首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new magnetic resonance technique to measure perfusion is described in detail. The means by which this is done is to invert all the spins in the radiofrequency RF coil with a non-spatially selective pulse and immediately re-invert the spins in the imaging plane. The net effect is that the spins in the imaging plane experience minimal perturbation of their magnetization while the spins outside the plane (extraslice) are inverted, or tagged. Tagged spins that flow into the imaging plane before image data are acquired decrease the signal intensity in the imaging plane when compared with an image in which the inflowing spins are not tagged. This decrease in signal can be used to calculate the number of spins that have flowed into the imaging plane, i.e., can be used to calculate the perfusion in mL x 100 g(tissue)(- 1)x min(-1). The extraslice spin tagging (EST) magnetization preparation period was coupled with a fast imaging sequence to obtain perfusion maps for normal volunteers.  相似文献   

2.
Perfusion imaging with pulsed arterial spin labeling techniques, like flow-sensitive alternating inversion recovery (FAIR), may suffer from inflow of fresh, i.e., unlabeled, spins. Inflow of fresh spins is caused by the arrival of unlabeled spins in the image slice and can lead to underestimation of the perfusion if not taken into account. In this study it was shown that a decrease in B(1) field strength toward the edge of the transmit coil and the consequent reduction in the inversion efficiency leads to a narrowing of the arterial delivery function and a reduction in FAIR signal. Increasing the B(1) amplitude of the adiabatic inversion pulse from 2.3 to 5.7 times its minimum amplitude requirement resulted in an observed increase of 40 to 80% in the rat brain FAIR signal at inflow times longer than 0.65 s. For coils with limited dimensions and significant B(1) inhomogeneity over the perfusion labeling slab, the application of an excessively large B(1) amplitude in combination with adiabatic inversion is recommended to optimize the FAIR perfusion contrast.  相似文献   

3.
A dual navigator‐gated, flow‐sensitive alternating inversion recovery (FAIR) true fast imaging with steady precession (True‐FISP) sequence has been developed for accurate quantification of renal perfusion. FAIR methods typically overestimate renal perfusion when respiratory motion causes the inversion slice to move away from the imaging slice, which then incorporates unlabeled spins from static tissue. To overcome this issue, the dual navigator scheme was introduced to track inversion and imaging slices, and thus to ensure the same position for both slices. Accuracy was further improved by a well‐defined bolus length, which was achieved by a modification version of Q2TIPS (quantitative imaging of perfusion using a single subtraction, second version with interleaved thin‐slice TI1 periodic saturation): a series of saturation pulses was applied to both sides of the imaging slice at a certain time after the inversion. The dual navigator‐gated technique was tested in eight volunteers. The measured renal cortex perfusion rates were between 191 and 378 mL/100 g/min in the renal cortex with a mean of 376 mL/100 g/min. The proposed technique may prove most beneficial for noncontrast‐based renal perfusion quantification in young children and patients who may have difficulty holding their breath for prolonged periods or are sedated/anesthetized. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
This study investigates the impact of imaging coil length and consequent truncation of the arterial input function on the perfusion signal contrast obtained in the flow-sensitive alternating inversion recovery (FAIR) perfusion imaging measurement. We examined the difference in perfusion contrast achieved with head, head and neck, and body imaging coils based on the hypothesis that the standard head coil provides a truncated input function compared with that provided by the body coil and that this effect will be accentuated at long inversion times. The TI-dependent cerebral response of the FAIR sequence was examined at 1.5 T by varying the TI from 200 to 3500 msec with both the head and whole body coils (n = 5) as well as using a head and neck coil (n = 3). Difference signal intensity DeltaM and quantitative cerebral blood flow (CBF) were plotted against TI for each coil configuration. Despite a lower signal-to-noise ratio, relative CBF was significantly greater when measured with the body or head and neck coil compared with the standard head coil for longer inversion times (two-way ANOVA, P < or = 0.002). This effect is attributed to truncation of the arterial input function of labeled water by the standard head coil and the resultant inflow of unlabeled spins to the image slice during control image acquisition, resulting in overestimation of CBF. The results support the conclusion that the arterial input function depends on the anatomic extent of the inversion pulse in FAIR, particularly at longer mixing times (TI > 1200 msec at 1.5 T). Use of a head and neck coil ensures adequate inversion while preserving SNR that is lost in the body coil.  相似文献   

