首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organization of retinal projections to the dorsal lateral geniculate complex in turtles has been studied by means of light and electron microscopic axon tracing techniques. Orthograde degeneration studies with Fink-Heimer methods following restricted retinal lesions show the entire retina has a topologically organized projection to the contralateral dorsal lateral geniculate complex. The nasotemporal axis of the retina projects along the rostrocaudal axis of the geniculate complex; the dorsoventral axis of the retina projects along the dorsoventral axis of the geniculate complex. The projection to the ipsilateral dorsal lateral geniculate complex originates from the ventral, temporal and nasal edges of the retina. The nasotemporal axis of the ipsilateral retina projects along the rostrocaudal axis of the geniculate complex. It was not possible to determine the orientation of the dorsoventral axis of the ipsilateral retina on the geniculate complex. Light microscopic autoradiographic tracing experiments and electron microscopic degeneration experiments show the retinogeniculate projection has a laminar organization. Retinogeniculate terminals are found in both the neuropile and cell plate throughout all three subnuclei of the dorsal lateral geniculate complex but have a distinctive distribution in each subnucleus. In the subnucleus ovalis, they are frequent in both the neuropile and cell plate which forms the rostral pole of the complex. In the dorsal subnucleus, they are most prevalent in the outer part of the neuropile layer, less frequent in the inner part of the neuropile, and rare in the cell plate. In the ventral subnucleus, they are frequent in the outer part of the neuropile but are also common in the inner part of the neuropile and cell plate. These observations point to several principles of geniculate organization in turtles. First, the complex receives projections from the entire contralateral retina and a segment of the ipsilateral retina. It thus has monocular and binocular segments that together receive a topologically organized representation of the binocular visual space and the contralateral monocular visual space. Second, the three geniculate subnuclei receive information from different, specialized regions of the retina and visual space. Subnucleus ovalis receives information from the frontal binocular visual field. The ventral subnucleus receives information from the caudal binocular field. The dorsal subnucleus receives input from the contralateral monocular field. Third, there is a lamination of retinal inputs in the geniculate complex which differs in character within the three subnuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
The efferent pathways from the visual cortex to the dorsal lateral geniculate complex of turtles have been studied by using the orthograde and retrograde transport of horseradish peroxidase (HRP). Injections of HRP in the lateral thalamus retrogradely label neurons throughout the visual cortex. The majority of labeled neurons have somata in layer 2 of the lateral part of dorsal cortex (D2); a minority have somata in layer 3. Labeled neurons in layer 2 tend to have vertically oriented, fusiform somata and dendrites that ascend into layer 1. Labeled neurons in layer 3 have fusiform somata and dendrites, both oriented horizontally. Injections of HRP in visual cortex orthogradely label corticofugal axons. Those projecting to the lateral geniculate complex course laterally from the visual cortex, pass through the striatum (occasionally bearing varicosities), and enter the diencephalon in the ventral peduncle of the lateral forebrain bundle. Individual axons leave the ventral peduncle and run dorsally in the transverse plane, entering the dorsal lateral geniculate complex from its ventral edge. They continue dorsally, principally in the cell plate of the geniculate complex, where they bear varicosities.  相似文献   

4.
GABA-immunoreactive (GABA-I) elements (neuronal somata and neuropile) are detected in turtle Emys orbicularis and lizard Ophysaurus spodus in all structures of ventral and dorsal parts of amygdaloid complex (AC) considered as phylogenetic more ancient and younger, respectively by means of the immunohistochemical method. Their maximal quantity in the ventral section of AC is found in the lateral region, lesser--in the ventral, central and medial regions. Besides in lizards a specialized laminar distribution of GABA-I elements in n. sphaericus is observed. GABA-I neurons are also detected in structures of dorsal part in turtles and lizards against the background of the immunopositive neuropile of a moderate density. It is supposed that GABA-ergic innervation of AC is liable to considerable variations in connection with taxonomic, ecological and other factors.  相似文献   

5.
