or 10(-8) mol/l). Basal or GnRH-stimulated secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and their synthesis within cells were determined by radioimmunoassay (RIA). RESULTS: Leptin induced bell-shaped dose--response curves of basal LH and FSH secretion from cultured cells of every age-group of rats studied. The most effective concentration of leptin on the basal secretion of LH and FSH from 6- and 8-week-old cultured pituitary cells was 10(-10) mol/l. This leptin concentration was consistent with circulating physiological serum leptin levels at each age. As for juvenile 4-week-old pituitary cells, the most effective concentration was 10(-11) mol/l which was lower than that of 6- and 8-week-old rats. It was consistent with the circulating serum leptin levels of 4-week-old rats. Also, the synthesis and the GnRH-stimulated secretion of LH and FSH were effectively controlled by leptin at concentrations similar to the serum leptin levels of given ages. CONCLUSIONS: Leptin induced pituitary cells to synthesize and secrete both LH and FSH regardless of the presence or absence of GnRH. The concentration of leptin that induced the greatest synthesis and secretion of gonadotropins from pituitary cells changed around the pubertal period. The most effective leptin concentrations in each experiment were similar to the physiological serum leptin level at each animal age. These results indicate that leptin stimulates gonadotrophs not only in the pubertal and the mature period but also in the juvenile period before puberty. It is also conceivable that leptin may modulate the sensitivity of gonadotrophs until the appearance of GnRH stimulation, and may be the factor that brings about puberty onset.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) is the hypothalamic factor that mediates reproductive competence. Intermittent GnRH secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. LH and FSH then stimulate sex steroid hormone synthesis and gametogenesis in the gonads to ensure reproductive competence. The pituitary requires pulsatile stimulation by GnRH to synthesize and release the gonadotropins LH and FSH. Clinically, native GnRH is used in a pump delivery system to create an episodic delivery pattern to restore hormonal defects in patients with hypogonadotropic hypogonadism. Agonists of GnRH are delivered in a continuous mode to turn off reproductive function by inhibiting gonadotropin production, thus lowering sex steroid production, resulting in medical castration. They have been used in endocrine disorders such as precocious puberty, endometriosis and leiomyomata, but are also studied extensively in hormone-dependent malignancies. The detection of GnRH and its receptor in other tissues, including the breast, ovary, endometrium, placenta and prostate suggested that GnRH agonists and antagonists may also have direct actions at peripheral targets. This paper reviews the current data concerning differential control of GnRH and GnRH receptor expression and signaling in the hypothalamic-pituitary axis and extrapituitary tissues. Using these data as a backdrop, we then review the literature about the action of GnRH in cancer cells, the utility of GnRH analogs in various malignancies and then update the research in novel therapies targeted to the GnRH receptor in cancer cells to promote anti-proliferative effects and control of tumor burden.  相似文献   

4.
A critical amount of energy reserve is necessary for puberty initiation, for normal sexual maturation and maintenance of cyclicity and fertility in females of most species. Therefore, the existence of circulating metabolic cues which directly modulate the hypothalamus-pituitary-gonad axis is predictable. The adipocyte-derived hormone leptin is one of these cues having been studied extensively in the context of regulating the reproductive physiology. Humans and mice lacking leptin (ob/ob) or leptin receptor (LepR, db/db) are infertile. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility. LepR is expressed in brain, pituitary gland and gonads, but studies using genetically engineered mouse models determined that the brain plays a major role. Recently, it has been made clear that leptin acts indirectly on gonadotropin-releasing hormone (GnRH)-secreting cells via actions on interneurons. However, the exact site(s) of leptin action has been difficult to determine. In this review, we discuss the recent advances in the field focused on the identification of potential site(s) or specific neuronal populations involved in leptin's effects in the neuroendocrine reproductive axis.  相似文献   

