首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of dual energy X-ray absorptiometry (DXA) using the Norland XR-26 Mark II bone densitometer for measurements of bone mineral content (BMC) and bone mineral density (BMD) in small rats was evaluated. Thirty-two young, isogenic, Lewis rats (weights from 119 g to 227 g) were used; normal rats (n = 7) and rats with low BMD obtained from three different vitamin D-depleted models (n = 25). DXA measurements were performed using the special software for small animals. Duplicate scans of excised femurs performed at 2 mm/second (pixel size of 0.5 mm × 0.5 mm) were very precise measurements with a coefficient of variation (CV) below 1.6% in animals with normal BMD; in rats with low BMD, the CV was significantly higher (P= 0.02–0.04), 7.8% and 4.4% for BMC and BMD, respectively. Regression analysis demonstrated that these measurements were related to the ash weight (R2 > 98.6%). The CV for measurements of the lumbar spine at 10 mm/second (pixel size 0.5 mm × 0.5 mm) was 2.6% and 2.2% for BMC and BMD, respectively in rats with normal BMD, and again higher (P= 0.03–0.14) in rats with low BMD, 7.3% and 4.7%, respectively, for BMC and BMD. Even though low CVs were obtained for total body duplicate scans (scan speed of 20 mm/second and a pixel size of 1.5 mm × 1.5 mm), the measurements were problematic for accuracy because of an overestimation of both BMC and the area of bone. Using these scan parameters the measurements of total body bone mineral could not be recommended in small rats with low BMD. Received: 21 May 1999 / Accepted: 3 August 2000 / Online publication: 22 December 2000  相似文献   

2.
Since the biomechanical competence of a vertebral body may be closely related to the content and distribution of the bone mineral, we have evaluated the effects of projected vertebral bone area (BA) and bone mineral parameters [bone mineral content (BMC) or bone mineral density (BMD)] on their biomechanical competence. We used dual-energy X-ray absorptiometry (DXA) to assess the bone mineral parameters of 36 swine thoracic vertebrae (T1–T12) and 15 lumbar vertebrae (L1–L5) after removal of the posterior elements. The failure load, compressive stress, and the stored strain energy of these vertebral bodies were assessed by a uniaxial compressive test using an MTS 810 testing system. Multiple regression analysis showed a significantly negative effect of BA and significantly positive effect of BMC on the biomechanical competence (compressive stress, r2= 0.67, P < 0.0001; failure load, r2= 0.75, P < 0.0001). However, the stored strain energy was only related to the BMC (r2= 0.35, P < 0.0001). The contributory effects of BMC and BA on the biomechanical competence were not equal. The effects of BMC was larger than BA in determining the failure load and stored strain energy, whereas the reverse was found for the compressive stress. Using the log-transformed parameters as the regressors resulted in similar results. These results suggested the differential effects of BA and BMC in determining the biomechanical competence of vertebral bodies. We recommend the use of both parameters instead of BMD alone for evaluation of the vertebral biomechanical competence. Received: 26 June 1997 / Accepted: 8 January 1998  相似文献   

3.
Normative bone mineral density (BMD) and bone mineral content (BMC) values for the total body (TB), proximal femur (PF), and antero-posterior lumbar spine (LS) were obtained from a large cross-sectional sample of children and adolescents who were 8–17 years of age. There were 977 scans for the TB, 892 for the PF, and 666 for the LS; bone mineral values were obtained using a HOLOGIC QDR 2000 in array mode. Data are presented for the subregions of the PF (femoral neck, trochanter, intertrochanter, and the total region) and for the LS (L1–L4 and L3). Female and male values for the FN, LS (L1–L4), and the TB were compared across age groups using a two-way ANOVA. In addition, we compared the 17-year-old female values to a separate sample of young adult women (age 21). At all these sites, BMC and BMD increased significantly with age. There was no gender difference in TB BMC until age 14 or in TB BMD until age 16, when male values were significantly greater. Females had significantly greater LS BMC at ages 12 and 13, but by age 17 the male values were significantly greater. Females had significantly greater LS BMD across all age groups, however. Males had significantly greater FN BMC and BMD across all age groups. There were no significant differences in BMC or BMD at any sites between the 17- and 21-year-old women. Received: 29 September 1995 / Accepted: 1 April 1996  相似文献   

