首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mutations in alpha-synuclein, the main constituent of Lewy bodies, have been identified in familial Parkinson's disease. We have stereotactically injected lentiviral vectors encoding wild-type and A30P mutant human alpha-synuclein in different brain regions (striatum, substantia nigra, amygdala) of mice. Overexpression of alpha-synuclein induced time-dependent neuropathological changes reminiscent of Lewy pathology: abnormal accumulation of alpha-synuclein in cell bodies and neurites, alpha-synuclein-positive neuritic varicosities and cytoplasmic inclusions that stained with ubiquitin antibodies and became larger and more frequent with time. After one year, alpha-synuclein- and ubiquitin-positive neurons displayed a degenerative morphology and a significant loss of alpha-synuclein-positive cells was observed. Similar findings were observed with both the wild-type and the A30P mutant form of alpha-synuclein and this in different brain regions. This indicates that overexpression of alpha-synuclein is sufficient to induce Lewy-like pathology and neurodegeneration and that this effect is not restricted to dopaminergic cells. Our data also demonstrate the use of lentiviral vectors to create animal models for neurodegenerative diseases.  相似文献   

2.
ataxin-3相互作用蛋白的筛选及鉴定   总被引:1,自引:0,他引:1  
目的 筛选ataxin-3的相互作用蛋白并进行互作结构域分析,探讨ataxin-3的功能和脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机理。方法应用酵母双杂交系统3,从成人脑eDNA文库中筛选和鉴定突变型ataxin-3的互作蛋白,构建ataxin-3蛋白羧基端Bait质粒,进行互作结构域分析。应用激光共聚焦显微镜观察ataxin-3与所筛到的互作蛋白在哺乳动物细胞中的共定位情况。结果分离获得5个新的ataxin-3互作蛋白,视紫红质-二磷酸鸟苷解离抑制因子α、苏素-1、氨氯吡嗪脒敏感性神经元阳离子通道2和2个未知新序列。结构域分析显示除1个未知蛋白与ataxin-3蛋白羧基端互作外,其余4个均与氨基端互作。在SH-SY5Y细胞的细胞核内,野生型ataxin-3与苏素-1共定位,突变型ataxin-3所形成的核内蛋白聚合体也与苏素-1共定位。结论 发现1个未知蛋白可能与ataxin-3蛋白羧基端互作,苏素1可能与ataxin-3蛋白氨基端互作,苏素化可能参与了ataxin-3蛋白的翻译后修饰和脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病过程。  相似文献   

3.
Machado-Joseph disease (MJD), the most common dominantly inherited ataxia worldwide, is caused by a polyglutamine (polyQ) expansion in the deubiquitinating (DUB) enzyme ataxin-3. Interestingly, MJD can present clinically with features of Parkinsonism. In this study, we identify parkin, an E3 ubiquitin-ligase responsible for a common familial form of Parkinson's disease, as a novel ataxin-3 binding partner. The interaction between ataxin-3 and parkin is direct, involves multiple domains and is greatly enhanced by parkin self-ubiquitination. Moreover, ataxin-3 deubiquitinates parkin directly in vitro and in cells. Compared with wild-type ataxin-3, MJD-linked polyQ-expanded mutant ataxin-3 is more active, possibly owing to its greater efficiency at DUB K27- and K29-linked Ub conjugates on parkin. Remarkably, mutant but not wild-type ataxin-3 promotes the clearance of parkin via the autophagy pathway. The finding is consistent with the reduction in parkin levels observed in the brains of transgenic mice over-expressing polyQ-expanded but not wild-type ataxin-3, raising the intriguing possibility that increased turnover of parkin may contribute to the pathogenesis of MJD and help explain some of its parkinsonian features.  相似文献   