Motor fibers of the accessory celiac and celiac vagal branches are derived from the lateral columns of the dorsal motor nucleus of the vagus nerve. These branches also contain sensory fibers that terminate within the nucleus of the tractus solitarii. This study traces the innervation of the intestines by using the tracer cholera toxin-horseradish peroxidase. In 53 rats, the tracer was injected into either the stomach, duodenum, jejunum, terminal ileum, cecum, or ascending colon. With all cecal injections, prominent retrograde labeling of cell bodies occurred bilaterally in the lateral columns of the dorsal motor nucleus of the vagus nerve above, at, and below the level of the area postrema. Dendrites of laterally positioned neurons projected medially and rostrocaudally within the dorsal motor nucleus of the vagus nerve and dorsomedially into both the medial subnucleus and parts of the commissural subnucleus of the nucleus of the tractus solitarii. Sensory terminal labeling occurred in the dorsolateral commissural subnucleus at the level of the rostral area postrema and the medial commissural subnucleus caudal to the area postrema. Additionally, there was sensory terminal labeling within a small confined area of the dorsomedial zone of the nucleus of the tractus solitarii immediately adjacent to the fourth ventricle at a level just anterior to the area postrema. Stomach injections labeled motoneurons of the medial column of the entire rostrocaudal extent of the dorsal motor nucleus of the vagus nerve and a sensory terminal field primarily in the subnucleus gelatinosus, with less intense labeling extending caudally into the medial and ventral commissural subnuclei. Dendrites of gastric motoneurons project rostrocaudally and mediolaterally within the dorsal motor nucleus of the vagus nerve and dorsolaterally within the nucleus of the tractus solitarii. They are most pronounced at the level of the rostral area postrema where many dendrites course dorsolaterally terminating primarily within the subnucleus gelatinosus. Injections of the duodenum labeled a small number of the cells within the medial aspects of the dorsal motor nucleus of the vagus nerve. Jejunal, ileal, and ascending colon injections labeled cells sparsely within the lateral aspects of the dorsal motor nucleus of the vagus nerve bilaterally. No afferent terminal labeling was evident after injection of these areas of the bowel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The ventral lateral geniculate nucleus (vLGN) of albino rats (Wistar strain) has been described histologically and histochemically. Special attention was paid to the identification of cell classes in Nissl and Golgi preparations, the afferent and efferent connections of vLGN cells and the demonstration of enzymes of energy and transmitter metabolism. Topographical aspects were taken into consideration, too. The main results can be summarized as follows: In the rat vLGN, three subnuclei can be distinguished: the lateral and medial subnucleus and the intergeniculate leaflet. In the rostral vLGN, the lateral and medial subnucleus is separated by a vertical fibre bundle which contains retinal axons. Our own experiments and findings of other groups revealed that the rat vLGN is connected with numerous brain structures. There is no efferent projection to cortical regions. Afferent fibres reach the vLGN from retina, visual cortex, superior colliculus, pretectal region, zona incerta, contralateral vLGN, dorsal raphe nucleus, locus coeruleus, mesencephalic reticular formation, vestibular and dorsal tegmental nuclei. An efferent projection has been found to superior colliculus, pretectal region, dorsal lateral geniculate nucleus, contralateral vLGN, zona incerta, pontine nuclei, suprachiasmatic nucleus, lateral terminal nucleus of the accessory optic system and intralaminar nucleus of thalamus. Comparative findings suggest that the lateral subnucleus is involved in "specific projections", whereas the medial subnucleus projects to "unspecific zones". For detailed information see text. Five classes of neurons can be distinguished in Golgi and Nissl preparations. Class 1 cells are medium-sized to large with smooth thick proximal but branched spiny distal dendrites. They are confined to the lateral subnucleus and the intergeniculate leaflet. In the lateral subnucleus, class 1 cells could be identified as geniculo-tectal relay neurons (Brauer and Schober, 1982). All other classes of neurons are spineless or sparsely spined. Class 2 cells (giant neurons) of unknown function could be found in the lateral and medial subnucleus. Class 3 cells (medium-sized multipolar neurons) can mainly be found in the medial subnucleus. They are good candidates for neurons projecting to the contralateral vLGN. Class 4 cells (bipolar neurons) occupy the ventromedial part of the medial subnucleus and are very similar to cells localized in the adjacent zona incerta. Cells belonging to this type could found to be labelled by the HRP reaction product after injection of this enzyme in the pontine region.