5.
Quantitative imaging of perfusion using a single subtraction, second version (QUIPSS II) is a pulsed arterial spin labeling (ASL) technique for improving the quantitation of perfusion imaging by minimizing two major systematic errors: the variable transit delay from the distal edge of the tagged region to the imaging slices, and the contamination by intravascular signal from tagged blood that flows through the imaging slices. However, residual errors remain due to incomplete saturation of spins over the slab-shaped tagged region by the QUIPSS II saturation pulse, and spatial mismatch of the distal edge of the saturation and inversion slice profiles. By replacing the original QUIPSS II saturation pulse with a train of thin-slice periodic saturation pulses applied at the distal end of the tagged region, the accuracy of perfusion quantitation is improved. Results of single and multislice studies are reported.  相似文献   

6.
目的探讨血流变化对肺部MRI信号的影响,并研究1种新的MR肺血流灌注成像方法。方法对健康志愿者15例,采用相位对比电影MRI技术测量大肺动脉血流速度和流量在心动周期内的变化;并选用单次激发半傅立叶变换超快速自旋回波序列观察肺实质MR信号的相应改变,评价其相关性;根据不同心动期相肺实质MR信号的差异进行图像减影。结果肺实质.MRI信号表现为心脏收缩期降低,舒张期升高。大肺动脉的瞬时速度、瞬时流量与其呈负相关(r=-0.878、-0.770,P=0,002、0.015)。经肺部MRI信号差异最大的舒张末期和收缩中期的MRI减影可获得肺灌注像。结论肺实质MRI信号的改变与肺血流模式和速度有关。该技术是1种简便易行的非对比剂性的MR肺灌注评价新方法。  相似文献   

7.
Cerebral blood flow can be studied in a multislice mode with a recently proposed perfusion sequence using inversion of water spins as an endogenous tracer without magnetization transfer artifacts. The magnetization transfer insensitive labeling technique (TILT) has been used for mapping blood flow changes at a microvascular level under motor activation in a multislice mode. In TILT, perfusion mapping is achieved by subtraction of a perfusion-sensitized image from a control image. Perfusion weighting is accomplished by proximal blood labeling using two 90 degrees radiofrequency excitation pulses. For control preparation the labeling pulses are modified such that they have no net effect on blood water magnetization. The percentage of blood flow change, as well as its spatial extent, has been studied in single and multislice modes with varying delays between labeling and imaging. The average perfusion signal change due to activation was 36.9 +/- 9.1% in the single-slice experiments and 38.1 +/- 7.9% in the multislice experiments. The volume of activated brain areas amounted to 1.51 +/- 0.95 cm3 in the contralateral primary motor (M1) area, 0.90 +/- 0.72 cc in the ipsilateral M1 area, 1.27 +/- 0.39 cm3 in the contralateral and 1.42 +/- 0.75 cm3 in the ipsilateral premotor areas, and 0.71 +/- 0.19 cm3 in the supplementary motor area.  相似文献   

8.
Perfusion quantification using pulsed arterial spin labeling has been shown to be sensitive to the RF pulse slice profiles. Therefore, in Flow-sensitive Alternating-Inversion Recovery (FAIR) imaging the slice selective (ss) inversion slab is usually three to four times thicker than the imaging slice. However, this reduces perfusion sensitivity due to the increased transit delay of the incoming blood with unperturbed spins. In the present article, the dependence of the magnetization on the RF pulse slice profiles is inspected both theoretically and experimentally. A perfusion quantification model is presented that allows the use of thinner ss inversion slabs by taking into account the offset of RF slice profiles between ss and nonselective inversion slabs. This model was tested in both phantom and human studies. Magn Reson Med 46:193-197, 2001.  相似文献   