4.
The purpose of this cross-sectional study was to investigate the influence of two different types of weight-bearing activity, muscle strength, and body composition on bone mineral density (BMD), bone mineral content (BMC), and bone area in three different groups of late adolescent girls. The first group consisted of 10 females participating in competitive rope-skipping (age 17.8 ± 0.8 years) training for 6.7 ± 3.1 hours/week; the second group consisted of 15 soccer players (age 17.4 ± 0.8 years) training for 6.1 ± 2.0 hours/week; and the third group consisted of 25 controls (age 17.6 ± 0.8 years) with physical activity of 0.9 ± 1.1 hours/week. The groups were matched for age, height, and weight. BMD (g/cm2), BMC (g), and bone area (cm2) of the total body, lumbar spine, hip, total femur, distal femur, diaphyses of femur and tibia, proximal tibia, and humerus were measured using dual-energy X-ray absorptiometry (DXA). Bone density was also assessed in the radial forearm site of the dominant limb in the rope skippers and in 10 matched controls. The rope skippers had 22% higher BMD at the ultradistal site (P < 0.01). Both high-activity groups had significantly higher BMD (P < 0.05) at most loaded sites compared with the control group. When adjusting for differences in lean mass and starting age of sport-specific training between the activity groups, the rope-skipping group had a higher BMD of the total body, lumbar spine, and right humerus compared with the soccer group. They also had a significantly higher bone area of the total body, total femur, and the proximal femur than both other groups, and a significantly higher bone area of the tibia diaphysis, compared with the soccer group. In a multivariate analysis among all subjects (n = 50), all BMD sites, except the femur diaphysis, distal femur, and proximal tibia, were significantly related to type of physical activity (β= 0.25–0.43, P < 0.05). The bone area values at different sites were strongly related to muscle strength and parameters related to body size [height, weight, lean mass, fat mass, and body mass index (BMI)]. In conclusion, it appears that in late adolescent women, weight-bearing activities are an important determinant for bone density, and high impact activities such as jumping also seem to be associated with a modification of the bone geometry (hence, the bone width) at the loaded sites. Received: 28 June 1999 / Accepted: 22 March 2000  相似文献   

5.
It is inherent to mammalian limb bones that they tend to maintain the same relative proportions of bone mass with changing body mass. This assumption seemed not to comply with experimental data on bone mineral content (BMC) and areal density (BMD) we have previously observed with immobilized rat femora. Using allometric scaling (BMC = aWEIGHTb), we showed in this study that a 3-week period of unilateral immobilization of the left hindlimb of 27 Spraque-Dawley male rats at the age of 13 weeks resulted in disproportionate scaling between femoral BMC and body weight (range: 430–937 g) during subsequent 32 weeks. The allometric exponents (b) were 0.76 (95% confidence interval: 0.64–0.88) for the immobilized left femur and 0.62 (0.51–0.73) for the right intact femur, both of which were in significant contrast to the value of 0.99 (0.90–1.08) observed in 36 free-living control rats (410–910 g). For BMD, the corresponding exponent values were 0.52 (0.44–0.60), 0.44 (0.36–0.52), and 0.67 (0.61–0.73), the values being significantly different from each other also. We conclude that a short period of immobilization significantly distorts the normal allometric scaling relationships between the body weight and femoral BMC and BMD in growing male rats. The obvious adverse effect on peak bone mass suggests that an immobilization period during growth may condemn the given bone to a lifetime of relative fragility. Therefore, further consideration of this issue is warranted. Received: 2 May 1996 / Accepted: 19 July 1996  相似文献   