5.
Evidence exists demonstrating the importance of leptin in the control of energy homeostasis, feeding behavior and reproductive function. Leptin receptors are localized in several regions of the brain implicated in regulation of energy balance and reproductive function, including the arcuate nucleus/median eminence, paraventricular nucleus, and ventromedial nucleus. Administration of exogenous leptin has been shown to alter function of the hypothalamic-pituitary-adrenal axis and stimulate gonadotropin release through hypothalamic and pituitary actions. Results from in situ hybridization studies demonstrate the ability of leptin to modulate the expression of key neuropeptides (neuropeptide Y, corticotropin-releasing hormone) implicated in the regulation of energy homeostasis. This suggests that leptin is an important component in the neuroendocrine transmission line that regulates appetite, energy balance and reproduction.  相似文献   

6.
BACKGROUND: Leptin, which is the product of the obese gene, is believed to play important roles in pubertal development and reproductive function in females. In a study using adult male rats, it was found that leptin stimulated secretion of gonadotropin from the pituitary in a dose-related manner. However, there has been no such study in female rats. OBJECTIVE: To investigate the effects of leptin on the production of LH and FSH from the pituitary in female rats, using primary cultured pituitary cells. METHODS: In this study, we determined body weight, serum leptin concentration and serum estradiol (E(2)) concentration in female Wistar rats at 3, 5, 6, 7, 9 and 11 weeks of age, and cultured pituitary cells from 6-week-old female Wistar rats with leptin (0--10(-7) mol/l) and GnRH (0 or 10(-8) mol/l). Then basal and GnRH-stimulated extra- and intracellular LH and FSH were assayed by RIA. RESULTS: Serum leptin concentration increased with increases in body weight and E(2) concentration. The pubertal serum leptin concentration was about 10(-10) mol/l. At a lower or moderate concentration, leptin produced dose-related increases in both basal and GnRH-stimulated extra- and intracellular LH and FSH in pituitary cells. At a concentration of 10 mol/l, leptin significantly (P<0.05) stimulated both basal and GnRH-stimulated extra- and intracellular LH and FSH. However, at greater concentrations, these effects diminished. CONCLUSIONS: These results indicated that leptin induced pituitary cells to produce and secrete both LH and FSH, with or without GnRH. The concentration of leptin that induced the greatest production of gonadotropins by pituitary cells was 10(-10) mol/l, which was the same as the physiological pubertal concentration. Leptin may be involved in the onset of puberty. It is also conceivable that leptin may be a cause of ovulatory failure, not only in weight loss but also in weight gain.  相似文献   

7.
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) is released in a pulsatile fashion, with its frequency varying throughout the reproductive cycle. Varying pulse frequencies and amplitudes differentially regulate the biosynthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by pituitary gonadotropes. The mechanism by which this occurs remains a major question in reproductive physiology. Previous studies have been limited by lack of available cell lines that express the LH and FSH subunit genes and respond to GnRH. We have overcome this limitation by transfecting the rat pituitary GH3 cell line with rat GnRH receptor (GnRHR) cDNA driven by a heterologous promoter. These cells, when cotransfected with regulatory regions of the common alpha, LH beta, or FSH beta subunit gene fused to a luciferase reporter gene, respond to GnRH with an increase in luciferase activity. Using this model, we demonstrate that different cell surface densities of the GnRHR result in the differential regulation of LH and FSH subunit gene expression by GnRH. This suggests that the differential regulation of gonadotropin subunit gene expression by GnRH observed in vivo in rats may, in turn, be mediated by varying gonadotrope cell surface GnRHR concentrations. This provides a physiologic mechanism by which a single ligand can act through a single receptor to regulate differentially the production of two hormones in the same cell.  相似文献   