9.
A technique for noninvasive quantitative magnetic resonance imaging of perfusion is presented. It relies on using endogenous water as a freely diffusible tracer. Tissue water proton spins are magnetically labeled by slice-selective inversion, and longitudinal relaxation within the slice is detected using a fast gradient echo magnetic resonance imaging technique. Due to blood flow, nonexcited spins are washed into the slice resulting in an acceleration of the longitudinal relaxation process. Incorporating this phenomenon into the Bloch equation yields an expression that allows quantification of perfusion on the basis of a slice-selective and a nonselective inversion recovery experiment. Based on this technique, quantitative parameter maps of the regional cerebral blood flow (rCBF) were obtained from eight rats. Evaluation of regions of interest within the cerebral hemispheres yielded an average rCBF value of 104 ± 21 ml/min/100 g, which increased to 219 ± 30 ml/min/100 g during hypercapnia. The measured rCBF values are in good agreement with previously reported literature values.  相似文献   

10.
When a single coil is used to measure perfusion by arterial spin labeling, saturation of macromolecular protons occurs during the labeling period. Induced magnetization transfer contrast (MTC) effects decrease tissue water signal intensity, reducing the sensitivity of the technique. In addition, MTC effects must be properly accounted for in acquiring a control image. This forces the image to a single slice centered between the labeling plane and the control plane. In this work, a two-coil system is presented as a way to avoid saturation of macromolecular spins during arterial spin labeling. The system consists of one small surface coil for labeling the arterial water spins, and a head coil for MRI, actively decoupled from the labeling coil by using PIN diodes. It is shown that no signal loss occurs due to MTC effects when the two-coil system is used for MRI of rat brain perfusion, enabling three-dimensional perfusion imaging. Using the two-coil system, a multi-slice MRI sequence was used to study the regional effects of amphetamine on brain perfusion. Amphetamine causes significant increases in perfusion in many areas of the brain including the cortex, cingulate, and caudate putamen, in agreement with previous results using deoxyglucose uptake to monitor brain activation.  相似文献   

11.
A method is presented for multislice measurements of quantitative cerebral perfusion based on magnetic labeling of arterial spins. The method combines a pulsed arterial inversion, known as the FAIR (Flow-sensitive Alternating Inversion Recovery) experiment, with a fast spiral scan image acquisition. The short duration (22 ms) of the spiral data collection allows simultaneous measurement of up to 10 slices per labeling period, thus dramatically increasing efficiency compared to current single slice acquisition protocols. Investigation of labeling efficiency, suppression of unwanted signals from stationary as well as intraarterial spins, and the FAIR signal change as a function of inversion delay are presented. The assessment of quantitative cerebral blood flow (CBF) with the new technique is demonstrated and shown to require measurement of arterial transit time as well as suppression of intraarterial spin signals. CBF values measured on normal volunteers are consistent with results obtained from H2O15 positron emission tomography (PET) studies and other radioactive tracer approaches. In addition, the new method allows detection of activation-related perfusion changes in a finger-tapping experiment, with locations of activation corresponding well to those observed with blood oxygen level dependent (BOLD) fMRI.  相似文献   

12.
Flow-sensitive alternating inversion recovery (FAIR) is a noninvasive method for perfusion imaging. It has been shown that the FAIR signal may depend on hemodynamic parameters other than perfusion, the most important one being transit delays of labeled spins to the observed tissue. These parameters are expected to change with ischemia. The goal of this study was to assess the effect of these changes on the interpretation of FAIR results in the case of altered perfusion. This was investigated in a rat model of transient cerebral ischemia. It was shown that the ratio of FAIR signal in the infarct compared to the contralateral side was lower at short inflow times, which suggests that transit times affected the effective FAIR signal. The FAIR results were compared with those from functional histology and dynamic susceptibility contrast MRI, and the findings indicated that the altered kinetics of the FAIR signal were related to reduced and delayed inflow in the infarct region--not to a decrease in the number of functional vessels.  相似文献   

