首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fingerprinting based on variable numbers of tandem DNA repeats (VNTR), a recently described methodology, was evaluated for molecular typing of Mycobacterium tuberculosis in an insular setting. In this study, VNTR fingerprinting was used alone or as a second-line test in association with spoligotyping, double-repetitive-element PCR (DRE-PCR), and IS6110 restriction fragment length polymorphism (RFLP) analysis, and the discriminatory power for each method or the combination of methods was compared by calculating the Hunter-Gaston discriminative index (HGI). The results obtained showed that in 6 out of 12 (50%) cases, VNTR-defined clusters were further subdivided by spoligotyping, compared to 7 out of 18 (39%) cases where spoligotyping-defined clusters were further subdivided by VNTR. When used alone, VNTR was the least discriminatory method (HGI = 0.863). Although VNTR was significantly more discriminatory when used in association with spoligotyping (HGI = 0.982), the combination of spoligotyping and DRE-PCR (HGI = 0.992) was still the most efficient among rapid, PCR-based methodologies, giving results comparable to IS6110 RFLP analysis. Nonetheless, VNTR typing may provide additional phylogenetical information that may be helpful to trace the molecular evolution of tubercle bacilli.  相似文献   

2.
IS6110 restriction fragment length polymorphism (RFLP) analysis is the most widely applied method for strain differentiation of Mycobacterium tuberculosis complex. We have previously described mixed-linker PCR, an IS6110-based PCR method that favorably compared with other typing methods for M. tuberculosis complex according to reproducibility and ability to differentiate between strains. Here we report the further development of this method, called fast ligation-mediated PCR (FLiP), which allows analysis of strains within one working day and starting from less than 1 ng of mycobacterial DNA or a crude cell lysate. Blinded analysis of a standard set of 131 M. tuberculosis complex and nontuberculous isolates showed the ability to differentiate 81 types among 90 M. tuberculosis complex isolates with 84 different IS6110 RFLP fingerprint patterns and detected 97% of the 31 duplicate samples. We suggest that FLiP can serve to rapidly detect chains of transmission prior to starting high-throughput analysis or standard IS6110 RFLP. It may as well serve as a secondary typing technique for other, non-IS6110-based methods.  相似文献   

3.
In recent years various novel DNA typing methods have been developed which are faster and easier to perform than the current internationally standardized IS6110 restriction fragment length polymorphism typing method. However, there has been no overview of the utility of these novel typing methods, and it is largely unknown how they compare to previously published methods. In this study, the discriminative power and reproducibility of nine recently described PCR-based typing methods for Mycobacterium tuberculosis were investigated using the strain collection of the interlaboratory study of Kremer et al. This strain collection contains 90 M. tuberculosis complex and 10 non-M. tuberculosis complex mycobacterial strains, as well as 31 duplicated DNA samples to assess reproducibility. The highest reproducibility was found with variable numbers of tandem repeat typing using mycobacterial interspersed repetitive units (MIRU VNTR) and fast ligation-mediated PCR (FLiP), followed by second-generation spoligotyping, ligation-mediated PCR (LM-PCR), VNTR typing using five repeat loci identified at the Queens University of Belfast (QUB VNTR), and the Amadio speciation PCR. Poor reproducibility was associated with fluorescent amplified fragment length polymorphism typing, which was performed in three different laboratories. The methods were ordered from highest discrimination to lowest by the Hunter-Gaston discriminative index as follows: QUB VNTR typing, MIRU VNTR typing, FLiP, LM-PCR, and spoligotyping. We conclude that both VNTR typing methods and FLiP typing are rapid, highly reliable, and discriminative epidemiological typing methods for M. tuberculosis and that VNTR typing is the epidemiological typing method of choice for the near future.  相似文献   