4.
Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), is one of at least eight inherited neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein. Here we present two lines of evidence implicating the ubiquitin-proteasome pathway in SCA3/MJD pathogenesis. First, studies of both human disease tissue and in vitro models showed redistribution of the 26S proteasome complex into polyglutamine aggregates. In neurons from SCA3/MJD brain, the proteasome localized to intranuclear inclusions containing the mutant protein, ataxin-3. In transfected cells, the proteasome redistributed into inclusions formed by three expanded polyglutamine proteins: a pathologic ataxin-3 fragment, full-length mutant ataxin-3 and an unrelated GFP-polyglutamine fusion protein. Inclusion formation by the full-length mutant ataxin-3 required nuclear localization of the protein and occurred within specific subnuclear structures recently implicated in the regulation of cell death, promyelocytic leukemia antigen oncogenic domains. In a second set of experiments, inhibitors of the proteasome caused a repeat length-dependent increase in aggregate formation, implying that the proteasome plays a direct role in suppressing polyglutamine aggregation in disease. These results support a central role for protein misfolding in the pathogenesis of SCA3/MJD and suggest that modulating proteasome activity is a potential approach to altering the progression of this and other polyglutamine diseases.  相似文献   

5.
Autosomal dominant spinocerebellar ataxias (SCA) form a group of clinically and genetically heterogeneous neurodegenerative disorders. The defect responsible for SCA3/Machado-Joseph disease (MJD) has been identified as an unstable and expanded (CAG)n trinucleotide repeat in the coding region of a novel gene of unknown function. The MJD1 gene product, ataxin-3, exists in several isoforms. We generated polyclonal antisera against an alternate carboxy terminus of ataxin-3. This isoform, ataxin-3c, is expressed as a protein of approximately 42 kDa in normal individuals but is significantly enlarged in affected patients confirming that the CAG repeat is part of the ataxin-3c isoform and is translated into a polyglutamine stretch, a feature common to all known CAG repeat disorders. Ataxin-3 like immunoreactivity was observed in all human brain regions and peripheral organs studied. In neuronal cells of control individuals, ataxin-3c was expressed cytoplasmatically and had a somatodendritic and axonal distribution. In SCA3 patients, however, C-terminal ataxin-3c antibodies as well as antiataxin-3 monoclonal antibodies (1H9) and anti-ubiquitin antibodies detected intranuclear inclusions (NIs) in neuronal cells of affected brain regions. A monoclonal antibody, 2B6, directed against an internal part of the protein, barely detected these NIs implying proteolytic cleavage of ataxin-3 prior to its transport into the nucleus. These findings provide evidence that the alternate isoform of ataxin-3 is involved in the pathogenesis of SCA3/MJD. Intranuclear protein aggregates appear as a common feature of neurodegenerative polyglutamine disorders.  相似文献   

6.
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The mutant ataxin-3 forms intranuclear inclusions in cultured cells as well as in diseased human brain and also causes cell death in transfected cells. However, the normal function of ataxin-3 remains unknown. To explore the function of ataxin-3, we used the two-hybrid system to screen for the protein(s) that interacts with ataxin-3. We found that ataxin-3 interacts with two human homologs of the yeast DNA repair protein RAD23, HHR23A and HHR23B. Furthermore, we confirmed that ataxin-3 interacts with the -ubiquitin-like domain at the N-terminus of the HHR23 proteins, which is important for nucleotide excision repair; however, ataxin-3 does not interact with -ubiquitin, implying that ataxin-3 might be functionally associated with the HHR23 proteins through this specific interaction. The normal and mutant ataxin-3 proteins show no difference in their ability to bind to the HHR23 proteins. However, in 293 cells HHR23A is recruited to intranuclear inclusions formed by the mutant ataxin-3 through its interaction with ataxin-3. These results suggest that this interaction is associated with the normal function of ataxin-3 and that some functional abnormality of the HHR23 proteins might exist in MJD.  相似文献   