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The topographical and ultrastructural organization of the habenular projection to the interpeduncular nucleus (IPN) of the rat was examined employing the anterogradely transported tracer wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and the chromogen tetramethylbenzidine (TMB). Unilateral placements of WGA-HRP in the habenular complex resulted in heavy terminal labelling in the rostral, central, and intermediate subnuclei bilaterally, and in the lateral subnuclei ipsilaterally. The apical subnucleus possessed only a sparse amount of label. Placements confined to the medial habenula (mH) produced similar results to those observed when the entire habenula was filled, suggesting that the afferent contribution made by the lateral habenula (lH) to the IPN is small. Unilateral placements of WGA-HRP in the dorsal portion of the mH resulted in heavy, predominantly ipsilateral labelling in the lateral subnucleus and the dorsal cap of the rostral subnucleus. In the lateral subnucleus labelled habenular terminals consistently contacted single dendritic processes shared by one or more other boutons, possibly of nonhabenular origin. Labelled habenular terminals in the rostral subnucleus normally contacted one or two dendrites. Labelled terminals in both subnuclei possessed clear, spherical vesicles and a variable number of dense-core vesicles. Unilateral placements of WGA-HRP in the ventral portion of the mH resulted in heavy labelling in the rostral half of the rostral subnucleus with a slight ipsilateral predominance, and in the central and intermediate subnuclei bilaterally. Terminal labelling was observed in crest and S synapses in the intermediate and central subnuclei respectively. Crest synapses, which consist of two parallel habenular terminals contacting an attenuated dendritic process, normally possessed label in only one of the two boutons. In the central subnucleus labelled horizontal axons formed several en passant S synapses with dendritic processes of small and medium diameter. These synaptic specializations of habenular axons contained numerous clear, spherical vesicles. This study demonstrates that a major topographically organized projection to the IPN originates from two distinct subpopulations of habenular neurons which comprise a dorsal sector and a ventral sector of the mH. Ultrastructural examination demonstrated that axons originating from neurons in the ventral and dorsal mH form characteristic contacts in the various IPN subnuclei.  相似文献   

8.
Bombesin is a peptide neurotransmitter/neuromodulator with important autonomic and behavioral effects that are mediated, at least in part, by bombesin-containing neurons and nerve terminals in the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The distribution of bombesin-like immunoreactive nerve terminals/fibers and cell bodies in relation to a viscerotopically relevant subnuclear map of this region was studied by using an immunoperoxidase technique. In the rat, bombesin fiber/terminal staining was heavy in an area that included the medial subnucleus of the NTS and the DMV over their full rostral-caudal extent. Distinctly void of staining were the gelatinous, central, and rostral commissural subnuclei and the periventricular area of the NTS, regions to which gastric, esophageal, cecal, and colonic primary afferents preferentially project. The caudal commissural and dorsal subnuclei had light bombesin fiber/terminal staining, as did the intermediate, interstitial, ventral, and ventrolateral subnuclei. With colchicine pretreatment, numerous cell bodies were stained in the medial and dorsal subnuclei, with fewer neurons in the caudal commissural, intermediate, interstitial, ventral, and ventrolateral subnuclei. Bombesin-like immunoreactive neurons were found in numerous other areas of the brain, including the ventrolateral medulla, the parabrachial nucleus, and the medial geniculate body. In the human NTS/DMV complex, the distribution of bombesin fiber/terminal staining was very similar to the rat. In addition, occasional bombesin-like immunoreactive neurons were labeled in a number of subnuclei, with clusters of neurons labeled in the dorsal and ventrolateral subnuclei. Double immunofluorescence studies in rat demonstrated that bombesin colocalizes with tyrosine hydroxylase in neurons in the dorsal subnucleus of the NTS. Bombesin does not colocalize with tyrosine hydroxylase in any other location in the brain. In conclusion, the distribution of bombesin in the NTS adheres to a viscerotopically relevant map. This is the anatomical substrate for the effects of bombesin on gastrointestinal function and satiety and its likely role in concluding a meal. The anatomic similarities between human and rat suggest that bombesin has similar functions in the visceral neuraxis of these two species. Bombesin coexists with catecholamines in neurons in the dorsal subnucleus, which likely mediate, in part, the cardiovascular effects of bombesin. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The caudal human nucleus of the solitary tract (NTS) is composed of 10 subnuclei. The commissural subnucleus spans the midline below the obex, merging rostrally into the medial subnucleus. The other subnuclei of the NTS are best seen just above the obex. The ventrolateral subnucleus contains large, darkly staining neurons. The interstitial subnucleus consists of neurons lying in groups intermingled with the fibers of the tract. The lateral subnucleus is small at caudal levels, merging with the interstitial subnucleus more rostrally. The dorsal subnucleus contains large melanotic neurons and encircles the substantia gelatinosus, a round, cell-poor subnucleus. The ventromedial subnucleus curls around the medial and ventral edge of the tract. The intermediate subnucleus, laying ventrolateral to the dorsal motor nucleus of the vagus, also contains melanotic neurons. The subpostremal subnucleus separates the area postrema from the NTS proper. The medial subnucleus is the largest subnucleus in the caudal NTS, containing medium-sized fusiform neurons. Adoption of a uniform cytoarchitectural map of the caudal NTS will permit more accurate comparisons between human and nonhuman studies.  相似文献   

10.