8.
9.
Idiopathic delayed male puberty is defined as a delay of puberty beyond the age of 16, with prepubertal testosterone levels, normal gonadotropin responses to GnRH (excluding pituitary failure), and normal androgen responses to a single hCG injection (excluding testicular Leydig cell dysfunction), in absence of serious disease. Ten boys with this condition were evaluated as to their spontaneous LH, FSH, and PRL secretory patterns during a 24-h sampling period (20-min intervals). After this all patients were treated with pulsatile infusions of GnRH (25 ng/kg . pulse every 90 min for 10 days. Two groups could be distinguished by means of their pretreatment LH secretory pattern. Five patients had nighttime pulsatile elevation of LH levels, as usually occurs in early puberty. The other five patients did not have such a pattern (prepubertal type). The GnRH treatment resulted in increased LH and testosterone levels in both groups. All patients with pretreatment nighttime pulsatile LH secretion had steady pubertal development during the post-GnRH treatment observation period, whereas the other patients did not. In conclusion, among a number of tests, including chronic pulsatile GnRH treatment for 10 days, only the nocturnal LH secretory pattern differentiated delayed puberty from permanent hypothalamic hypogonadism in boys.  相似文献   

10.
Leptin regulates the hypothalamo-pituitary-gonadal axis in relation to nutritional status. The mechanism through which leptin mediates its effects on neuroendocrine reproductive circuits remains unclear. Galanin-like peptide (GALP) is a recently identified hypothalamic peptide, localized in the arcuate nucleus, which seems to be regulated by leptin and stimulates LH when administered centrally. Here, we demonstrate that leptin stimulates the release of GALP and GnRH in vitro from hypothalamic explants harvested from male rats. In addition, we show that GALP stimulates the release of GnRH from hypothalamic explants and GT1-7 cells. Furthermore, we demonstrate that GALP antiserum blocks the stimulatory action of leptin on GnRH release from hypothalamic explants. GALP is a ligand of the galanin receptors. We therefore investigated whether the effect of GALP on GnRH release may be mediated via a known galanin receptor. GALP-stimulated GnRH release from hypothalamic explants was attenuated (but not abolished) by the galanin receptor antagonist galantide. However, GALP-stimulated GnRH release from GT1-7 cells was not diminished by the coadministration of galantide. In addition, none of the cloned galanin receptors were expressed in GT1-7 cells by RT-PCR. These observations suggest that GALP may stimulate GnRH release through an indirect pathway involving a galanin receptor and via a direct action on GnRH neurons, possibly through a novel receptor. These findings suggest that GALP may mediate the actions of leptin on the reproductive axis and provide a link between nutrition and fertility.  相似文献   

11.
12.
A defect in the structure of the obese gene is responsible for development of obesity in the ob/ob mouse. The product of expression of the gene is the protein hormone leptin. Leptin causes weight loss in ob/ob and normal mice, it is secreted by adipocytes, and it is an important controller of the size of fat stores by inhibiting appetite. The ob/ob mouse is infertile and has a pattern of gonadotropin secretion similar to that of prepubertal animals. Consequently, we hypothesized that leptin might play a role in the control of gonadotropin secretion and initiated studies on its possible acute effects on hypothalamic–pituitary function. After a preincubation period, hemi-anterior pituitaries of adult male rats were incubated with leptin for 3 hr. Leptin produced a dose-related increase in follicle-stimulating hormone (FSH) and luteinizing hormone (LH) release, which reached peaks with 10−9 and 10−11 M leptin, respectively. Gonadotropin release decreased at higher concentrations of leptin to values indistinguishable from that of control pituitaries. On the other hand, prolactin secretion was greatly increased in a dose-related manner but only with leptin concentrations (10−7–10−5 M). Incubation with leptin of median eminence–arcuate nuclear explants from the same animals produced significant increases in LH-releasing hormone (LHRH) release only at the lowest concentrations tested (10−12–10−10 M). As the leptin concentration was increased, LHRH release decreased and was significantly less than control release at the highest concentration tested (10−6 M). To determine if leptin can also release gonadotropins in vivo, ovariectomized females bearing implanted third ventricle cannulae were injected with 10 μg of estradiol benzoate s.c., followed 72 hr later by microinjection into the third ventricle of leptin (0.6 nmol in 5 μl) or an equal volume of diluent. There was a highly significant increase in plasma LH, which peaked 10–50 min after injection of leptin. Leptin had no effect on plasma FSH concentrations, and the diluent had no effect on either plasma FSH or LH. Thus, leptin at very low concentrations stimulated LHRH release from hypothalamic explants and FSH and LH release from anterior pituitaries of adult male rats in vitro and released LH, but not FSH, in vivo. The results indicate that leptin plays an important role in controlling gonadotropin secretion by stimulatory hypothalamic and pituitary actions.  相似文献   