7.
Theodore S  Cass WA  Maragos WF 《Neuroscience》2006,137(3):925-935
Dysfunction of the dopaminergic system accompanied by loss of dopamine in the striatum is a major feature of human immunodeficiency virus-1-associated dementia. Previous studies have shown that human immunodeficiency virus-1-associated dementia patients with a history of drug abuse have rapid neurological progression, prominent psychomotor slowing, more severe encephalitis and more severe dendritic and neuronal damage in the frontal cortex compared with human immunodeficiency virus-1-associated dementia patients without a history of drug abuse. In a previous study, we showed that methamphetamine and human immunodeficiency virus-1 protein Tat interact to produce a synergistic decline in dopamine levels in the rat striatum. The present study was carried out to understand the underlying cause for the loss of dopamine. Male Sprague-Dawley rats were administered saline, methamphetamine, Tat or Tat followed by methamphetamine 24 h later. Two and seven days later the animals were killed and tissue sections from striatum were processed for silver staining to examine terminal degeneration while sections from striatum and substantia nigra were processed for tyrosine hydroxylase immunoreactivity. Striatal tissue was also analyzed by Western blotting for tyrosine hydroxylase protein levels. Compared with controls, methamphetamine+Tat-treated animals showed extensive silver staining and loss of tyrosine hydroxylase immunoreactivity and protein levels in the ipsilateral striatum. There was no apparent loss of tyrosine hydroxylase in the substantia nigra. Markers for oxidative stress were significantly increased in striatal synaptosomes from Tat+methamphetamine group compared with controls. The results indicate that methamphetamine and Tat interact to produce an enhanced injury to dopaminergic nerve terminals in the striatum with sparing of the substantia nigra by a mechanism involving oxidative stress. These findings suggest a possible mode of interaction between methamphetamine and human immunodeficiency virus-1 infection to produce enhanced dopaminergic neurotoxicity in human immunodeficiency virus-1 infected/methamphetamine-abusing patients.  相似文献   

8.
Intraneuronal protein aggregates of the mutated huntingtin in Huntington's disease (HD) brains suggest an overload and/or dysfunction of the ubiquitin-proteasome system (UPS). There is a general inhibition of the UPS in many brain regions (cerebellum, cortex, substantia nigra and caudate-putamen) and skin fibroblasts from HD patients. In the current experiment, the widely used mutant huntingtin-exon 1 CAG repeat HD transgenic mice model (R6/2) (with 144 CAG repeat and exon 1) during late-stage pathology, had increases in proteasome activity in the striatum. However, this discrepancy with HD patient tissue was not apparent in the mutant CAG repeat huntingtin full-length HD (YAC72) transgenic mouse model during post-symptomatic and late-stage pathology, which then also showed UPS inhibition similar to HD patients' brains. In both types of HD model mice, we determined biochemical changes, including expression of brain-derived neurotrophic factor (BDNF) and mitochondrial complex II/III (MCII/III) activities related to HD pathology. We found increases of both BDNF expression, and MCII/III activities in YAC72 transgenic mice, and no change of BDNF expression in R6/2 mice. Our data show that extreme CAG repeat lengths in R6/2 mice is paradoxically associated with increased proteasome activity, probably as a cellular compensatory biochemical change in response to the underlying mutation. Changes in HD patients for UPS function, BDNF expression and MCII/III activity are only partially modeled in R6/2 and YAC72 mice, with the latter at 16 months of age being most congruent with the human disease.  相似文献   

9.
Rodent models of Huntington disease (HD) are valuable tools for investigating HD pathophysiology and evaluating new therapeutic approaches. Non-invasive characterization of HD-related phenotype changes is important for monitoring progression of pathological processes and possible effects of interventions. The first transgenic rat model for HD exhibits progressive late-onset affective, cognitive, and motor impairments, as well as neuropathological features reflecting observations from HD patients. In this report, we contribute to the anatomical phenotyping of this model by comparing high-resolution ex vivo DTI measurements obtained in aged transgenic HD rats and wild-type controls. By region of interest analysis supplemented by voxel-based statistics, we find little evidence of atrophy in basal ganglia regions, but demonstrate altered DTI measurements in the dorsal and ventral striatum, globus pallidus, entopeduncular nucleus, substantia nigra, and hippocampus. These changes are largely compatible with DTI findings in preclinical and clinical HD patients. We confirm earlier reports that HD rats express a moderate neuropathological phenotype, and provide evidence of altered DTI measures in specific HD-related brain regions, in the absence of pronounced morphometric changes.  相似文献   

10.
Autoradiographic visualization of enkephalinase (membrane metalloendopeptidase, EC 3.4.24.11) in sagittal sections of rat brain using a 125I-labelled monoclonal antibody showed the presence of a dense immunoreactivity in a tract joining the striatum to the substantia nigra. Unilateral kainate injections into the striatum elicited a strong ipsilateral decrease in enkephalinase activity and immunoreactivity in both the injected area and substantia nigra, particularly its pars compacta. This demonstrates the presence of enkephalinase all along fibers of a striatonigral pathway.  相似文献   