In the present study, the temporal appearance and distribution of substance P within individual subnuclei has been examined during the development of the rat interpeduncular nucleus (IPN). The prenatal organization as well as migration pattern of individual IPN subnuclei are also described. The IPN was distinguishable on embryonic day (E) 19, near the ventral mesencephalon. At this age, the IPN was organized into individual subnuclei like the adult, except for a bilateral distribution of presumptive rostral neurons. Rostral neurons were merged into a single, midline subnucleus by the day of birth, thereby completing an adult pattern of subnuclear organization. SP immunoreactivity, restricted to the lateral subnuclei, was first detected at E20. The intensity of SP-positive fibers in the lateral subnucleus increased with age, and appeared to become selectively distributed along both the medial and lateral borders of this subnucleus. Additional SP-positive fibers became evident postnatally in a thin band overlying both central and intermediate subnuclei, and within the dorsal medial, central and apical subnuclei. SP-positive cell bodies were present in the rostral subnucleus on postnatal day 28, thereby completing the development of an adult pattern of SP immunoreactivity within the IPN.  相似文献   

11.
This is a study of the form, density, and distribution of glutamic acid decarboxylase (GAD) immunoreactive neurons and puncta (axon terminals) in the adult rat medial geniculate complex. GAD-positive elements were stained by either the peroxidase-antiperoxidase or avidin-biotin procedures. Thalamic architectonic subdivisions were defined independently in Golgi, Nissl, plastic-embedded semi-thin, and fiber-stained preparations, and from investigations of medial geniculate connectivity. GAD-positive neurons represent only approximately 1% of medial geniculate neurons. They occur in the three major medial geniculate subdivisions (ventral, dorsal, and medial). There is variability between subdivisions in the form and number of such neurons, and among the puncta. In the ventral division, immunopositive somata may have sparsely branched dendrites as long as 300-400 microns and capped with varicose expansions or bouton-like sprays of appendages. These closely appose the somata or primary dendrites of other cells; the axons of these GAD-positive neurons are also immunostained. In the dorsal division there are fewer GAD-positive neurons and their structure is different. Their dendrites are rarely immunoreactive for more than 100-150 microns; nor can their immunostained axons be traced very far. In the medial division the number of GAD-positive neurons, considering the relatively small size of this division, was high. These neurons rarely have immunostained dendrites, and more than one type of neuron is immunoreactive. The average somatic diameter of GAD-positive neurons is about 60% of that of non-immunostained cells in semi-thin material; however, the range of somatic area and the dendritic variability of these neurons suggest that cells representing more than one population are immunopositive and include all but the largest neurons. The puncta also show regional differences. Small (0.5-2 microns in diameter), medium (2-3 microns), or large (greater than 3 microns) puncta occur. In the ventral division, the predominantly medium-sized puncta are about four times as numerous on a unit/area basis than in the dorsal division, where they are far smaller and more delicate; medial division puncta are as numerous as those in the ventral division, but are much larger and coarser, and may form perisomatic arrangements. Controls were devoid of specific immunostaining.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The nucleus prethalamicus (PTh) receives fibers from the optic tectum and then projects to the dorsal telencephalon in the yellowfin goby Acanthogobius flavimanus. However, it remained unclear whether the PTh is a visual relay nucleus, because the optic tectum receives not only visual but also other sensory modalities. Furthermore, precise telencephalic regions receiving prethalamic input remained unknown in the goby. We therefore investigated the full set of afferent and efferent connections of the PTh by direct tracer injections into the nucleus. Injections into the PTh labeled cells in the optic tectum, ventromedial thalamic nucleus, central and medial parts of the dorsal telencephalon, and caudal lobe of the cerebellum. We found that the somata of most tecto‐prethalamic neurons are present in the stratum periventriculare. Their dendrites ascend to reach the major retinorecipient layers of the tectum. The PTh is composed of two subnuclei (medial and lateral) and topographic organization was appreciated only for tectal projections to the lateral subnucleus (PTh‐l), which also receives sparse retinal projections. In contrast, the medial subnucleus receives fibers only from the medial tectum. We found that the PTh projects to nine subregions in the dorsal telencephalon and four in the ventral telencephalon. Furthermore, cerebellar injections revealed that cerebello‐prethalamic fibers cross the midline twice to innervate the PTh‐l on both sides. The present study is the first detailed report on the full set of the connections of PTh, which suggests that the PTh relays visual information from the optic tectum to the telencephalon.  相似文献   

13.