13.
In the pulsed arterial spin labeling (ASL) techniques EPISTAR, PICORE, and FAIR, subtraction of two images in which inflowing blood is first tagged and then not tagged yields a qualitative map of perfusion. An important reason this map is not quantitative is that there is a spatially varying delay in the transit of blood from the tagging region to the imaging slice that cannot be measured from a single subtraction. We introduce here two modifications of pulsed ASL (QUIPSS and QUIPSS II) that avoid this problem by applying additional saturation pulses to control the time duration of the tagged bolus, rendering the technique relatively insensitive to transit delays and improving the quantitation of perfusion.  相似文献   

14.
Flow-sensitive alternating inversion recovery (FAIR) perfusion imaging suffers from high vascular signal, resulting in artifacts and overestimation of perfusion. With TurboFLASH acquisition, crushing of vascular signal by bipolar gradients after each excitation is difficult due to the requirement of an ultrashort repetition time. Therefore, insertion of a preparation phase in the FAIR sequence, after labeling and prior to TurboFLASH acquisition, is proposed. A segmented adiabatic BIR-4 pulse, interleaved with crusher gradients, was used for flow crushing. The effect of the crusher preparation is shown as a function of crusher strength for a flow phantom and in rat brain. Influence of crusher strength on the time-dependent FAIR signal from rat brain was also measured. Signal from flowing spins in a flow phantom and from arterial spins in rat brain was significantly suppressed. Image quality was improved and the overestimation of perfusion at short inflow times was eliminated.  相似文献   

15.
Inflow effects were studied for T(1)-weighted, fast gradient-echo, contrast-enhanced MRI. This was done on the basis of realistic simulations (e.g., taking slice profiles into account) for unsteady flow. The area under the point spread function (PSF) was used to estimate the flow-related enhancement. A simple analytical model that accurately describes the inflow effects was derived and validated. This model was used to correct the experimental perfusion calibration curves (signal intensity vs. relaxation rate) for inflow effects. Hepatic perfusion measurements, performed on patients, were analyzed in terms of a dual-input, first-order linear model. It was shown that inflow causes incorrect perfusion input functions. The resulting estimated perfusion parameters displayed a systematic error of typically 30-40%. By performing two extra time-resolved flow measurements during the examination, one can correct the input functions.  相似文献   

16.
BackgroundDirect comparison of CT and magnetic resonance (MR) perfusion techniques has been limited and in vivo assessment is affected by physiological variability, timing of image acquisition, and parameter selection.ObjectiveWe precisely compared high-resolution k-t SENSE MR cardiac perfusion at 3 T with single-phase CT perfusion (CTP) under identical imaging conditions.MethodsWe used a customized MR imaging and CT compatible dynamic myocardial perfusion phantom to represent the human circulation. CT perfusion studies were performed with a Philips iCT (256 slice) CT, with isotropic resolution of 0.6 mm3. MR perfusion was performed with k-t SENSE acceleration at 3 T and spatial resolution of 1.2 × 1.2 × 10 mm. The image contrast between normal and underperfused myocardial compartments was quantified at various perfusion and photon energy settings. Noise estimates were based on published clinical data.ResultsContrast by CTP highly depends on photon energy and also timing of imaging within the myocardial perfusion upslope. For an identical myocardial perfusion deficit, the native image contrast-to-noise ratio (CNR) generated by CT and MR are similar. If slice averaging is used, the CNR of a perfusion deficit is expected to be greater for CTP than MR perfusion (MRP). Perfect timing during single time point CTP imaging is difficult to achieve, and CNR by CT decreases by 24%–31% two seconds from the optimal imaging time point. Although single-phase CT perfusion offers higher spatial resolution, MRP allows multiple time point sampling and quantitative analysis.ConclusionThe ability of CTP and current optimal MRP techniques to detect simulated myocardial perfusion deficits is similar.  相似文献   