11.
成年大鼠脑内ATP敏感性钾通道亚型mRNA表达的研究   总被引:1,自引:1,他引:1  
为探讨ATP敏感性钾通道(KATP)亚型在大鼠脑组织中的表达,本研究采用半定量逆转录聚合酶链反应 (RT PCR)检测了大鼠小脑、大脑皮质、海马、纹状体、黑质的KATP亚型mRNA的表达。结果显示Kir6. 1、Kir6. 2、Sur1、Sur2B在小脑、大脑皮质、海马、纹状体、黑质中均有表达,Sur2A在脑组织中未见表达。Kir6. 1mRNA在海马和黑质的相对表达水平明显高于小脑、大脑皮质和纹状体(P<0.01);Kir6. 2和Sur1mRNA在黑质的相对表达水平明显高于小脑、大脑皮质、海马和纹状体 (P<0.01 );Sur2BmRNA在黑质、海马和纹状体的相对表达水平明显高于小脑和大脑皮质(P<0.01 )。以上结果提示KATP在脑内具有广泛表达,其表达水平在不同部位存在着差异性。  相似文献   

12.
C Humpel  A Saria 《Neuroscience letters》1989,105(1-2):159-163
Slices of the rat substantia nigra and striatum were superfused in vitro to measure release of tachykinins (TKs). Potassium (30 and 60 mM) infusion caused a 3- to 10-fold outflow of both substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) in the substantia nigra as well as in the striatum as measured by radioimmunoassay. The potassium-evoked release of SP-LI and NKA-LI was significantly, but not completely (by 25-70%) inhibited by simultaneous perfusion with L-glutamic acid (50 microM) and gamma-aminobutyric acid (GABA, 50 microM) in the substantia nigra. No significant inhibition was, however, observed in the striatum. The present data indicate a differential regulation of tachykinins in the striatum and substantia nigra by L-glutamic acid and GABA. The presynaptic regulation of TK release may therefore differ in the dendritic and terminal region of the striatonigral pathway.  相似文献   

13.
Parkinson's disease is a neurodegenerative disorder affecting the dopaminergic neurons in the substantia nigra. Aggregation of alpha-synuclein appears to play a central role in the pathogenesis. Novel animal models for neurodegeneration have been generated by lentiviral vector-mediated locoregional overexpression of disease-associated genes in the adult brain. We have used lentiviral vectors to overexpress a clinical mutant of alpha-synuclein, A30P, in the rat substantia nigra. This overexpression induced time-dependent cytoplasmic and neuritic accumulation of alpha-synuclein and neurodegeneration. A subgroup of the rats developed asymmetric rotational behavior after administration of amphetamine. In addition, these animals displayed reduced dopamine transporter binding visualized by 123I-FP-CIT microSPECT imaging. The behavioral and microSPECT data were validated by histological analysis. There was a strong correlation between the reduction of dopaminergic neurons in the substantia nigra and the reduction of dopamine transporter binding in the striatum. MicroSPECT imaging enables non-invasive imaging of the neurodegeneration allowing longitudinal follow-up in this new animal model for Parkinson's disease and the evaluation of neuroprotective drugs.  相似文献   

14.
DT diaphorase [NAD(P)H:quinone oxidoreductase] activity was measured in subcellular fractions from homogenates of striatum, frontal cortex, hippocampus, cerebellum, hypothalamus and substantia nigra. This flavoprotein, which by definition oxidizes dihydronicotinamide adenine dinucleotide and dihydronicotinamide adenine dinucleotide phosphate at equal rates and is completely inhibited by 10(-5) M dicoumarol, was found to constitute 80-90% of the total dihydronicotinamide adenine dinucleotide- and dihydronicotinamide adenine dinucleotide phosphate-reductase activities in all brain regions studied. Antibodies raised against purified cytosolic DT diaphorase from the rat liver cross-reacted with the brain enzyme and inhibited soluble DT diaphorase from striatum and cerebellum to 80-90%. Immunohistochemical studies with the same antibodies demonstrated the occurrence of DT diaphorase immunoreactivity in a population of neurons in the substantia nigra and ventral tegmental area. In some neurons there was a colocalization of DT diaphorase and tyrosine hydroxylase-like immunoreactivity. The dense network of DT diaphorase-immunoreactive fibres in the striatum disappeared along with the dopaminergic innervation after 6-hydroxydopamine lesion. DT diaphorase immunoreactivity was also found in Bergmann glia, astrocytes and tanycytes. No correlation appeared to exist between the localization of neuronal DT diaphorase immunoreactivity and the dihydronicotinamide adenine dinucleotide phosphate-diaphorase-like activity, as defined by tetrazolium salt staining, used as a marker for certain peptidergic and cholinergic neurons. However, in, for example, glial cells in the cerebellum, DT diaphorase might contribute or be responsible for the histochemical dihydronicotinamide adenine dinucleotide phosphate-diaphorase activity.  相似文献   