13.
14.
15.
Fertility is gated by nutrition and the availability of stored energy reserves, but the cellular and molecular mechanisms that link energy stores and reproduction are not well understood. Neuropeptides including galanin-like peptide (GALP), neuropeptide Y (NPY), products of the proopiomelanocortin (POMC; e.g., alpha-MSH and beta-endorphin), and kisspeptin are thought to be involved in this process for several reasons. First, the neurons that express these neuropeptides all reside in the hypothalamic arcuate nucleus, a critical site for the regulation of both metabolism and reproduction. Second, these neuropeptides are all targets for regulation by metabolic hormones, such as leptin and insulin. And third, these neuropeptides have either direct or indirect effects on feeding and metabolism, as well as on the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). As the target for the action of metabolic hormones and sex steroids, these neuropeptides serve as molecular motifs integrating the control of metabolism and reproduction.  相似文献   

16.
M S Blank  M Ching  K J Catt  M L Dufau 《Endocrinology》1985,116(5):1778-1783
The inhibitor of hepatic lipoprotein release, 4-aminopyrazolo-(3,4-d)-pyrimidine (4-APP), has been shown to reduce testosterone production via impairment of pituitary gonadotropin secretion rather than through decreased cholesterol availability. It was previously shown that serum LH levels were reduced by more than 75% in male rats treated with 4-APP, but pituitary stores of LH and the gonadotropin response to exogenous GnRH were maintained. Also, there was a reduction in pituitary GnRH receptors which was consistent with hypothalamic GnRH deficiency. The present studies were undertaken to examine the mechanism by which 4-APP inhibits GnRH synthesis and/or release. Intact, adult male or 2-week ovariectomized female rats were treated daily with 25 mg/kg 4-APP for 3 days. Both sexes showed lowered basal serum levels of LH and absence of the elevations in serum LH normally elicited by the opiate antagonist, naloxone. In pituitary portal plasma collected from normal male rats, GnRH was significantly elevated by naloxone treatment, confirming that naloxone acted at the level of hypothalamic GnRH release. However, naloxone stimulation of GnRH secretion into portal blood was absent in rats treated with 4-APP. In vitro, the potassium-induced release of GnRH from perifused medial hypothalami was reduced by 60% in 4-APP-treated male rats while hypothalamic GnRH content remained unchanged. These data indicate that 4-APP has an inhibitory effect on the mechanism of GnRH release, and that analysis of its actions should clarify the processes involved in neurohormone secretion.  相似文献   

