首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study we have investigated the involvement of PI-3K and its downstream target p70 S6K in the signaling response of corneal epithelial cells after HGF and KGF stimulation. HGF induced three- to five-fold increase in PI-3K activity in 5-10 min, whereas KGF stimulation resulted in two- to three-fold increase in activity in 2-10 min. Both growth factors also caused the phosphorylation of p70 S6K and stimulation of its activity. HGF increased p70 S6K activity by 300% and KGF by about 200%. Protein kinase C (PKC) activator TPA also induced the phosphorylation of p70 S6K. Both the PI-3K inhibitor wortmannin and PKC inhibitor calphostin C blocked the phosphorylation of p70 S6K mediated by the growth factors. However, the mitogen-activated protein kinase (p42/44 MAPK) cascade inhibitor PD98059 had no effect on p70 S6K activation. Furthermore, HGF and KGF increased the rate of corneal epithelial wound healing in an organ culture model, and wortmannin and rapamycin (the p70 S6K inhibitor) blocked corneal epithelial wound healing promoted by the growth factors. These studies suggest that PI-3K and p70 S6K are important signal transducers in the stimulation of corneal epithelial cells by HGF and KGF. PKC is involved in the PI-3K-dependent activation of p70 S6K but not MAPK. Inhibition of wound closure by PI-3K and p70 S6K inhibitors suggests these enzymes play a significant role in corneal wound repair stimulated by HGF and KGF.  相似文献   

2.
Hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), epidermal growth factor (EGF), and their receptors have been associated with homeostasis and wound healing in the cornea. The purpose of this study was to examine the expression of the messenger RNAs for these growth factors and receptors in a wounded series of mouse corneas using in situ hybridization. In situ hybridization was performed with 3H-labeled riboprobes on unwounded corneas and corneas at 30 minutes, 4, 12, 24, 48 and 72 hr, and 7 days after epithelial scrape wounds in Balb/C mice. Qualitative and semi-quantitative analyses were performed. Expression of HGF, KGF and EGF mRNAs in keratocytes in the unwounded cornea was low. EGF mRNA was also expressed in unwounded corneal epithelium. Following wounding, however, these growth factor mRNAs were markedly upregulated in keratocytes. EGF mRNA expression in the epithelium appeared unaffected by wounding. At seven days after wounding and several days following closure of the epithelial defect, HGF mRNA and KGF mRNA were still expressed at higher levels in keratocytes compared with unwounded corneas. No difference in expression of HGF or KGF mRNAs between limbal, peripheral corneal, or central corneal keratocytes was noted in the unwounded cornea, KGF receptor mRNA was prominently expressed throughout the unwounded corneal epithelium. HGF receptor mRNA and EGF receptor mRNAs were expressed at low levels in unwounded cornea epithelium. Following scrape injury, expression of HGF receptor mRNA and KGF receptor mRNA were markedly upregulated in the corneal epithelium, while no significant increase in EGF receptor mRNA expression was noted. These studies suggest a prominent role for HGF and KGF in modulating corneal epithelial wound healing following injury. Less prominent changes in EGF mRNA and EGF receptor mRNA in the corneal epithelium following wounding may suggest that EGF has more of a role in homeostasis in the mouse corneal epithelium.  相似文献   

3.
PURPOSE: To investigate the effects of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) on early wound healing in the corneal epithelium and stroma. SETTING: Cell and Molecular Biology Unit, Department of Optometry and Vision Sciences, Cardiff University, and the Cardiff Institute of Tissue Engineering and Repair, Cardiff, United Kingdom. METHODS: Corneal keratocyte cell cultures and wounded corneal organ cultures (both maintained in serum-free conditions) were treated with 0.1 to 100 ng/mL of HGF or KGF for up to 5 days. Cell cultures were assessed for proliferation, migration, and differentiation into myofibroblasts. Organ cultures were used to evaluate the effect of HGF and KGF on reepithelialization following a wound, epithelial morphology and stratification, keratocyte numbers directly beneath the wounded area, and differentiation into myofibroblasts. RESULTS: The 2 growth factors had opposite effects on the rate of reepithelialization, with HGF delaying and KGF accelerating epithelial coverage of the wound. Morphologic assessment showed that both growth factors affected the stratification and differentiation of the epithelium. Both factors stimulated proliferation of keratocytes in serum-free cell culture, although neither induced the appearance of myofibroblasts. This was in contrast to wounded organ cultures treated with 100 ng/mL HGF, in which large numbers of myofibroblasts were observed under the wound. Control corneas and those receiving KGF contained very few myofibroblasts. Keratocyte repopulation of the denuded area under the wound was enhanced in the presence of HGF but decreased in response to KGF. CONCLUSIONS: Hepatocyte growth factor and KGF appeared to have potent and often opposite effects on epithelial and stromal cells following a wound. Hepatocyte growth factor was more detrimental than KGF, resulting in an aberrant epithelium and mass differentiation of keratocytes into myofibroblasts. Inhibition of HGF may be an appropriate therapeutic intervention in the case of persistent epithelial defects and to prevent fibrosis following a corneal stromal wound such as can occur after refractive surgery.  相似文献   