4.
In a previous study, we proposed to associate spoligotyping and typing with the variable number of tandem DNA repeats (VNTR) as an alternative strategy to IS6110-restriction fragment length polymorphism (RFLP) for molecular epidemiological studies on tuberculosis. The aim of the present study was to further evaluate this PCR-based typing strategy and to describe the population structure of Mycobacterium tuberculosis in another insular setting, Sicily. A collection of 106 DNA samples from M. tuberculosis patient isolates was characterized by spoligotyping and VNTR typing. All isolates were independently genotyped by the standard IS6110-RFLP method, and clustering results between the three methods were compared. The totals for the clustered isolates were, respectively, 15, 60, and 82% by IS6110-RFLP, spoligotyping, and VNTR typing. The most frequent spoligotype included type 42 that missed spacers 21 to 24 and spacers 33 to 36 and derived types 33, 213, and 273 that, together represented as much as 26% of all isolates, whereas the Haarlem clade of strains (types 47 and 50, VNTR allele 32333) accounted for 9% of the total strains. The combination of spoligotyping and VNTR typing results reduced the number of clusters to 43% but remained superior to the level of IS6110-RFLP clustering (ca. 15%). All but one IS6110-defined cluster were identified by the combination of spoligotyping and VNTR clustering results, whereas 9 of 15 spoligotyping-defined clusters could be further subdivided by IS6110-RFLP. Reinterpretation of previous IS6110-RFLP results in the light of spoligotyping-VNTR typing results allowed us to detect an additional cluster that was previously missed. Although less discriminative than IS6110-RFLP, our results suggest that the use of the combination of spoligotyping and VNTR typing is a good screening strategy for detecting epidemiological links for the study of tuberculosis epidemiology at the molecular level.  相似文献   

5.
Spoligotyping has been suggested as a screening test in multistep genotyping of Mycobacterium tuberculosis strains. Relying on restriction fragment length polymorphism (RFLP) analysis with IS6110 (IS6110 RFLP analysis) as a "gold standard," we performed a comparative evaluation of spoligotyping and ligation-mediated PCR (LMPCR), a recently described PCR-based typing method, as rapid screening tests for fingerprinting of 158 M. tuberculosis strains collected in Verona, Italy. LMPCR seemed to be comparable to spoligotyping in terms both of feasibility with rapidly extracted DNA and of generation of software-analyzable images. Moreover, LMPCR grouped considerably fewer strains than spoligotyping (38 versus 67%) and was found to reduce the cluster overestimation rate (26.3 versus 58%) and to give a better discriminatory index (0.992 versus 0.970) compared to spoligotyping. In our geographical region, where there was no evidence of clustered strains carrying fewer than six IS6110 copies, LMPCR was found to be more discriminatory than spoligotyping. We also evaluated two models of three-step typing strategies, involving the use of spoligotyping and LMPCR as screening methods and IS6110 RFLP analysis as a further supporting test. LMPCR proved to be a more effective first-step test than spoligotyping, significantly reducing the need for subtyping. LMPCR should be considered an alternative to spoligotyping as a rapid screening method for M. tuberculosis fingerprinting, particularly in areas with a low prevalence of M. tuberculosis strains carrying few copies of IS6110.  相似文献   

6.
The Mycobacterium tuberculosis Beijing family isolates may cause more than a quarter of all tuberculosis cases worldwide, are emerging in some areas, and are often associated with drug resistance. Early recognition of transmission of this genotype is therefore important. To evaluate the usefulness of variable-number tandem-repeat (VNTR) typing to discriminate and recognize strains of the Beijing family, M. tuberculosis isolates from Hong Kong were subjected to VNTR analysis, spoligotyping, and IS6110 restriction fragment length polymorphism (RFLP) typing. The allelic diversity of the 14 VNTR loci included in the analysis varied from 0 to 0.618 among Beijing strains. The discriminatory power of VNTR analysis was slightly lower than that of IS6110 RFLP. Our analysis shows that VNTR typing, which has many practical advantages over RFLP typing, can be used for epidemiological studies of Beijing strains. However, VNTR-defined clusters should be subtyped with IS6110 RFLP for maximal resolution.  相似文献   