17.
Pulsatile GnRH acts at the GnRH receptor on gonadotropes to stimulate gonadotropin gene expression, hormone synthesis and secretion. The pituitary gonadotropins, LH and FSH, stimulate steroid production and gametogenesis in males and in females. Gonadotropin production thus requires the normal development and function of hypothalamic GnRH-producing neurons and pituitary gonadotrope cells. Genes involved in gonadotrope development and/or gene expression include SF1, DAX1, KAL, GNRHR, PC1, HESX1, LHX3, PROP1, LH beta, and FSH beta. Given the complex control of gonadotropin biosynthesis and secretion, it is not surprising that genetic abnormalities have been identified at several of these steps. Some of the mutations that will be reviewed include: (1) SF1 and DAX1-orphan nuclear receptors that are expressed at multiple levels throughout the reproductive axis; (2) KAL-X-linked Kallmann syndrome, where there is abnormal development of hypothalamic GnRH-producing neurons; (3) PC1-causing abnormal processing of GnRH and GNRHR mutations that impair action at the GnRH receptor; (4) HESX1, LHX3, PROP1-abnormal development/function of the gonadotrope cell lineage; (5) LH beta and FSH beta-mutations in the gonadotropin genes that cause structural abnormalities in the hormones. Although all of these gene defects lead to gonadotropin deficiency, each disorder is associated with unique phenotypic or hormonal features. Characterization of the molecular basis of gonadotropin deficiency is useful for directing therapy and for genetic counseling. Identification of these mutations also provides insight into the pathways that govern reproduction.  相似文献   

18.
In the present study two recently developed techniques have been combined to enable the simultaneous in vivo determination of pulsatile release of GnRH, LH, and FSH in the orchidectomized rat. The first of these techniques involves the implantation of two vascular catheters and collecting serial blood samples through one while simultaneously infusing a replacement blood mixture through the other; consequently, blood samples can be collected for an extended period of time, and detailed plasma LH and FSH release profiles can be established for individual animals. The second technique involves push-pull perfusion of the pituitary gland to determine changes in GnRH concentration as might be perceived by the gonadotropes. For each animal (n = 6), blood (150 microliters) and push-pull perfusate (200 microliters) samples were collected at 5- and 10-min intervals, respectively, for approximately 6 h, and the hormone release profiles were determined by RIA. All of the rats showed a clear pulsatile release pattern for GnRH, LH, and FSH. Moreover, the interpulse interval was remarkably similar for each of these hormones (36.9, 41.5, and 43.5 min, respectively, as determined by PULSAR). The percentage of GnRH pulses associated with a gonadotropin pulse was 72% for LH and 76% for FSH; only 14% of the pulses were silent for both gonadotropins. These results demonstrate that in the orchidectomized rat the pulsatile pattern of GnRH release is reflected in the pulsatile pattern of not only LH but also FSH. They may, therefore, be construed to support the concept that the pulsatile secretion of both gonadotropins is primarily orchestrated by a single hypothalamic releasing hormone. Alternatively, if two separate hypothalamic releasing hormones do indeed exist (LHRH and FSH-releasing hormone), it would appear that in the orchidectomized rat their episodic release is tightly coupled to the same hypothalamic pulse generator.  相似文献   

19.
The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHβ and FSHβ subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHβ and FSHβ gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH.  相似文献   

20.
Leptin, a peptide hormone secreted by adipocytes that has been proposed as a metabolic signal in the reproductive system, appears to be linked to the different neuroendocrine processes involved in the onset of puberty. We studied the ontogenic effect of administration of leptin (30 mg/kg i.p.) on serum LH levels during different stages of sexual development (7, 30, and 45 days of age) in male rats and on the hypothalamic content of glutamate (GLU) and gamma-aminobutyric acid (GABA) in 30-day-old rats. Leptin induced a significant increase (p < 0.01) in LH levels in 30 days old rats. This hormone stimulatory effect was accompanied by a significant enhancement (p < 0.01) of the hypothalamic content of glutamate, the hypothalamic excitatory aminoacid involved in N-methyl-D-aspartate (NMDA) neurotransmission. No changes in the LH plasma levels were observed in 7- and 45-day-old male rats treated with leptin. MK 801 (0.1 and 0.3 mg/kg i.p.), an antagonist of NMDA receptors of excitatory amino acid system (EAAs), antagonized the stimulatory effect of leptin on LH secretion and on the hypothalamic content of GLU. These results demonstrate that leptin stimulates the reproductive axis in male rats during a determined period of sexual maturation and that NMDA receptors are involved in thefacilitatory action of leptin on the gonadal axis of male rats during sexual maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号