4.
Stromal-epithelial interactions in the cornea   总被引:22,自引:0,他引:22  
Stromal-epithelial interactions are key determinants of corneal function. Bi-directional communications occur in a highly coordinated manner between these corneal tissues during normal development, homeostasis, and wound healing. The best characterized stromal to epithelial interactions in the cornea are mediated by the classical paracrine mediators hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF). HGF and KGF are produced by the keratocytes to regulate proliferation, motility, differentiation, and possibly other functions, of epithelial cells. Other cytokines produced by keratocytes may also contribute to these interactions. Epithelial to stromal interactions are mediated by cytokines, such as interleukin-1 (IL-1) and soluble Fas ligand, that are released by corneal epithelial cells in response to injury. Other, yet to be identified, cytokine systems may be released from the unwounded corneal epithelium to regulate keratocyte viability and function. IL-1 appears to be a master regulator of corneal wound healing that modulates functions such as matrix metalloproteinase production, HGF and KGF production, and apoptosis of keratocyte cells following injury. The Fas/Fas ligand system has been shown to contribute to the immune privileged status of the cornea. However, this cytokine-receptor system probably also modulates corneal cell apoptosis following infection by viruses such as herpes simplex and wounding. Pharmacologic control of stromal-epithelial interactions appears to offer the potential to regulate corneal wound healing and, possibly, treat corneal diseases in which these interactions have a central role.  相似文献   

5.
The rate and mode of corneal wound healing in severely diabetic rats were studied by light microscopy and scanning electron microscopy. Diabetes mellitus was induced in 52 rats by alloxan injection, and 52 nondiabetic rats were used as controls. After 3 weeks, a nonpenetrating razor-blade wound was made in the central cornea of both eyes in 48 diabetic and 48 normal rats. The incision passed through the epithelium and into the stroma. The effects of diabetes on the unwounded cornea were observed by comparison with corneas from eight unwounded rats (four diabetic and four normal). Whole corneas from wounded diabetic and normal rats were studied at 0, 1, 3, 6, 12 and 24 hr and at 2–7 days after wounding. The rate and mode of healing were not found to differ between diabetics and normals. The surfaces of corneal wounds in both groups appeared to be completely healed and indistinguishable from the surrounding unwounded epithelium after 24 hr. The epithelial cells involved in the initial healing process were derived primarily from the layer of wing cells which progressed across the wound close to the connective-tissue base. Only in the final stages of healing, after the wound had been filled by the deeper epithelial cells, did superficial epithelial cells migrate. There appeared to be more exfoliating superficial epithelial cells over the entire cornea in diabetic rats than in normals. Because the healing of central corneal incisions occurs initially and primarily by sliding of the deeper epithelial cells, and because the diabetic condition appears to be associated with increased exfoliation of surface cells, the healing of central incisions may be less affected by diabetes than the healing of defects of the whole corneal surface, where the superficial epithelial cells have been reported to be the main migratory cells in the initial healing process and where healing in diabetics is delayed.  相似文献   