7.
A total of 129 clinical isolates of Mycobacterium tuberculosis representing 91 patients were typed by a combination of direct-repeat (DR)-based spoligotyping and an inter-IS6110–PGRS (polymorphic GC-rich region)–PCR, also designated double-repetitive-element PCR (DRE-PCR). During the first phase of this investigation, 72 clinical strains representing 52 patients were initially typed by IS6110-restriction fragment length polymorphism (RFLP) and DR-RFLP, followed by spoligotyping and DRE-PCR. In the second phase of this investigation, the discriminating ability of spoligotyping plus DRE-PCR was studied for 57 isolates from 39 patients who were suspected to be epidemiologically linked, and the typing results were later confirmed by IS6110-RFLP and DR-RFLP analyses. The molecular clustering of the isolates remained identical irrespective of the methods used. These results show that the association of two PCR-based fingerprinting techniques for molecular epidemiology of tuberculosis has a discriminating ability similar to the IS6110-RFLP reference method.  相似文献   

8.
Forty Mycobacterium bovis isolates from cattle and goats were analyzed by using different repetitive genetic markers. The 23 M. bovis strains from goats were found to carry six to eight copies of the insertion sequence IS6110. In contrast, most of the bovine isolates contained only a single copy of this element. The standardized IS6110 fingerprinting by restriction fragment length polymorphism (RFLP), described for Mycobacterium tuberculosis strains, allowed the differentiation of caprine strains. Although this method was not useful for typing bovine isolates, the repetitive elements pTBN12 and DR proved to be suitable for this purpose. A procedure using PCR which amplifies IS6110 in the outward direction was found to be as sensitive as RFLP for typing M. bovis strains from goats. The use of PCR and RFLP methods based on the IS6110 polymorphism would be useful for epidemiological studies of caprine tuberculosis. The results are consistent with different strains of M. bovis being implicated in bovine and caprine tuberculosis.  相似文献   

9.
Mycobacterium tuberculosis complex strains cultured in Denmark have been analyzed by IS6110 restriction fragment length polymorphism (RFLP) on a routine basis from 1992 and onwards. Due to the influx of immigrants with tuberculosis, the number of strains harboring only one to five copies of IS6110 has increased steadily. Since the discriminatory power of IS6110 fingerprinting for such strains is poor, we have performed additional genotyping of all low-copy-number strains by the recently described PCR-based method known as spoligotyping. A total of 311 clinical strains were typed: 14 Mycobacterium bovis BCG, 48 M. bovis, and 249 M. tuberculosis strains. Spoligotyping correctly differentiated M. bovis and M. bovis BCG from M. tuberculosis strains, but it did not differentiate M. bovis from M. bovis BCG. All M. bovis BCG strains exhibited identical spoligotype patterns. The discriminatory power of spoligotyping of low-copy-number M. tuberculosis strains was higher than that of IS6110 fingerprinting. Based on RFLP typing solely, 83% of the low-copy-number M. tuberculosis strains were found to form part of a cluster, and 75% were found to form a cluster on the basis of spoligotyping. When the two techniques were combined, the amount of clustering decreased to 55%. The combination of these two techniques might be valuable in studying the epidemiology of M. tuberculosis strains harboring few copies of the IS6110 element.  相似文献   

10.
We applied four molecular techniques for the typing of strains of Mycobacterium tuberculosis associated with outbreaks: RFLP of the IS6110 insertion sequence, spoligotyping, RAPD, and PCR-IS6110. All 4 techniques were applied to 18 strains which were shown by epidemiological data to be involved in 6 outbreaks. All the methods classified the strains into the same groups as the classical epidemiological data did, but RFLP of the IS6110 insertion sequence and spoligotyping are laborious techniques requiring more than a full day's work, whilst RAPD and PCR IS6110 are simple methods easily incorporated into the daily routine. Nevertheless, a large-scale process of standardization and evaluation is necessary in order to be able to establish the true value of the latter two methods as intraspecific characterization markers for M. tuberculosis isolates.  相似文献   