6.
Altogether 92 initially 25- to 30-year-old women of 132 original subjects participated in this 4-year follow-up study, which evaluated the influence of physical activity and calcium intake on the bone mineral content (BMC) of premenopausal women. The subjects were originally selected for a cross-sectional study according to their level of physical activity (high PA+ and low PA) and calcium intake (high Ca+ and low Ca), and the original groups were maintained in this follow-up study. The mean loss of BMC (95% CI) in the pooled data was 1.5% (0.7% to 2.4%) at the femoral neck, 0.6% (–0.8% to 1.9%) at the trochanter and 6.0% (4.5% to 7.4%) at the distal radius during the 4-year follow-up. According to repeated measures analyses of covariance neither physical activity nor physical fitness at baseline was associated with the rate of bone loss from the proximal femur. High calcium intake and the maintenance of body weight were both associated with a lower rate of bone loss from the proximal femur and distal radius. In addition, a long duration of breast feeding was associated with a higher rate of bone loss from the distal radius. Received: 1 June 2001 / Accepted: 29 August 2001  相似文献   

7.
The purpose of this study was to examine the difference in lifestyle and morphometric factors that affect bone mineral and the attainment of peak bone mass in 168 healthy Asian (n = 58) and Caucasian (n = 110) Canadian, prepubertal girls and boys (mean age 8.9 ± 0.7) living in close geographical proximity. DXA (Hologic 4500) scans of the proximal femur (with regions), lumbar spine, and total body (TB) were acquired. We report areal bone mineral densities (aBMD g/cm2) at all sites and estimated volumetric density (νBMD, g/cm3) at the femoral neck. Dietary calcium, physical activity, and maturity were estimated by questionnaire. Of these prepubertal children, all of the boys and 89% of the girls were Tanner stage 1. A 2 × 2 ANOVA demonstrated no difference between ethnicities for height, weight, body fat, or bone mineral free lean mass. Asian children consumed significantly less dietary calcium (35%) on average and were significantly less active (15%) than their Caucasian counterparts (P < 0.001). There were significant ethnicity main effects for femoral neck bone mineral content (BMC) and αBMD (both P < 0.001) and significant sex by ethnicity interactions (P < 0.01). The Asian boys had significantly lower femoral neck BMC (11%), aBMD (8%), and νBMD (4.4%). At the femoral neck, BMFL mass, sex, and physical activity explained 37% of the total variance in aBMD (P < 0.05). In summary, this study demonstrated differences in modifiable lifestyle factors and femoral neck bone mineral between Asian and Caucasian boys. Received: 21 July 1998 / Accepted: 30 September 1999  相似文献   

8.
Resistive Training Maintains Bone Mineral Density in Postmenopausal Women   总被引:2,自引:0,他引:2  
We examined the effects of a total body resistive training program (RT) on total and regional bone mineral density (BMD) in older women. Twenty-seven healthy postmenopausal women (mean age 62 ± 1 years) participated in a strength training program three times/week for 16 weeks. Strength was assessed before and after training by either one or three repetition maximum (1RM and 3RM) tests. Both upper and lower body strength significantly increased by 36–65% and 32–98%, respectively, after training. There was a small but significant decrease in body weight and body mass index after training (P < 0.05), with no change in the waist-to-hip ratio. BMD, assessed by dual-energy X-ray absorptiometry, did not change over the duration of the training period in the anterioposterior spine (L2–L4), femoral neck, Ward's triangle, and greater trochanter. BMD of the total body, lateral spine (B2–B4), and the regions of the radius (1/3 radius and ultradistal radius) also did not fall in subsets of these women. Muscular strength of both the leg and chest press were significantly associated with L2–L4, femoral neck, Ward's triangle, and greater trochanter BMD (range r = 0.57–0.84, all P < 0.005). Markers of bone turnover, namely, bone-specific alkaline phosphatase, osteocalcin, and urinary aminoterminal cross-linked telopeptide of type I collagen did not change significantly. In conclusion, a resistive training program maintains BMD and improves muscular strength in healthy, older women. This may be important in preventing the negative health outcomes associated with the age-related loss of bone density. Received 5 June 1996 / Accepted: 26 June 1997  相似文献   