15.
Pathogenic substitutions in leucine-rich repeat kinase 2 (LRRK2, Lrrk2) have been genetically linked to familial, late-onset Parkinsonism. End-stage disease is predominantly associated with nigral neuronal loss and Lewy body pathology, but patients may have gliosis, tau or ubiquitin inclusions (pleomorphic pathology). The anatomical distribution of Lrrk2 protein may provide insight into its function in health and neurodegeneration, thus we performed a comparative study with 'in-house' and commercially available Lrrk2 antibodies using brain tissue from wild type and human Lrrk2 transgenic bacterial artificial chromosome (BAC) mice, and from diffuse Lewy body disease (DLBD) patients. Lrrk2 protein was ubiquitously expressed and relatively abundant in most brain regions, including the substantia nigra, thalamus and striatum. Lrrk2 was not a major component of Lewy body or neuritic pathology associated with Parkinson's disease. However, selective loss of dopaminergic neurons in Lrrk2-associated Parkinsonism argues the protein may have regional-specific interactions. Lrrk2 immunohistochemical staining was present in the subventricular zone, a region containing stem cells that give rise to both neurons and glia. A role for Lrrk2 in neurogenesis might provide further insight into the aberrant role of mutant protein in age-associated neurodegeneration with pleomorphic pathology.  相似文献   

16.
The effect of acute administration of 1,2,3,4-tetrahydroisoquinoline, an endogenous substance suspected of producing Parkinsonism in humans, on the levels of glutathione and reactive oxygen species and on the enzymatic activity of gamma-glutamyl transpeptidase was investigated in the substantia nigra, striatum and cortex of rat brain. Four hours after a single dose of 1,2,3,4-tetrahydroisoquinoline (100 mg/kg i.p.), a significant increase in tissue glutathione level was found in the dopaminergic structures studied. The most pronounced effect was observed in the substantia nigra and cortex, and the weakest in the striatum. At the same time, significant inhibition of gamma-glutamyl transpeptidase was observed in the substantia nigra, cortex and striatum whose extent strictly corresponded to the increase in glutathione levels in those structures. Moreover, in 1,2,3,4-tetrahydroisoquinoline-treated rats, the production of reactive oxygen species was significantly reduced in the substantia nigra, whereas it was markedly enhanced in the striatum.Our results suggest that the increase in tissue glutathione level in the dopaminergic structures studied results from inhibition of gamma-glutamyl transpeptidase and refers to the extracellular pool of this peptide. Moreover, it is likely that both the 1,2,3,4-tetrahydroisoquinoline-induced alterations in glutathione level and the enhanced production of reactive oxygen species in the striatum may have implications for the pathogenesis of Parkinson's disease.  相似文献   

