首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of sustained (up to 9 months) striatal overexpression of glial cell line derived neurotrophic factor (GDNF) on lesioned nigrostriatal dopamine (DA) neurons was studied using a recombinant lentiviral (rLV) vector to deliver GDNF into the striatum 4 weeks prior to the creation of an intrastriatal 6-hydroxydopamine lesion. The results of the amphetamine-induced rotation suggested an initial partial protection followed by a complete recovery, whereas the spontaneous motor behaviors remained impaired. There was a clear protection of the nigral tyrosine hydroxylase (TH)-positive neurons in the rLV-GDNF group compared to rats injected with the control vector encoding green fluorescent protein (GFP) (70 and 20% of the intact side, respectively). However, the striatal TH+ fiber density was equally reduced (to 20% of the intact side) in both groups. Further morphological analyses indicated that the nigrostriatal projections of the DA neurons were indeed preserved in the GDNF group. The axonal projections were visualized using two independent methods: First, retrograde labeling of the nigral cell bodies by intrastriatal Fluoro-Gold injections showed that the majority of rescued cells in the GDNF group had preserved axonal projections to striatum. Second, injections of a recombinant adeno-associated viral vector expressing GFP into the nigra was used to anterogradely fill the DA neurons and their projections with GFP protein. GFP immunostaining clearly demonstrated that the fibers of the nigral DA cells were preserved along the nigrostriatal pathway and innervated large parts of the striatum, but did not express TH at detectable levels. In addition, fiber sprouting was observed in the globus pallidus, entopeduncular nucleus, and substantia nigra, corresponding to areas where GDNF protein was released. The lack of functional recovery in the spontaneous motor behaviors may, at least in part, be explained by this extensive aberrant fiber sprouting in the downstream striatal target nuclei and/or decreased synthesis of dopamine in the striatum.  相似文献   

2.
Both glial cell line-derived neurotrophic factor (GDNF) and its recently discovered congener, neurturin (NTN), have been shown to exert neuroprotective effects on lesioned nigral dopamine (DA) neurons when administered at the level of the substantia nigra. In the present study, we have explored the relative in vivo potency of these two neurotrophic factors using two alternative routes of administration, into the striatum or the lateral ventricle, which may be more relevant in a clinical setting. In rats subjected to an intrastriatal (IS) 6-hydroxydopamine (6-OHDA) lesion, GDNF and NTN were injected every third day for 3 weeks starting on the day after the 6-OHDA injection. GDNF provided almost complete (90-92%) protection of the lesioned nigral DA neurons after both IS and intracerebroventricular (ICV) administration. NTN, by contrast, was only partially effective after IS injection (72% sparing) and totally ineffective after ICV injection. Although the trophic factor injections protected the nigral neurons from lesion-induced cell death, the level of expression of the phenotypic marker, tyrosine hydroxylase (TH), was markedly reduced in the rescued cell bodies. The extent of 6-OHDA-induced DA denervation in the striatum was unaffected by both types of treatment; consistent with this observation, the high rate of amphetamine-induced turning seen in the lesioned control animals was unaltered by either GDNF or NTN treatment. In the GDNF-treated animals, and to a lesser extent also after IS NTN treatment, prominent axonal sprouting was observed within the globus pallidus, at the level where the lesioned nigrostriatal axons are known to end at the time of onset of the neurotrophic factor treatment. The results show that GDNF is highly effective as a neuroprotective and axon growth-stimulating agent in the IS 6-OHDA lesion model after both IS and ICV administration. The lower efficacy of NTN after IS, and particularly ICV, administration may be explained by the poor solubility and diffusion properties at neutral pH.  相似文献   

3.
Here we studied whether glial cell line-derived neurotrophic factor (GDNF), given as a single bolus injection before an intrastriatal 6-hydroxydopamine (6-OHDA) lesion, can protect the nigrostriatal dopamine neurons against the toxin-induced damage and preserve normal motor functions in the lesioned animals. GDNF or vehicle was injected in the striatum (25 microg), substantia nigra (25 microg) or lateral ventricle (50 microg) 6 h before the 6-OHDA lesion (20 microg/3 microL). Motor function was evaluated by the stepping and drug-induced motor asymmetry tests. Lesioned animals given vehicle alone showed a clear ipsilateral-side bias in response to amphetamine (13 turns/min), a moderate contralateral-side bias to apomorphine (4.5 turns/min) and a moderate to severe stepping deficit on the contralateral forepaw (three to four steps, as compared with 11-13 steps on the unimpaired side). Injection of GDNF into the striatum had a significant protective effect both on nigrostriatal function (1-2 turns/min in the rotation tests and seven to eight steps in the stepping test), and the integrity of the nigrostriatal pathway, seen as a protection of both the cell bodies in the substantia nigra and the dopamine innervation in the striatum. Injection of GDNF in the nigra had a protective effect on the nigral cell bodies, but not the striatal innervation, and failed to provide any functional benefit. In contrast, intranigral GDNF had deleterious effects on both the striatal TH-positive fibre density and on drug-induced rotation tests. Intraventricular injection had no effect. We conclude that preservation of normal motor functions in the intrastriatal 6-OHDA lesion model requires protection of striatal terminal innervation, and that this can be achieved by intrastriatal, but not nigral or intraventricular, administration of GDNF.  相似文献   