9.
The total skeletal bone mineral content (BMC), bone mineral density (BMD), bone size, and body composition were measured by dual-energy x-ray absorptiometry (DXA) in all professional male football players of a 1st division team (n = 24) and age- and BMI-matched (n = 22) controls (less than 3 hours of recreational sport activities per week). Average (±1 SD) age of the athletes was 22.6 ± 2.5 years. Intensive training is conducted during 48 weeks a year for 20–22 hours/week. The length of the registered playing career before the study was 8.2 ± 2.7 years. Total skeleton BMC was 18.0% (P < 0.001) greater in the football players. The difference resulted from the sum of 5.2% (P < 0.02) increment of bone size and 12.3% (P < 0.001) increment of BMD. The analysis of skeletal subareas revealed that the difference of the BMC and BMD was greater at the level of the pelvis and legs compared with the arms or trunk. The BMC and BMD of the head was equal for both groups. Also, the bone size of the legs and pelvis was significantly greater for the players compared with controls; there was no difference at the level of the arms or head. Within the group of football players the increment of total skeleton BMD was similar in the young players, with less than 7 years of practice (age 20.6 ± 0.9 years) compared with relative older players (age 24.6 ± 1.9) with more than 7 years of practice. Lean body mass was significantly greater in the players (63.3 ± 4.0 kg) compared with the controls (56.7 ± 3.6, P < 0.001) whereas fat mass was markedly lower (9.4 ± 2.9 kg versus 14.9 ± 6.3 kg), P < 0.002). The BMD of the controls was significantly correlated to total weight, height, and lean mass whereas the BMD of the players was only correlated to muscle mass. The calcium intake from dairy products was similar in both groups. The range of calcium intake was wide among the players (184–2519 mg/day) but it was not significantly correlated to BMD (r = 0.03). In conclusion, male professional football players develop a significant increment of BMC as a result of increased bone size and density. This is already present at the end of the second decade and maintained at least to the end of the third decade in active players. As in other high impact loading sports, the effect on area is specific involving mainly the pelvis and legs. The increment was totally unrelated to the calcium intake from dairy products. The fate of the increased BMC after intensive training is discontinued should be assessed. However, if the findings of the present cross-sectional study are supported by detailed longitudinal investigations, the presently reported observations might be important for the prevention of future osteoporotic fractures. Received: 8 August 1997 / Accepted: 26 January 1998  相似文献   

10.
This study examined bone density among postmenopausal Buddhist nuns and female religious followers of Buddhism in southern Taiwan and related the measurements to subject characteristics including age, body mass, physical activity, nutrient intake, and vegetarian practice. A total of 258 postmenopausal Taiwanese vegetarian women participated in the study. Lumbar spine and femoral neck bone mineral density (BMD) were measured using dual-photon absorptimetry. BMD measurements were analyzed first as quantitative outcomes in multiple regression analyses and next as indicators of osteopenia status in logistic regression analyses. Among the independent variables examined, age inversely and body mass index positively correlated with both the spine and femoral neck BMD measurements. They were also significant predictors of the osteopenia status. Energy intake from protein was a significant correlate of lumbar spine BMD only. Other nutrients, including calcium and energy intake from nonprotein sources, did not correlate significantly with the two bone density parameters. Long-term practitioners of vegan vegetarian were found to be at a higher risk of exceeding lumbar spine fracture threshold (adjusted odds ratio = 2.48, 95% confidence interval = 1.03–5.96) and of being classified as having osteopenia of the femoral neck (3.94, 1.21–12.82). Identification of effective nutrition supplements may be necessary to improve BMD levels and to reduce the risk of osteoporosis among long-term female vegetarians. Received: 10 May 1996 / Accepted: 9 August 1996  相似文献   