The nucleus tractus solitarii (nTS) is a complex structure situated in the dorsal medulla oblongata. This region receives primary visceral and gustatory sensory afferent fibers and has widespread interconnections with brainstem structures, hypothalamus, and limbic forebrain. In both rat and cat distinct subnuclei correlate with specific functions of the nTS. Since the canine model is used extensively for physiological study and evidence from this laboratory supports a critical role for the canine nTS in cardiovascular function, we examined its morphological organization. Light microscopic analysis of cellular and fiber patterns of the nTS revealed nine discrete regions based on cytoarchitecture: the commissural, lateral, ventral, dorsal, intermediate, interstitial and medial subnuclei, the subnucleus gelatinosa, and the dorsal parasolitary region. Analysis of each subnucleus revealed that both the lateral and ventral subnuclei contained two distinct neuronal groups based on cell size. Neurochemical and functional correlates are being provided by ongoing analyses of each subnucleus of the nTS.  相似文献   

14.
The immunocytochemical localization of atrial natriuretic factor (ANF), galanin (GAL), and calcitonin gene-related peptide (CGRP) in specific subnuclei of the interpeduncular nucleus (IPN) was determined by immunocytochemistry in rats with and without intraventricular colchicine injection. ANF-positive processes were present within the ovoid regions of the rostral subnucleus, the dorsal lateral subnuclei, and were densely concentrated along the medial aspects of the lateral subnuclei in the caudal half of the IPN. GAL-positive processes were concentrated within the lateral subnuclei, in a narrow band extending over the central and intermediate subnuclei, and within the central subnuclei. GAL-positive cell bodies were present in a narrow band ventral to the rostral subnucleus, and in the ventrolateral corners of the caudal IPN. CGRP-positive processes were primarily localized within the dorsal lateral subnuclei and dorsal aspects of the lateral subnuclei. The presence of ANF, GAL and CGRP peptides within the IPN in patterns similar to previously described localizations of substance P, vasoactive intestinal peptide, serotonin and Leu-enkephalin provides a morphologic basis for modulation of complex physiological actions yet to be elucidated.  相似文献   

15.
Physiological studies have shown that the cat's retinogeniculocortical system is comprised of at least three parallel and independent pathways, the W-, X-, and Y-cell pathways. The morphological correlates of the constituent W-, X-, and Y-cells have been determined both in the retina and in the A and C laminae of the lateral geniculate nucleus. The aim of this study was to extend these structure/function relationships to neurons in laminae 1 and 2 of the medial interlaminar nucleus (MIN), which is a division of the cat's dorsal lateral geniculate nucleus. We used intracellular injection of horseradish peroxidase (HRP) into individual, physiologically identified MIN neurons. Since this procedure may yield an unrepresentative sample of MIN neurons, two controls were performed. First Nissl staining showed that the soma sizes of intracellularly labeled cells were representative of those of all MIN cells. Second, retrograde labeling following HRP injections into the optic radiations or specific visual cortical areas showed that the intracellularly labeled MIN cells were representative of MIN relay neurons. Many of the retrogradely labeled cells were so well filled that their entire dendritic arbors were revealed. Of 70 MIN neurons recorded physiologically, 22 were injected with HRP and successfully recovered. We also completely labeled the somata and dendrites of 114 MIN neurons from HRP injections into the optic radiations and retrogradely