11.
A preliminary investigation of the genetic biodiversity of Mycobacterium tuberculosis complex strains in Cameroon, a country with a high prevalence of tuberculosis, described a group of closely related M. tuberculosis strains (the Cameroon family) currently responsible for more than 40% of smear-positive pulmonary tuberculosis cases. Here, we used various molecular methods to study the genetic characteristics of this family of strains. Cameroon family M. tuberculosis strains (i) are part of the major genetic group 2 and lack the TbD1 region like other families of epidemic strains, (ii) lack spacers 23, 24, and 25 in their direct repeat (DR) region, (iii) have an identical number of repeats in 8 of 12 variable-number tandem repeats of mycobacterial interspersed repetitive unit (MIRU-VNTR) loci, (iv) have similar IS6110-restriction fragment length polymorphism (RFLP) multiband patterns (10 to 15 copies) with seven common IS6110 bands, (v) do not have an IS6110 element in their DR locus, and (vi) have four IS6110 elements in open reading frames (adenylate cyclase, phospholipase C, moeY, and ATP binding genes). Analysis by spoligotyping, MIRU-VNTR, and IS6110-RFLP typing methods revealed differences not observed in previous studies; polymorphism as assessed by MIRU-VNTR typing was lower than suggested by spoligotyping, and in rare cases, strains with identical IS6110-RFLP patterns had spoligotypes differing by as much as 15 spacers. Our findings confirm the recent expansion of this family in Cameroon and indicate that the interpretation of molecular typing results has to be adapted to the characteristics of the strain population within each setting. The knowledge of this particular genotype, with its large involvement in tuberculosis in Cameroon, allows greater refinement of tuberculosis transmission studies by interpreting data in the context of this geographic area.  相似文献   

12.
In order to evaluate the discriminatory power of different methods for genotyping of Mycobacterium tuberculosis complex (MTBC) isolates, we compared the performance of (i) IS6110 DNA fingerprint typing, (ii) spoligotyping, and (iii) 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing in a long-term study on the epidemiology of tuberculosis (TB) in Schleswig-Holstein, the northernmost federal state of Germany. In total, we analyzed 277 MTBC isolates collected from patients between the years 2006 and 2010. The collection comprised a broad spectrum of 13 different genotypes, among which strains of the Haarlem genotype (31%) were most prominent, followed by strains belonging to the Delhi and Beijing lineages (7% and 6%, respectively). On the basis of IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping analyses, 211 isolates had unique patterns (76%) and 66 isolates (24%) were in 20 clusters. MIRU-VNTR combined with spoligotyping analyses revealed 202 isolates with unique patterns (73%) and 75 isolates in 18 clusters (27%). Overall, there was 93.1% concordance between the typing results obtained; 198 strains were identified as unique, and 60 isolates were clustered by both typing combinations (including all 31 isolates with confirmed epidemiological links). Of the remaining 19 isolates with discrepant results, 15 were falsely clustered by MIRU-VNTR (six Beijing genotype strains) and four were clustered by IS6110 RFLP (low IS6110 copy number) only. In conclusion, in the study population investigated, a minority of isolates, especially of the Beijing genotype, clustered by standard 24-loci MIRU-VNTR and without an obvious epidemiological link may require second-line typing by IS6110 RFLP or hypervariable MIRU-VNTR loci.  相似文献   