11.
Diabetes and estrogen deficit are known causes of osteopenia, diabetes being associated with a low bone turnover and estrogen deficit with a high bone turnover. In the present work, we studied the effect of combined ovariectomy and diabetes on bone mineral content (BMC) and bone mineral density (BMD) and several bone markers in the rat. Four groups of rats were studied: control (C), ovariectomized (O), diabetic (D), and ovariectomized and diabetic (DO). Twelve weeks after starting the experiments, BMC and BMD of the first six lumbar vertebrae were measured; a bone formation marker (BGP) and a bone resorption marker (free collagen cross-links, PYD) were also analyzed. Diabetic rats showed diminished gain in bone mass, BMC (D: 0.417 ± 0.028 g, DO: 0.422 ± 0.020 g) and BMDs (D: 0.171 ± 0.006 g/cm2, DO: 0.174 ± 0.006 g/cm2) both being significantly (P < 0.001) lower than those of control (C: BMC 0.727 ± 0.024 g and BMD 0.258 ± 0.004 g/cm2) and ovariectomized (O: BMC 0.640 ± 0.044 g and BMD 0.240 ± 0.009 g/cm2) groups. Moreover, the BMC and BMD of the C group were significantly (P < 0.05) higher than that of the O group. BGP and PYD levels were significantly (P < 0.01) higher in the O group (BGP: 138.2 ± 16.8 ng/ml, PYD: 270.2 ± 17.8 nM/mM) than those found in the control rats (BGP: 44.7 ± 4.8 ng/ml, PYD: 165.6 ± 12.5 nM/mM); the D group showed significantly (P < 0.01) lower values (BGP: 27.4 ± 14.6 ng/ml, PYD: 55.0 ± 7.4 nM/mM) than those of the control group. The DO group showed similar levels (BGP: 43.4 ± 5.1 ng/ml, PYD: 146.7 ± 14.6 nM/mM) to those found in the C group. Although bone marker levels in the O and D groups were in accordance with those expected in these situations, in the DO group the corresponding levels are apparently ``normal.' Also, the decrease of gain in bone mass observed after combining estrogen deficit and diabetes (DO group) did not seem to be more marked than that caused by diabetes alone. Received: 7 January 1997 / Accepted: 7 August 1997  相似文献   

12.
Bone Density of the Spine and Femur in Adult White Females   总被引:14,自引:0,他引:14  
We measured bone mineral density (BMD in g/cm2) of the spine (L2-L4) and femur (four regions) in 1472 and 1487 cases, respectively, of ambulatory white women ages 20–79 years in the USA. A DPX densitometer was used in a mobile setting. The BMD values for women up to 69 years corresponded closely with published values for the USA, the UK, and northern Europe; our values were somewhat lower than those from other studies only in women over 70 years. The USA data were combined with data from Europe to give reference curves on about 12,000 subjects. Decreases of BMD with age in women below 50 years were much smaller than in older women (0.2% versus 0.6–1.0% per year). Femoral bone decreased from the neck region, but not the trochanter with age; the decrease of total femur BMD with age was due to loss from the former region. Loss of bone mineral content (BMC in g) from the femur neck and total femur region did not accelerate until after age 50 years, much like the spine. The apparent decrease of BMD in these regions that begins about age 40 actually is due to an increase of bone area. About 20% of USA women aged 50–79 years had BMD levels for the lumbar spine, or for the femur neck, more than −2.5 SD below the average values in young adult women 20–39 years old. Body weight had several times more impact on BMD than height, and in fact, a change of 1 kg in postmenopausal women was commensurate with the effect of a 1-year change in age. Subjects in the lowest quartile of body weight had T-scores that were 1 SD below those in the highest quartile. Received: 10 September 1998 / Accepted: 15 December 1998  相似文献   

13.
Low vitamin D levels in elderly people are associated with reduced bone mass, secondary hyperparathyroidism, and increased fracture risk. Its effect on the growing skeleton is not well known. The aim of this study was to evaluate the possible influence of chronic winter vitamin D deficiency and higher winter parathyroid hormone (PTH) levels on bone mass in prepubertal children and young adults. The study was carried out in male and female Caucasian subjects. A total of 163 prepubertal children (X age ± 1 SD: 8.9 ± 0.7 years) and 234 young adults (22.9 ± 3.6 years) who had never received vitamin D supplementation were recruited from two areas in Argentina: (1)Ushuaia (55° South latitude), where the population is known to have low winter 25OHD levels and higher levels of PTH in winter than in summer, and (2)Buenos Aires (34°S), where ultraviolet (UV) radiation and vitamin D nutritional status in the population are adequate all year round. Bone mineral content (BMC) and bone mineral density (BMD) of the ultradistal and distal radius were measured in the young adults. Only distal radius measurements were taken in the children. Similar results were obtained in age-sex matched groups from both areas. The only results showing significant difference corresponded to comparison among the Ushuaian women: those whose calcium (Ca) intake was below 800 mg/day presented lower BMD and BMC values than those whose Ca intake was above that level (0.469 ± 0.046 versus 0.498 ± 0.041 g/cm2, P < 0.02; 3.131 ± 0.367 versus 3.339 ± 0.386 g, P < 0.05, respectively). In conclusion, peripheral BMD and BMC were similar in children and young adults from Ushuaia and Buenos Aires in spite of the previously documented difference between both areas regarding UV radiation and winter vitamin D status. BMD of axial skeletal areas as well the concomitant effect of a low Ca diet and vitamin D deficiency on the growing skeleton should be studied further. Received: 7 June 1999 / Accepted: 22 March 2000  相似文献   