17.
The pattern and time-course of cellular, neurochemical and receptor changes in the striatum and substantia nigra were investigated following unilateral quinolinic acid lesions of the striatum in rats. The results showed that in the central region of the striatal lesion there was a major loss of Nissl staining of the small to medium sized cells within 2 h and a substantial loss of neuronal staining within 24 h after lesioning. Immunohistochemical studies showed a total loss of calbindin immunoreactivity, a known marker of GABAergic striatal projection neurons, throughout the full extent of the quinolinic acid lesion within 24 h. Similarly, within 24 h, there was a total loss of somatostatin/neuropeptide Y cells in the centre of the lesion but in the periphery of the lesion these cells remained unaltered at all survival times. Striatal GABA(A) receptors remained unchanged in the lesion for 7 days, and then declined in density over the remainder of the time course. Glial fibrillary acidic protein immunoreactive astrocytes were present in the periphery of the lesion at 7 days, occupied the full extent of the lesion by 4 weeks, and remained elevated for up to 2 months. In the substantia nigra, following placement of a striatal quinolinic acid lesion, there was: a loss of substance P immunoreactivity within 24 h; a marked astrocytosis evident from 1-4 weeks postlesion; and, a major increase in GABA(A) receptors in the substantia nigra which occurred within 2 h postlesion and was sustained for the remainder of the time course (15 months). This study shows that following quinolinic acid lesions of the striatum there is a major loss of calbindin and somatostatin/neuropeptide Y immunoreactive cells in the striatum within 24 h, and a marked increase in GABA(A) receptors in the substantia nigra within 2 h. These findings are similar to the changes in the basal ganglia in Huntington's disease and provide further evidence supporting the use of the quinolinic acid lesioned rat as an animal model of Huntington's disease.  相似文献   

18.
The distribution of substance P (SP)-like immunoreactive neurons in the brains of aged normal human was analyzed quantitatively. Consecutive coronal sections in which the striatum and the substantia nigra were exposed widely, were obtained from the right hemisphere and stained immunohistochemically for SP. Each stained section was divided into approximately three million microareas and the immunohistochemical fluorescence intensity in each area was measured using a human brain mapping analyzer, which is a microphotometry system for analysis of the distribution of neurochemicals in a large tissue slice. These distributions are displayed in color and monochromatic graphics. In the analyzed brain regions, conspicuously intense SP-like immunoreactivity was observed in the substantia nigra and the internal segment of the globus pallidus. Within the substantia nigra, the SP-like immunoreactive intensity in the pars compacta was 25%, higher than that in the pars reticulata, and the distribution of melanin-containing neurons corresponded well to the distribution of the SP-containing structures. SP-like immunoreactive intensity in the internal segment of the globus pallidus, which was lower than that in the substantia nigra, was approximately twice as high as that in the external segment of the globus pallidus. Very intense immunoreactivity was localized at the most medial area of the internal segment of the globus pallidus. The SP-like immunoreactive intensity in the caudate nucleus and putamen was moderate, and the distribution was heterogeneous and observed in patches.  相似文献   

19.
Machado–Joseph disease is an autosomal dominant spinocerebellar degeneration caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. We have previously shown that increased oxidative stress and decreased expression of Hsp27 may be contributory factors to the disease progression. In this study, we utilized neuroblastoma SK-N-SH cells stably transfected with full-length expanded ataxin-3 to further investigate the mechanism(s) resulting in the decreased expression of Hsp27. Results from 35S-methionine pulse-chase labeling and protein degradation assays revealed that decreased Hsp27 in mutant MJD cells is due to defects in protein synthesis. Our results further demonstrated that Hsp27 degradation is independent of the proteasome degradation pathway. In addition, we showed that overexpression of Hsp27 desensitizes mutant MJD cells to apoptotic stress. Taken together, these findings provide the first evidence that expanded ataxin-3 interferes with Hsp27 synthesis, which may contribute to the impairment of the cells’ ability to respond to stresses and trigger the progression of this late-onset disease.  相似文献   

20.
The topographic organization of the nigral cells sending axons to the striatum, amygdala and inferior colliculus was studied in the rat substantia nigra pars lateralis by using retrograde fluorescent tracers. Nigral perikarya projecting to the inferior colliculus were located dorsolaterally within the substantia nigra pars lateralis, whereas nigral perikarya projecting to the striatum or to the amygdala were mostly situated ventromedially within the substantia nigra pars lateralis. The transmitter substances of the nigrotectal cells were examined by combining a retrograde tracing method with immunohistochemistry for tyrosine hydroxylase or glutamate decarboxylase. Nigral neurons projecting to the inferior colliculus lacked tyrosine hydroxylase immunoreactivity, but exhibited immunoreactivity for glutamate decarboxylase. The substantia nigra pars lateralis is made up of different neuronal populations: one projecting to the inferior colliculus and another directed to the striatum and amygdala. The pars lateralis pathway to the inferior colliculus utilized GABA as a neurotransmitter, whereas the previously characterized nigral cells projecting to the striatum and superior colliculus use GABA and dopamine as neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号