13.
The Mycobacterium tuberculosis strains H37Rv and H37Ra are the most commonly used controls for M. tuberculosis identification in the clinical and research laboratory setting. To reduce the likelihood of misidentification and possible cross-contamination with this laboratory neotype, it is important to be able to distinguish H37 from clinical isolates. To provide a reference for identifying H37, we used multiple molecular techniques to characterize H37 strains, including 18 of the most frequently used variants available through the American Type Culture Collection. Isolates were genotyped using gene probes to IS6110 and IS1085. In addition, we performed polymorphic GC-rich sequence typing (PGRS), spoligotyping, determination of variable number of tandem repeats (VNTR), and PCR amplification of the mtp40, msx4, and mpp8 polymorphic regions. Southern hybridization with IS6110 provided the most discrimination, differentiating the 18 H37 isolates into 10 discrete patterns made up of 9 H37Rv variants and 1 H37Ra variant. PGRS, IS1085, mpp8, and spoligotyping were not able to distinguish any H37 variants, while VNTR and msx4 discriminated two. Only IS6110 and spoligotyping could distinguish the H37 strain from clinical isolates. In summary, spoligotyping and IS6110 provide a rapid and accurate way to identify H37 contamination, though IS6110 can, in addition, classify many of the H37 variants that would otherwise require phenotypic segregation.  相似文献   

14.
Sixty-eight ancestral Mycobacterium tuberculosis isolates were previously identified by using the tuberculosis-specific deletion 1 (TbD1) PCR and mycobacterial interspersed-repetitive-unit-variable-number tandem repeat (MIRU-VNTR) typing (Y. J. Sun, R. Bellamy, A. S. G. Lee, S. T. Ng, S. Ravindran, S.-Y. Wong, C. Locht, P. Supply, and N. I. Paton, J. Clin. Microbiol. 42:1986-1993, 2004). These TbD1(+) ancestral isolates were further characterized and typed in this study by IS6110 restriction fragment length polymorphism (RFLP) typing, VNTR typing using exact tandem repeats (VNTR-ETR), and spoligotyping of the direct-repeat region. To our knowledge, this is the first characterization of this genogroup by multiple genetic markers based on a fairly large sample size. In this genogroup, all spoligotypes were characterized by the absence of spacers 29 to 32 and 34. In addition, VNTR-ETR typing could add further resolution to the clustered isolates identified by MIRU-VNTR, and the combination of MIRU-VNTR and VNTR-ETR, called MIRU-ETR, showed the highest discriminatory power for these strains compared to IS6110 RFLP typing and spoligotyping alone. However, MIRU-ETR appeared to still cluster some probably epidemiologically unrelated strains, as judged by IS6110 RFLP divergence. Therefore, a typing strategy based on stepwise combination of MIRU-ETR and IS6110 RFLP is proposed to achieve maximal discrimination for unrelated TbD1(+) strains. This typing strategy may be useful in areas where TbD1(+) ancestral strains are prevalent.  相似文献   

15.
Spoligotyping (for spacer oligotyping) is an easy, economical, and rapid way of typing Mycobacterium tuberculosis complex strains with the DR spacer markers (J. Kamerbeek et al., J. Clin. Microbiol. 35:907-914, 1997; D. van Soolingen et al., 33:3234-3248, 1995). The stability of the markers was demonstrated by showing that all the Mycobacterium bovis BCG strains tested gave the same spoligotyping pattern. None of the 42 atypical mycobacterial strains tested gave a spoligotyping signal, indicating the specificity of the technique for M. tuberculosis complex. The utility of the spoligotyping method was demonstrated by analyzing 106 isolates of M. tuberculosis obtained over 1 year in three Paris hospitals. The results obtained by this technique were compared to those obtained by Torrea et al. (G. Torrea et al., J. Clin. Microbiol. 34:1043-1049, 1996) by IS6110-based restriction fragment length polymorphism (RFLP) analysis. Strains from patients with epidemiological relationships that were in the same IS6110-RFLP cluster were also in the same spoligotyping group. Spoligotyping was more discriminative than RFLP analysis for strains with one or two copies of IS6110. RFLP analysis did not discriminate between the nine strains with one or two IS6110 bands with no known epidemiological relation, whereas spoligotyping distinguished between eight different types. IS6I10-RFLP analysis split some of the spoligotyping clusters, particularly when the IS6110 copy number was high. Therefore, we propose a strategy for typing M. tuberculosis strains in which both markers are used.  相似文献   