6.
Ma X  Ni CX  Bazan H  Sun HC 《中华眼科杂志》2004,40(3):151-155
目的 利用兔去上皮角膜模型 ,研究血小板活化因子 (PAF)对角膜伤口愈合的作用及其分子生物学机制。方法 离体角膜上做正中直径 7mm圆形去上皮角膜伤口。去上皮角膜分为 3组 ,即对照、PAF及BN (PAF拮抗剂 )组 ,培养 4 8h后 ,行角膜上皮染色观察伤口愈合状况。分别对兔角膜上皮 (RCE)和角膜基质 (RCK)细胞进行体外传代培养 ,RCE和RCK细胞经PAF和 (或 )BN处理 ,培养 2 4h ,提纯RNA。应用RT PCR及核酸杂交技术分别检测肝细胞生长因子 (HGF)、角质形成生长因子 (KGF)及表皮生长因子 (EGF)基因在RCK和RCE细胞及HGF受体 (HGF R)基因在RCE细胞中的表达强度。分别应用CyQUANT荧光结合和Boyden小房技术检测PAF对RCE细胞黏附、增殖和迁徙的影响。结果 PAF (10 0nmol/L )明显抑制角膜上皮伤口愈合 ,4 8h对照、PAF和BN组角膜上皮未愈合面积经电脑图像分析分别为 :(6 0± 1.5 )U、(5 8 0± 7 0 )U和 (5 0± 1 0 )U。PAF明显增强RCE细胞黏附作用 ,对照、PAF和BN组每 96孔板贴附细胞数荧光光度平均值分别为 :36 96± 372、790 8± 6 71和 3487± 32 4。RT PCR结果显示 :PAF使HGFmRNA在RCK的表达强度降低 4 .1倍 ,同时明显减弱HGF R在RCE细胞中的表达 ,核酸杂交实验证实PCR结果。结论PAF明显增强RCE细胞的黏附作用 ,  相似文献   

7.
The capacity of the corneal epithelium to adapt to hypertonic challenge is dependent on the ability of the cells to upregulate the expression and activity of cell membrane-associated Na-K-2Cl cotransporter1 (NKCC1). Yet, the signaling pathways that control this response during hypertonic stress are still unclear. We studied stress-induced changes in proliferation and survival capacity of SV40-immortalized human (HCEC) and rabbit (RCEC) corneal epithelial cells as a function of (i) the magnitude of the hypertonic challenge, (ii) differential changes in activation of mitogen-activated protein kinase (MAPK), and (iii) the extent of p38MAPK interaction with NKCC1. Cells were incubated in hypertonic (up to 600 mOsm) media for varying time periods up to 24 h. Phosphorylated forms of p44/42, p38, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) MAPK were immunoprecipitated from cell lysates, and the amount of each activated NKCC1-associated MAPK was evaluated by Western blot/ECL assay. DNA integrity was assessed by electrophoresis in a 2% agarose gel. Cell survival and proliferation were evaluated based on three criteria: protein content, cell count, and the MTT assay. Exposure to media of 325-350 mOsm increased proliferation of HCEC up to 75%, whereas this response was limited to <16% in RCEC. At higher osmolarities, cell proliferation decreased in both species. SAPK/JNK activity increased 150-fold in HCEC and <10-fold in RCEC, while DNA fragmentation occurred only in HCEC. Compared to HCEC, the better RCEC survival rate was associated with higher p38MAPK activity and near complete restoration of p44/42MAPK activity after the first 30 min. In both cell lines, the amount of phospho-NKCC1 that coimmunoprecipitated with phospho-p38MAPK was proportional to the magnitudes of their respective activation levels. However, no such associations occurred between amounts of phosphorylated p44/42MAPK or SAPK/JNK and phospho-NKCC1. Under isotonic conditions, with bumetanide-induced inhibition of RCEC and HCEC NKCC1 activities, p44/42MAPK activity declined by 40 and 60%, respectively. Such declines led to proportional decreases in cell proliferation. Survival of hypertonicity-stressed corneal epithelial cells depends both on p38MAPK activation capacity and the ability of p38MAPK to stimulate NKCC1 activity through protein-protein interaction. The level of NKCC1 activation affects the extent of cell volume recovery and, in turn, epithelial survival capacity.  相似文献   