labeled 165 MIN neurons by injection of HRP into visual cortical areas. Our sample of intracellularly injected neurons, which were all Y-cells, were morphologically representative of all MIN relay cells. We thus conclude that laminae 1 and 2 of the MIN contain a nearly homogeneous population of Y-cells with properties essentially identical to those of Y-cells in the A and C laminae of the lateral geniculate nucleus. When viewed in the coronal plane, MIN projection neurons typically exhibited oval or elongated somata. In the medial and ventral parts of the MIN, these somata were smaller and more flattened. MIN soma sizes extended over the full range of those seen in the A laminae. Dendritic arbors of most MIN relay neurons radiated in a fairly spherical fashion. In the medial and ventral parts of the MIN, however, dendrites were oriented in a more bipolar fashion, but intermediate forms between spherical and bipolar arbors were also common. Dendrites of MIN projection neurons were typically smooth; most primary dendrites were straight, but secondary dendrites were more variable in structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We examined the subnuclear organization of projections to the parabrachial nucleus (PB) from the nucleus of the solitary tract (NTS), area postrema, and medullary reticular formation in the rat by using the anterograde and retrograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and anterograde tracing with Phaseolus vulgaris-leucoagglutinin. Different functional regions of the NTS/area postrema complex and medullary reticular formation were found to innervate largely nonoverlapping zones in the PB. The general visceral part of the NTS, including the medial, parvicellular, intermediate, and commissural NTS subnuclei and the core of the area postrema, projects to restricted terminal zones in the inner portion of the external lateral PB, the central and dorsal lateral PB subnuclei, and the "waist" area. The dorsomedial NTS subnucleus and the rim of the area postrema specifically innervate the outer portion of the external lateral PB subnucleus. In addition, the medial NTS innervates the caudal lateral part of the external medial PB subnucleus. The respiratory part of the NTS, comprising the ventrolateral, intermediate, and caudal commissural subnuclei, is reciprocally connected with the K?lliker-Fuse nucleus, and with the far lateral parts of the dorsal and central lateral PB subnuclei. There is also a patchy projection to the caudal lateral part of the external medial PB subnucleus from the ventrolateral NTS. The rostral, gustatory part of the NTS projects mainly to the caudal medial parts of the PB complex, including the "waist" area, as well as more rostrally to parts of the medial, external medial, ventral, and central lateral PB subnuclei. The connections of different portions of the medullary reticular formation with the PB complex reflect the same patterns of organization, but are reciprocal. The periambiguus region is reciprocally connected with the same PB subnuclei as the ventrolateral NTS; the rostral ventrolateral reticular nucleus with the same PB subnuclei as both the ventrolateral (respiratory) and medial (general visceral) NTS; and the parvicellular reticular area, adjacent to the rostral NTS, with parts of the central and ventral lateral and the medial PB subnuclei that also receive rostral (gustatory) NTS input. In addition, the rostral ventrolateral reticular nucleus and the parvicellular reticular formation have more extensive connections with parts of the rostral PB and the subjacent reticular formation that receive little if any NTS input. The PB contains a series of topographically complex terminal domains reflecting the functional organization of its afferent sources in the NTS and medullary reticular formation.  相似文献   

17.