14.
The study investigated the ability of ethnicity and anthropometric and lifestyle factors to account for differences within subjects in bone mass at different skeletal sites. The subjects were young, adult, Japanese, Filipino, Hawaiian, and white women ages 25–34. In the preliminary analyses, they were divided into thirds based on their BMD z-scores. Thirty-five percent exhibited high variability in bone mass: they were in the upper third at one or more bone sites and in the lower third at one or more sites. Other women had more generalized low bone mass: 25% were in the lowest third for two or more sites, and there were no sites with low bone mass in the upper third. In subsequent analyses, ethnicity, anthropometry, and lifestyle influences were examined as possible predictors of differences in bone mineral content (BMC) between bone sites in bone-size adjusted models. White women had greater BMC at the proximal radius and calcaneus than at the distal radius compared with other ethnic groups. This may be explained by the fact that they had exceptionally wide bone widths at the distal radius. Of the anthropometric variables, fat mass was associated with higher bone mass at sites with higher proportions of cancellous tissue (calcaneus > spine > radius sites). Muscle mass was associated with greater bone mass at the calcaneus and proximal radius than at the spine. For the lifestyle variables, women with greater milk consumption between the ages of 10–24 years had higher spine bone mass than expected from their measurements at the proximal radius. Women 12–17 years of age who had been more active in sports had higher calcaneous bone mass than expected from their spine measurements. As the study participants were still young women, the results suggest that regional differences in bone mass may partly derive from anthropometric and lifestyle influences during skeletal maturation. Received: 6 March 1998 / Accepted: 15 December 1998  相似文献   

15.
The aim of this study was to investigate bone mineral density (BMD) and bone turnover in patients with primary knee osteoarthritis (KOA) and to compare them with generalized OA (GOA) and nonGOA patients. A total of 88 postmenopausal primary KOA patients were studied. OA was graded by using knee radiographs. BMD of the lumber spine, femur, and radius, and biochemical markers of bone turnover, pyridinoline (Pyr), deoxypyridinoline (Dpyr), CTx, and osteocalcin were compared among each grade. BMD was also compared with 88 normal controls who were age and weight-matched. In 88 KOA patients, 56 were divided into 28 GOA and 28 non-GOA groups by grading hand radiographs. BMD and biochemical markers were compared between GOA and non-GOA. KOA patients had higher BMD at several skeletal sites compared with age- and weight-matched normals. A significant difference of BMD between each grade was observed between grades 0–1 and 3 (0.774 ± 0.143 versus 0.940 ± 0.185 g/cm2, P < 0.001), grades 2 and 3 (0.781 ± 0.125 versus 0.940 ± 0.185 g/cm2, P < 0.01) in the spine, and between grades 0–1 and 3 (0.505 ± 0.100 versus 0.564 ± 0.127 g/cm2, P < 0.05) in the trochanter. A significant difference of biochemical bone markers was observed between grades 0–1 and 3 (P < 0.05) and between grades 2 and 3 (P < 0.05) in Pyr and grades 0–1 and 3 (P < 0.05) and between grades 1 and 4 (P < 0.05) in Dpyr, but not in osteocalcin and CTx. GOA patients had higher BMD of the spine (0.902 ± 0.175 versus 0.747 ± 0.138 g/cm2, P < 0.01), trochanter (0.535 ± 0.107 versus 0.480 ± 0.107 g/cm2, P < 0.05), and one-third of the radius (0.526 ± 0.068 versus 0.472 ± 0.089 g/cm2, P < 0.05) and had significantly higher biochemical markers in Pyr and Dpyr than non-GOA patients. It is concluded that KOA patients had higher BMD at several skeletal sites. Biochemical bone markers were influenced by some degree of cartilage damage in OA patients. This tendency was stronger in GOA patients than in non-GOA patients. Received: 12 February 1999 / Accepted: 2 November 1999  相似文献   