8.
Protein kinase C (PKC) isoenzymes require membrane translocation for physiological activation. We have recently shown that the growth factors such as epidermal growth factor and hepatocyte growth factor (HGF), but not keratinocyte growth factor (KGF), regulate PKCalpha activation to promote epithelial wound healing [Sharma, G.D., Ottino, P., Bazan, H.E.P., 2005. Epidermal and hepatocyte growth factors, but not keratinocyte growth factor, modulate protein kinase C alpha translocation to the plasma membrane through 15(S)-hydroxyeicosatetraenoic acid synthesis. J. Biol. Chem. 280, 7917--924]. Protein kinase C alpha (PKCalpha) and protein kinase C epsilon (PKCvarepsilon) are two differentially regulated isoenzymes. While PKCalpha requires Ca(2+) for its activation, PKEvarepsilon is Ca(2+) independent. However, growth factor-induced activation of these enzymes and their specific regulation of epithelial migration and proliferation have not been explored. In the present study, we overexpressed PKCvarepsilon fused to green fluorescent protein to examine its translocation in real-time to the plasma membrane in living human corneal epithelial cells. Stimulation with HGF and KGF demonstrated translocation of PKCvarepsilon to the plasma membrane. Because HGF activates both PKCs, this growth factor was used to stimulate wound healing. PKCalpha or PKCvarepsilon-genes were knocked down individually without affecting the basal expression of the other PKC isoforms. Gene knockdown of PKCalpha significantly inhibited HGF-stimulated proliferation of human corneal epithelial cells. In contrast, PKCvarepsilon-gene-silencing severely impaired the HGF-stimulated migratory ability of human corneal epithelial cells. When migrating epithelial cells in the cornea wound bed after injury were transfected with specific PKCalpha- or PKCvarepsilon-siRNA, there was a significant delay in wound healing. Corneal wound healing stimulated with HGF in similar conditions was also inhibited. On the other hand, overexpression of PKCalpha or PKCvarepsilon-genes fused with green fluorescent protein in migrating corneal epithelium accelerated repair of the epithelial defect. Our findings demonstrate that PKCalpha and PKCvarepsilon modulate different stages of wound healing stimulated by HGF and contribute to epithelial repair by playing selective regulatory roles in epithelial proliferation and migration, both crucial to corneal wound healing.  相似文献   

9.
10.
角膜创伤愈合中上皮细胞的作用初探   总被引:1,自引:0,他引:1  
目的 探讨角膜创伤愈合中上皮细胞与角膜基质成纤维细胞的作用关系。方法 用形态学方法观察兔角膜损伤后上皮细胞与角膜基质成纤维细胞动态变化相关现象。结果 发现基质成纤维细胞的增生活跃程度与上皮基底细胞的细胞层数和细胞大小密切相关。结论角膜上皮细胞在角膜创伤个性中起主导作用。  相似文献   

11.
The mechanism of corneal wound healing has not been clarified yet. However, evidence has accumulated that various kinds of growth factor such as epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor (TGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF) play a key role in corneal wound healing. For example, these growth factors are expressed in the corneal epithelial cells, keratocytes and endothelial cells, and their receptors are expressed in the corneal cells. Furthermore, these growth factors promote the proliferation of corneal cells and induce the migration of corneal cells. In addition to the growth factors, inflammatory cytokines such as interleukin (IL)-1, IL-6 and TNF-alpha are involved in corneal wound healing. These cytokines are expressed in the normal and inflammatory cornea after infections, alkaliburn, etc. where they control the growth of corneal cells and induce the migration of corneal cells. Thus, a number of growth factors and cytokines function in the regulation of corneal cell proliferation and in the maintenance of corneal transparency.  相似文献   

12.
角质细胞生长因子促进角膜上皮损伤修复的研究   总被引:6,自引:1,他引:6  
目的寻找促进角膜上皮损伤修复,治疗持续性角膜上皮缺损的有效方法。方法用3H-胸腺嘧啶核苷(3H-TdR)掺入及液体闪烁技术,观察不同浓度的外源性角质细胞生长因子(keratinocytegrowthfactor,KGF)对体外培养的人角膜上皮细胞生长的影响,由此推算出有效滴眼液浓度并应用于兔眼。用计算机图形分析系统计算角膜上皮愈合速率;用光镜和电镜评估愈合的质量。结果0.1~100ng/mlKGF有明显促进体外培养的人角膜上皮细胞生长的作用(增长率为27.66%~76.73%),且呈剂量依赖性(r=0.9233,P<0.001)。1μg/mlKGF滴兔眼,加速了角膜上皮损伤修复(愈合速率,KGF组为1.77±0.23mm2/h,与对照组1.49±0.24mm2/h比较,P<0.05)。结论外源性KGF对体外培养的人角膜上皮细胞有明显的促生长作用,其滴眼液有加速兔眼角膜上皮创伤修复的作用。  相似文献   