17.
For pulsed arterial spin labeling techniques (e.g., FAIR), mismatches between the imaging and inversion slice profile result in a nonperfusion-related offset. Several methods have been proposed to reduce subtraction errors in FAIR imaging. Here an acquisition method for FAIR experiments based on adiabatic principles is proposed. It is shown that with adiabatic pulses the same pulse can be used for labeling and echo refocusing, thereby reducing the mismatch between imaging and labeling slice. A twofold reduction in subtraction errors compared to 5-lobe sinc excitation was shown both experimentally and by simulation.  相似文献   

18.
Ultrafast magnetic resonance imaging (MRI) and first pass observation of an interstitial contrast agent are currently being used to study myocardial perfusion. Image intensity, however, is a function of several parameters, including the delivery of the contrast agent to the interstitium (coronary flow rate and diffusion into the interstitium) and the relaxation properties of the tissue (contrast agent concentration, proton exchange rates, and relative intra- and extracellular volume fractions). In this study, image intensity during gadopentetate dimeglumine (Gd-DTPA) administration with T1-weighted ultrafast MR imaging was assessed in an isolated heart preparation. With increasing Gd-DTPA concentration, the steady-state myocardial image intensity increased but the time to reach steady state remained unchanged, resulting in an increased slope of image intensity change. A range of physiologic perfusion pressures (and resulting coronary flow rates) had insignificant effects on kinetics of Gd-DTPA wash-in or steady-state image intensity, suggesting that diffusion of Gd-DTPA into the interstitium is the rate limiting step in image intensity change with this preparation. Following global ischemia and reperfusion, transmural differences in the slope of image intensity change were apparent. However, the altered steady-state image intensity (due to postischemic edema) makes interpretation of this finding difficult. The studies described here demonstrate that although Gd-DTPA administration combined with ultrafast imaging may be a sensitive indicator of perfusion abnormalities, factors other than perfusion will affect image intensity. Extensive studies will be required before image intensity with this protocol is fully understood.  相似文献   

19.
Auto-SENSE perfusion imaging of the whole human heart   总被引:2,自引:0,他引:2  
PURPOSE: To show the application of auto-sensitivity encoding (SENSE)-a self-calibrating parallel imaging technique-to first pass perfusion imaging of the whole human heart. MATERIALS AND METHODS: The self-calibrating parallel imaging method auto-SENSE was implemented for a saturation recovery turbo-fast low-angle shot (FLASH) sequence on a 1.5-T scanner using a standard four-element body phased array coil. By reducing the acquisition time per slice by a factor of two compared to conventional turbo FLASH imaging, the number of imaged slices could be doubled to six to ten with an unchanged temporal resolution of one image per heartbeat. This technique has been tested in eight healthy volunteers for contrast-enhanced heart perfusion imaging. RESULTS: Auto-SENSE heart perfusion imaging with improved coverage of the human heart could be performed successfully in all volunteers. A first quantitative comparison of perfusion values between the auto-SENSE and the non-SENSE techniques shows good agreement. CONCLUSION: Auto-SENSE allows perfusion imaging of the whole human heart without gaps.  相似文献   

20.
A new technique for magnetic resonance imaging of absolute perfusion changes that uses magnetically labeled tissue water proton spins as a freely diffusible tracer is described. It consists of unprepared basis (BA) images that serve as a reference and selective (SE) inversion prepared images that are sensitive to perfusion changes. In the present study, the BASE technique was applied to functional neuroimaging. BA and SE images were alternatingly and repeatedly acquired during periods of visual stimulation and control. Visual stimulation was achieved with an alternating black/white checkerboard operating at a frequency of 8 Hz. Maps of the absolute cerebral blood flow changes (ACBF) were calculated from the image intensities of the corresponding BA and SE images. The individual mean values of ACBF measured in five healthy volunteers ranged from 69 ± 18 to 99 ± 26 ml/min/100 g. Since the BASE technique does not require nonselective spin inversion, it can be used with small transmit/receive head coils (e.g., surface coils). In addition, the BASE technique is robust against a mismatch of the inversion and detection slice profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号