16.
Pulsed-field gel electrophoresis (PFGE) is a powerful molecular biology technique which has provided important insights into the epidemiology and population biology of many pathogens. However, few studies have used PFGE for the molecular epidemiology of Mycobacterium tuberculosis. A laboratory protocol was developed to determine the typeability, stability, and reproducibility of PFGE typing of M. tuberculosis. Formal data-analytical techniques were used to assess the genetic diversity elucidated by PFGE analyses using four separate restriction enzymes and by IS6110 RFLP analyses, as well as to assess the concordance among these typing methods. One hundred epidemiologically characterized clinical isolates of M. tuberculosis were genotyped with four different PFGE enzymes (AseI, DraI, SpeI, and XbaI), as well as by RFLP analysis with IS6110. Identical patterns were found among 34 isolates known to be genetically related, suggesting that the PFGE protocol is robust and reproducible. Among 66 isolates representing population-sampled cases, heterozygosity and information content dependency estimates indicate that all five genotyping systems capture quantitatively similar levels of genetic diversity. Nevertheless, comparisons between PFGE analyses and IS6110 typing reveals that PFGE provided more discrimination among isolates with fewer than five copies of IS6110 and less clustering in isolates with five or more copies. The comparisons confirm the hypothesis that the resolution of IS6110 RFLP genotyping is dependent upon the number of IS6110 elements in the genome of isolates. The general concordance among the results obtained with four independent enzymes suggests that M. tuberculosis is a clonal organism. The availability of a robust genotyping technique largely independent of repetitive elements has implications for the molecular epidemiology of M. tuberculosis.  相似文献   

17.
The present study evaluated new markers for molecular typing of Mycobacterium tuberculosis with a collection of strains circulating in Bulgaria. A study sample included 133 strains from epidemiologically unlinked patients from different regions of the country. Spoligotyping was used as a primary typing tool; it subdivided these strains into 37 types, including 15 clusters and 22 singletons. Traditional IS6110-restriction fragment length polymorphism (RFLP) typing and novel 24-locus variable number tandem-repeat (VNTR) typing methods were applied to the selection of 73 strains. Discriminatory power (Hunter-Gaston index [HGI]) of these methods was found to be 0.983 and 0.997, respectively. The 73 strains were subdivided into 66 types by a 24-locus mycobacterial interspersed repetitive unit (MIRU)-VNTR scheme, 62 types by a classical 12-locus MIRU-VNTR scheme, 51 types by IS6110-RFLP typing, and 31 types by spoligotyping. A combination of the five most polymorphic loci (MIRU40, Mtub04, Mtub21, QUB-11b, and QUB-26) was shown to achieve a high discrimination (HGI = 0.984). To conclude, a complete 24-locus scheme excellently differentiated strains in our study, whereas a reduced 5-locus set provided a sufficiently high differentiation and may be preliminarily suggested for the first-line typing of M. tuberculosis isolates in Bulgaria.  相似文献   

18.
The development of PCR-based genotyping modalities (spoligotyping and mycobacterial interspersed repetitive unit-variable-number tandem repeat [MIRU-VNTR] typing) offers promise for real-time molecular epidemiological studies of tuberculosis (TB). However, the utility of these methods depends on their capacity to appropriately classify isolates. To determine the operating parameters of spoligotyping and MIRU-VNTR typing, we have compared results generated by these newer tests to the standard typing method, IS6110 restriction fragment length polymorphism, in analyses restricted to high-copy-number IS6110 isolates. Sensitivities of the newer tests were estimated as the percentages of isolates with identical IS6110 fingerprints that had identical spoligotypes and MIRU-VNTR types. The specificities of these tests were estimated as the percentages of isolates with unique IS6110 fingerprints that had unique spoligotypes and MIRU-VNTR types. The sensitivity of MIRU-VNTR typing was 52% (95% confidence interval [CI], 31 to 72%), and the sensitivity of spoligotyping was 83% (95% CI, 63 to 95%). The specificity of MIRU-VNTR typing was 56% (95% CI, 51 to 62%), and the specificity of spoligotyping was 40% (95% CI, 35 to 46%). The proportion of isolates estimated to be due to recent transmission was 4% by identical IS6110 patterns, 19% by near-identical IS6110 patterns, 33% by MIRU-VNTR typing, and 53% by spoligotyping. The low calculated specificities of spoligotyping and MIRU-VNTR typing led to misclassification of cases, inflated estimates of TB transmission, and low positive predictive values, suggesting that these techniques have unsuitable operating parameters for population-based molecular epidemiology studies.  相似文献   