13.
Corneal epithelial wound healing is an important process necessary for maintenance of visual integrity. Corneal epithelial wound healing occurs by cellular migration and proliferation. However, the molecular basis of reepithelialization is not known. To investigate individual molecular contributions to the wound healing process, an in vitro corneal preparation comparable to the in vivo condition is needed. This investigation developed a new whole mount in vitro rabbit cornea preparation and studied epithelial wound healing rates for epithelial and subepithelial wounds. The wound closure rates obtained in this study for epithelial and subepithelial wound healing (52 +/- 14 microns/hr and 38 +/- 7 microns/hr, respectively) are comparable to in vivo rates of wound healing determined by other laboratories for rabbits. This preparation, achieved by functionally separating the epithelial and endothelial sides of the cornea, allows application of agents to the cornea in a manner that approximates the in vivo condition. This in vitro system is promising for future studies designed to investigate corneal wound healing while reducing potential ocular discomfort associated with in vivo corneal wounding.  相似文献   

14.
After an epithelium is wounded, multiple soluble and extracellular matrix-associated signals induce a repair response. An often-overlooked signal is the endogenous electrical field established in the vicinity of the wound immediately upon disruption of epithelial integrity. Previous studies have detected lateral electric fields of approximately 42 mV mm-1 near bovine corneal wounds. In addition, electric fields on the order of 100-200 mV mm-1 have been measured lateral to wounds in mammalian epidermis. Here we report the migratory response of human corneal epithelial cells to DC electric fields of similar, physiologic magnitude. Our findings demonstrate that in a 100 mV mm-1 DC field, corneal epithelial cells demonstrate directed migration towards the cathode. The migratory speed and distances traversed by cultured human corneal epithelial cells is remarkably similar to those of cultured skin-derived keratinocytes under similar conditions; however, corneal epithelial cells demonstrate a more rapid directional response to the field than keratinocytes. These findings suggest that endogenous, wound-induced electric fields present in the cornea play an important role in human corneal wound healing, by orienting the directional response of migratory cells so that they efficiently re-epithelialize the wounded area.  相似文献   

15.
PURPOSE: The purpose of the present study was to examine the roles of signaling pathways potentially activated by TGFbeta (i.e., Smad and p38 mitogen-activated kinase [MAPK]) in regulation of cell migration and proliferation of healing mouse corneal epithelium. METHODS: Activation of Smads or p38MAPK was evaluated by immunohistochemistry in healing mouse corneal epithelium after debridement. The role of endogenous TGFbeta or p38MAPK in epithelial healing was determined in organ-cultured mouse corneas with an epithelial defect, in the presence or absence of a TGFbeta-neutralizing antibody or p38MAPK inhibitors, respectively. Cell proliferation was evaluated by incorporation of bromodeoxyuridine. RESULTS: Migrating mouse corneal epithelium had minimal cell proliferation. Smad3 and -4 were found in nuclei of normal corneal epithelium, whereas they were absent in nuclei of migrating cells in association with Smad7 upregulation on epithelial debridement. Administration of TGFbeta-neutralizing antibody reduced the protein expression of Smad7 in vivo after a corneal injury. In contrast, phosphorylation and nuclear translocation of p38MAPK were markedly evident in migrating epithelium during healing, but not in uninjured epithelium. In organ culture, addition of p38MAPK inhibitors blocked cell migration more markedly than neutralizing TGFbeta-antibody and enhanced cell proliferation in the injured corneal epithelium, in association with phosphorylation of Erk. CONCLUSIONS: Endogenous TGFbeta enhances migration of corneal epithelium during wound healing in mice. The p38MAPK, but not the Smad, cascade plays a major role in promoting cell migration and in suppressing cell proliferation in migrating epithelium.  相似文献   

16.
EGF is an essential growth factor needed for epithelial cell proliferation and wound healing of the cornea, but the molecular mechanism is not understood. Although studies have shown that EGF in some non-phagocytic cells induces ROS generation, little is known about the role of ROS in corneal epithelial cells. Therefore, we examined the potential physiological role of ROS in corneal cell proliferation, adhesion and wound healing using rabbit or human corneal epithelial cells, and pig whole cornea organ culture as models. EGF (5 ng/ml)-induced ROS in serum-starved RCE or HCE cells were captured as DCFH fluorescence and detected by confocal microscopy. The elevation of ROS was eradicated when the cells were pretreated with an antioxidant N-acetylcysteine (NAC) or mannitol, or with inhibitor to NADPH oxidase (DPI), or to lipoxygenase (NDGA). EGF-induced ROS generation correlated with cell growth and activation of Akt and MAPK signaling pathways, while NAC eliminated all these effects. EGF-stimulated cell adhesion or migration in cell culture was greatly suppressed in the presence of NAC while EGF-facilitated epithelial cell wound healing in corneal organ culture was also blocked by NAC. This is the first demonstration of a novel ROS physiological function in corneal wound healing.  相似文献   