The cortical, thalamic, and amygdaloid connections of the rodent temporal cortices were investigated by using the anterograde transport of iontophoretically injected biocytin. Injections into area Te1 labeled axons and terminals in the ventral regions of the dorsal and ventral subnuclei of the medial geniculate complex, area Te3, the rostrodorsal part of area Te2, and the ventrocaudal caudate putamen. No amygdaloid labeling was observed. Thalamic projections from Te2 targeted the lateral posterior nucleus, the dorsal part of the dorsal subnucleus of the medial geniculate complex, and the peripeduncular nucleus. Corticocortical projections mainly terminated in the dorsal perirhinal cortex, but moderately dense projections were observed in medial and lateral peristriate cortex, and only light projections were observed to Te1 and Te3. Projections to these isocortical regions terminated in layers I and VI. Amygdaloid projections targeted the ventromedial subdivision of the lateral nucleus and the adjacent part of the anterior basolateral nucleus. Area Te3 was observed to project to the ventrolateral parts of the dorsal and ventral subnuclei of the medial geniculate complex, the dorsal perirhinal cortex, rostral Te2, and Te1. In the amygdala, labeled fibers and terminals were concentrated in the dorsolateral subdivision of the lateral nucleus. These data confirm that areas Te1 and Te3 are hierarchically organized cortical areas connected with auditory relay nuclei in the thalamus. Area Te2, in contrast, appears to be weakly connected with Te1 and Te3 but is heavily connected with the peristriate cortex and tectorecipient thalamic nuclei. Te2 appears to be a visually related cortical area. The data also indicate that projections from Te2 and Te3 target different subregions of the lateral nucleus and that Te2, but not Te3, projects to the basolateral nucleus. J. Comp. Neurol. 382:153-175, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The projections from the parabrachial nucleus to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin-beta (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus (the lateral parafascicular, medial parafascicular, oval paracentral, central lateral, paracentral, and central medial nuclei), as well as the midline thalamic nuclei (the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, parvicellular part of the ventral posterior, and caudal ventral medial nuclei). The retrograde cell body labeling pattern within the parabrachial subnuclei was then analyzed. The paracentral thalamic nucleus received an input only from the internal lateral parabrachial subnucleus. However, this subnucleus also projected to all the other intralaminar thalamic nuclei, except for the central lateral thalamic nucleus, which received no parabrachial afferent inputs. The external lateral parabrachial subnucleus projected to the lateral parafascicular, reuniens, central medial, parvicellular part of the ventral posterior, and caudal ventromedial thalamic nuclei. Following CTb injections in the paraventricular thalamic nucleus, retrogradely labeled cells were found in the central lateral, dorsal lateral, and external lateral parabrachial subnuclei. The medial and ventral lateral parabrachial subnuclei projected to the oval paracentral, parafascicular, and rhomboid thalamic nuclei. Finally, the waist area of the parabrachial nucleus was densely labeled after CTb injections in the parvicellular part of the ventral posterior thalamic nucleus. Nociceptive, visceral, and gustatory signals may reach specific cortical and other forebrain sites via this parabrachial-thalamic pathway.  相似文献   

19.
The interpeduncular nucleus (IPN) is a heterogeneous structure comprised of seven subnuclei which differ with regard to their cytoarchitecture, synaptology, connectivity, and content of neuropeptides and biogenic amines. In the present study, we used Butcher's pharmacohistochemical regimen to assess the subnuclear distribution and staining intensity of acetylcholinesterase (AChE)-containing neurons in the IPN. Although AChE-positive somata were present in every subnucleus, their staining intensity differed within and between the subnuclei. The most intensely stained somata were found in the apical and central subnuclei; however, they comprised only 10–25% of the total population of AChE-positive somata in these subnuclei. Heavily stained somata were observed in the apical, central, and lateral subnuclei; moderately stained somata in the central, lateral, intermediate, and rostral subnuclei; and lightly stained somata in the lateral, intermediate, rostral, dorsal lateral, and rostral lateral subnuclei. The present findings indicate that AChE-containing neurons are differentially distributed between subnuclei of the IPN.  相似文献   

20.
The lateral habenular complex (LHb) constitutes an important link in the dorsal diencephalic conduction system conveying information from limbic forebrain structures to regulatory midbrain nuclei. In line with the considerable number of biological functions in which the habenula is thought to be involved, a complex subnuclear organization of the LHb has been suggested. However, the precise connectivity of habenular subnuclei remains to be identified. We hypothesize that axons from the lateral preoptic area (LPOA) project to distinct subnuclei of the LHb. As a result of an unexpected heterogeneity within the LPOA, we first examined its subregional morphology. Based on the analysis of several coronal series of sections, seven subfields were identified within the LPOA. Retrograde tracing experiments revealed that neurons projecting to the LHb were concentrated in the dorsal, ventral, and ventromedial subfields of the rostral LPOA and in the caudal LPOA. Anterograde tracing experiments confirmed that all LPOA subfields containing retrogradely labelled cells project to the LHb. Neurons in rostral subfields of the LPOA target predominantly the lateral area of the LHb, whereas caudal LPOA fibers innervate the medial LHb. Afferent labelling is most prominent within the magnocellular subnucleus in the LHbM, and only few fibers can be observed in the parvocellular subnucleus of the LHbM. The superior subnucleus of the LHbM and the oval subnucleus of the LHbL do not receive any fibers from the LPOA at all. This is the first comprehensive study so far to show that projections from LPOA subfields individually target subnuclei in the lateral habenular complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号