19.
Genotyping based on variable-number tandem repeats (VNTR) is currently a very promising tool for studying the molecular epidemiology and phylogeny of Mycobacterium tuberculosis. Here we investigate the polymorphisms of 48 loci of direct or tandem repeats in M. tuberculosis previously identified by our group. Thirty-nine loci, including nine novel ones, were polymorphic. Ten VNTR loci had high allelic diversity (Nei's diversity indices >or= 0.6) and subsequently were used as the representative VNTR typing set for comparison to IS 6110-based restriction fragment length polymorphism (RFLP) typing. The 10-locus VNTR set, potentially providing >2 x 10(9) allele combinations, obviously showed discriminating capacity over the IS 6110 RFLP method for M. tuberculosis isolates with fewer than six IS 6110-hybridized bands, whereas it had a slightly better resolution than IS 6110 RFLP for the isolates having more than five IS 6110-hybridized bands. Allelic diversity of many VNTR loci varied in each IS 6110 RFLP type. Genetic relationships inferred from the 10-VNTR set supported the notion that M. tuberculosis may have evolved from two different lineages (high and low IS 6110 copy number). In addition, we found that the lengths of many VNTR loci had statistically significant relationships to each other. These relationships could cause a restriction of the VNTR typing discriminating capability to some extent. Our results suggest that VNTR-PCR typing is practically useful for application to molecular epidemiological and phylogenetic studies of M. tuberculosis. The discriminating power of the VNTR typing system can still be enhanced by the supplementation of more VNTR loci.  相似文献   

20.
Mycobacterial interspersed repetitive unit (MIRU) typing has been found to allow rapid, reliable, high-throughput genotyping of Mycobacterium tuberculosis and may represent a feasible approach to study global M. tuberculosis molecular epidemiology. To evaluate the use of MIRU typing in discriminating drug-resistant M. tuberculosis strains of the Beijing genotype family, 102 multidrug-resistant (MDR) clinical isolates and 253 randomly selected non-MDR isolates collected from 2000 to 2003 in Hong Kong were subjected to 12-locus MIRU typing, spoligotyping, and IS6110 restriction fragment length polymorphism (RFLP) typing. Spoligotyping showed that 243 (68.5%) of 355 isolates belonged to Beijing family genotype. MIRU typing showed lower discrimination in differentiating between the Beijing family strains (Hunter-Gaston discriminative index [HGI] of 0.8827) compared with the IS6110 RFLP method (HGI = 0.9979). For non-Beijing strains, MIRU typing provided discrimination (HGI = 0.9929) comparable to that of the RFLP method (HGI = 0.9961). There was no remarkable difference in discrimination power between the two methods in differentiating both within and between MDR and non-MDR strains of M. tuberculosis. Dendrograms constructed with the MIRU typing data showed a clear segregation between the Beijing and non-Beijing genotype. Addition of RFLP to MIRU typing offered a higher discrimination ability (92.6%) than did addition of MIRU typing to RFLP (40.0%). This supported the potential use of this method to analyze the global genetic diversity of MDR M. tuberculosis strains that may be at different levels of evolutionary divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号