16.
The aim of this cross-sectional study was to investigate whether two types of physical exercise affect the growing skeleton differently. We used calcaneal quantitative ultrasound measurements (QUS) and dual-energy X-ray absorptiometry (DXA) for measurement of bone mineral density (BMD), and to test how QUS values reflect the axial DXA values in these various study groups. A total of 184 peripubertal Caucasian girls aged 11–17 years (65 gymnasts, 63 runners, and 56 nonathletic controls) were studied. Weight, height, stage of puberty, years of training, and the amount of leisure-time physical activity were recorded. Broadband ultrasound attenuation (BUA) and sound of speed (SOS) through the calcaneus were measured. The BMD of the femoral neck and the lumbar spine were measured by DXA. The differences in mean values of bone measurements among each exercise group were more evident in pubertal than prepubertal girls. The mean BUA and SOS values of the pubertal gymnasts were 13.7% (77.8 dB/MHz versus 68.4 dB/MHz, P < 0.05) and 2.2% (1607.7 m/s versus 1572.4 m/s, P < 0.001) higher than of the controls, respectively. The mean BMD of the femoral neck in the pubertal gymnasts and runners was 20% (0.989 g/cm2 versus 0.824 g/cm2, P < 0.001) and 9.0% (0.901 g/cm2 versus 0.824 g/cm2, P < 0.05) higher than in the controls, respectively. The amount of physical activity correlated weakly but statistically significantly with all measured BMD and ultrasonographic values in the pubertal group (r = 0.19–0.35). The correlation between ultrasonographic parameters and BMD were weak, but significant among pubertal runners (r = 0.47–0.55) and controls (r = 0.39–0.42), whereas the DXA values of the femoral neck and the ultrasonographic parameters of the calcaneus did not correlate among highly physically active gymnasts. By stepwise regression analysis, physical activity accounted for much more of the variation in the DXA values than the ultrasonographic values. We conclude that the beneficial influence of exercise on bone status as measured by ultrasound and DXA was evident in these peripubertal girls. In highly active gymnasts the increase of the calcaneal ultrasonographic values did not reflect statistically significantly the BMD values of the femoral neck. Received: 28 June 1999 / Accepted: 2 November 1999  相似文献   

17.
To investigate risk factors for spinal fracture, we studied the relationship between the prevalence of asymptomatic spinal fracture and various morphological measures including spinal bone mineral density (BMD) in women. A total of 122 women ranging in age from 55 to 79 years were studied. The group consisted of 46 women aged 55–59 years (18 with fracture), 51 women aged 60–69 years (26 with fracture), and 26 women aged 70–79 years (14 with fracture). BMD of cortical and trabecular bone from L1 to L3 was measured using quantitative computed tomography (QCT). Run-length analysis was applied to evaluate the spinal trabecular textural features using CT images; the texture indices which represent the mean width of trabeculae (the T-texture) and that of intertrabecular spaces (the I-texture) were obtained. Anthropometric factors including body weight and height, psoas muscle area, and vertebral bone volume were measured using CT images. Among the various factors, trabecular BMD in women aged 55–69 years showed the highest odds ratio for the presence of fracture per standard deviation (SD) decrease in bone density. However, in women aged 70–79 years, the highest odds ratio was observed for trabecular texture index but not for trabecular BMD. The I-texture in women aged 55–59 years, the muscle area in women aged 60–69 years, and cortical BMD and muscle area in women aged 70–79 years were also considered significantly related to the risk of fracture. Received: 31 December 1995 / Accepted: 24 July 1996  相似文献   