17.
PURPOSE: Sodium hyaluronate (hyaluronic acid) is known to promote corneal epithelial wound healing in vivo and in vitro, in animal experiments. Sodium hyaluronate is the ligand for CD44, a cell surface adhesion molecule which has been found on normal human corneal epithelial cells. The purpose of this study was to investigate the effect of sodium hyaluronate on human corneal epithelial cell migration, proliferation, and CD44 receptor expression. METHODS: Human corneal epithelial cell cultures were established from 32 donor corneoscleral rims and maintained separately in three different culture conditions: (1) culture medium only, (2) sodium hyaluronate enriched (0.6 mg/ml) medium, and (3) hydroxypropylmethylcellulose enriched (2.5 mg/ml) medium. The total area of migrating epithelial cell sheets in each case was measured by planimetry on days 4, 8, 12, and 16. Cytospin preparations of cells cultured in the different culture conditions were examined immunohistochemically for proliferation and CD44 receptor expression using antibodies directed against Ki67 and CD44 respectively. RESULTS: Cells cultured in the presence of sodium hyaluronate showed significantly increased migration at days 12 and 16 (Friedmen test: p = 0.0012, day 16; p = <0.001, day 12) compared with cells cultured in the other media. There was no difference in cell proliferation (Ki67) or CD44 expression on cells cultured in the different culture conditions. CONCLUSIONS: Sodium hyaluronate promotes migration but not proliferation or CD44 expression on human corneal epithelial cells in vitro. The beneficial effect of sodium hyaluronate in corneal wound healing is likely to be related to rapid migration of cells leading to rapid wound closure. This may be facilitated by the adhesion between CD44 on the cells and hyaluronic acid, which coats the surface of the denuded cornea.  相似文献   

18.
19.
目的:寻找促进角膜上皮损伤修复,治疗持续性角膜上皮缺损的有效药物方法:用~3H—胸腺嘧啶核苷(~3H—TDR)掺入及液体闪烁技术,观察外源性表皮生长因子(EGF)联合角蛋白细胞生长因子(KGF)对体外培养的角膜上皮细胞DNA合成的影响,并计算细胞倍增时间。结果:10ng/mlEGF,10ng/mlKGF单独或联合应用均有明显促进人角膜上皮细胞DNA合成的作用(与对照组比较 P<0.01),联合用药,作用更强(P<0.05)。应用EGF与KGF明显缩短了细胞倍增时间。结论:外源性EGF与KGF对体外培养的人角膜上皮细胞有明显的促细胞增生作用,联合用药,效果更佳。表明EGF与KGF具有应用于临床,促进角膜上皮损伤修复的可能性。眼科学报1996; 12:107-109。  相似文献   

20.
PURPOSE: To investigate the effects of hepatocyte growth factor (HGF) and a small applied electric field (EF) on corneal epithelial cell (CEC) migration. METHODS: Primary cultures of bovine CECs were exposed to an EF (25-250 mV/mm) in the presence or absence of HGF (100 ng/mL). The rate and directionality of CEC migration were quantified. The expression of HGF receptors (HGFRs), p42/44 mitogen-activated protein kinase (MAPK) and the time-course of activation of p42/44 MAPK were investigated by confocal microscopy and Western blot analysis. RESULTS: CECs migrated significantly faster in the presence of an EF, HGF, or HGF and an EF combined. The distribution of HGFRs was intracellular and in the presence of an EF was concentrated in the cathode-facing side. This EF-induced asymmetrical accumulation of HGFRs correlated with the direction of CEC migration. The application of HGF or an EF led to the activation of the MAPK signaling pathway and in the presence of an EF, activation of MAPK was greater in the cathode-facing half of the CECs. Inhibition of the MAPK signaling pathway by PD98059 (100 micro M) reduced the ability of HGF and an EF to enhance the rate of CEC migration, but did not alter EF-induced cathodal directionality. CONCLUSIONS: These data suggest that both HGF and an EF augment the rate of CEC migration through activation of p42/44 MAPK. Moreover, EF-induced redistribution of HGFRs and asymmetry of MAPK signaling, although not instrumental in directing CEC migration cathodally, may be important for the signaling and maintenance of migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号