18.
Weight loss may lead to bone loss but little is known about changes in bone mass during regain of reduced weight. We studied changes in bone mineral density (BMD) and bone mineral content (BMC) during voluntary weight reduction and partial regain. The study consisted of three phases: a 3 month weight reduction with very-low-energy diet (VLED), a 9 month randomized, controlled walking intervention period with two training groups (target energy expenditure 4.2 or 8.4 MJ/week) and a 24-month follow-up. The participants were premenopausal women with a mean body mass index of 34.0 (SD 3.6) kg/m2. Seventy-four of 85 subjects completed the whole study. Total body, lumbar spine, proximal femur and dominant radius BMD and BMC were measured with dual-energy X-ray absorptiometry (DXA). The mean weight loss during VLED was 13.2 (3.4) kg, accompanied by unchanged total body BMC and decreased lumbar, trochanteric and radial BMD (p<0.05). During months 3–36, an average of 62% of the weight loss was regained, total body BMC decreased and trochanteric BMD increased (p<0.05). At the end of the study, total body BMC and lumbar and femoral neck BMD were lower than initially (p<0.05). Weight change throughout the study correlated significantly with the change in radial (r= 0.54), total body (r= 0.39) and trochanteric (r= 0.37) BMD. Exercise-group assignment had no effect on BMD at weight-bearing sites. In conclusion, the observed changes in BMD and BMC during weight reduction and its partial regain were clinically small and partly reversible. More studies are needed to clarify whether the observed weight changes in BMD and BMC are real or are artifacts arising from assumptions, inaccuracies and technical limitations of DXA. Received: 20 April 2000 / Accepted: 20 September 2000  相似文献   

19.
Parathyroid hormone (PTH) may be an important determinant of cortical bone remodeling in the elderly. Vitamin D status is one of the determining factors in this relationship. The aim of this study was to quantify the relationship between serum PTH, vitamin D and bone mineral density (BMD) in elderly women in Reykjavik (64° N), where daily intake of cod liver oil is common and mean calcium intake is high. ln PTH correlated inversely with 25(OH)D (r=−0.26, p<0.01). In multivariate analysis PTH correlated inversely with whole body BMD (mostly cortical bone) (R 2= 2.2%, p = 0.04) but not with the lumbar spine BMD, reflecting more cancellous bone. No association was found between 25(OH)D levels and BMD at any site in univariate or multivariate analysis. Osteocalcin, a measure of bone turnover, was negatively associated with BMD and this association remained significant when corrected for PTH levels. In summary, in this fairly vitamin D replete population with high calcium intake, PTH was negatively associated with total body BMD. We infer that suppression of PTH may reduce cortical bone loss, but other factors are likely to contribute to age-related bone remodeling and osteoporosis. Received: 3 January 2000 / Accepted: 10 April 2000  相似文献   

20.
Total and regional bone mineral density (BMD) by dual-energy-X-ray absorptiometry (DXA) and bone turnover were tested in 50 highly trained women athletes and 21 sedentary control women (18–69 years; BMI < 25 kg/m2). VO2max (ml · kg−1· min−1) and lean tissue mass (DXA) were significantly higher in the athletes versus controls (both P < 0.0001). Total body BMD did not decline significantly with age in the athletes whereas lumbar spine (L2–L4) BMD approached statistical significance (r =−0.26; P= 0.07). Significant losses of the femoral neck (r =− 0.42), Ward's triangle (r =−0.53), and greater trochanter BMD (r =−0.33; all P < 0.05) occurred with age in the athletes. In the athletes, total body BMD, L2–L4 BMD, and BMD of all sites of the femur were associated with lean tissue mass (r = 0.32 to r = 0.57, all P < 0.05) and VO2max (r = 0.29 to r = 0.48, all P < 0.05). Femoral neck and greater trochanter BMD were higher in the athletes than in controls (both P < 0.05) and lumbar spine and Ward's triangle BMD approached statistical significance (both P= 0.07). Bone turnover was assessed by serum bone-specific alkaline phosphatase (B-ALP), urinary deoxypyridinoline cross-links (Dpd), and urinary aminoterminal cross-linked telopeptides (NTX). There were no relationships between B-ALP or Dpd with age whereas NTX increased with age (r = 0.46, P < 0.05) in the entire group. Levels of B-ALP and NTX were negatively associated with total body, L2–L4, femoral neck, Ward's triangle, and greater trochanter BMD (P < 0.05). B-ALP and Dpd were not significantly different between athletes and controls whereas NTX was lower in the athletes than in controls (P < 0.001). The high levels of physical activity observed in women athletes increase aerobic capacity and improve muscle mass but are not sufficient to prevent the loss of bone with aging. Received: 28 November 1997 / Accepted: 8 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号