4.
We used a recombinant lentiviral vector (rLV) for gene delivery of GDNF to the striatum, and assessed its neuroprotective effects in the intrastriatal 6-hydroxydopamine (6-OHDA) lesion model.The level of GDNF expression obtained with the rLV-GDNF vector was dose-related and ranged between 0.9-9.3 ng/mg tissue in the transduced striatum, as determined by ELISA, and 0.2-3.0 ng/mg tissue were detected in the ipsilateral substantia nigra (SN), due to anterograde transport of the GDNF protein. GDNF expression was apparent at 4 days and maintained for > 8 months after injection. Striatal delivery of rLV-GDNF efficiently protected the nigral dopamine (DA) neurons and their projection, against the 6-OHDA lesion (65-77% of intact side). Sprouting of the lesioned axons was observed along the nigrostriatal pathway, precisely corresponding to the areas containing anterogradely transported GDNF.  相似文献   

5.
Parkinson's disease (PD) is characterized by a degeneration of the dopamine (DA) pathway from the substantia nigra (SN) to the basal forebrain. Prior studies in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats have primarily concentrated on the implantation of fetal ventral mesencephalon (VM) into the striatum in attempts to restore DA function in the target. We implanted solid blocks of fetal VM or fetal striatal tissue into the SN to investigate whether intra-nigral grafts would restore motor function in unilaterally 6-OHDA-lesioned rats. Intra-nigral fetal striatal and VM grafts elicited a significant and long-lasting reduction in apomorphine-induced rotational behavior. Lesioned animals with ectopic grafts or sham surgery as well as animals that received intra-nigral grafts of fetal cerebellar cortex showed no recovery of motor symmetry. Subsequent immunohistochemical studies demonstrated that VM grafts, but not cerebellar grafted tissue expressed tyrosine hydroxylase (TH)-positive cell bodies and were associated with the innervation by TH-positive fibers into the lesioned SN as well as adjacent brain areas. Striatal grafts were also associated with the expression of TH-positive cell bodies and fibers extending into the lesioned SN and an induction of TH-immunolabeling in endogenous SN cell bodies. This finding suggests that trophic influences of transplanted fetal striatal tissue can stimulate the re-expression of dopaminergic phenotype in SN neurons following a 6-OHDA lesion. Our data support the hypothesis that a dopaminergic re-innervation of the SN and surrounding tissue by a single solid tissue graft is sufficient to improve motor asymmetry in unilateral 6-OHDA-lesioned rats.  相似文献   

6.
The main strategy in neural transplantation for Parkinson's disease (PD) has been the ectopic placement of dopaminergic grafts in the striatum in order to restore dopaminergic innervation to the host striatum. Although intrastriatal transplants usually improve asymmetric rotational behavior in the 6-hydroxydopamine lesioned rodent model of PD, they are less likely to completely restore the more complex sensorimotor behavioral deficits induced by dopamine loss. Re-establishment of the nigrostriatal circuitry and dopaminergic reinnervation of the substantia nigra may be necessary to promote a more complete restoration of function in the dopamine depleted brain and improve the clinical efficacy of dopaminergic transplants. Recently, we demonstrated the reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants [Mendez et al., J. Neurosci. 16 (1996) 7216–7227.]. Using this strategy, it was found that placing a graft of embryonic ventral mesencephalic tissue in the striatum promoted the growth and guidance of axons from a similar graft placed homotopically in the ventral mesencephalon. Since it is apparent that developing tissue has the ability to promote axonal growth and guidance along the nigrostriatal pathway, the double grafting strategy may contribute to reestablishing host-graft connectivity. The current study provides evidence of reconstruction of the striato-nigro-striatal loop circuitry by simultaneous intrastriatal and intranigral dopaminergic transplants. Injection of the retrograde tracer fluorogold (FG) into the striatum resulted in fluorescent labeled cells within the intranigral grafts. Similarly injection of FG into the nigra resulted in fluorescent labeled cells within the intrastriatal graft and surrounding striatum. Injection of the anterograde tracer horseradish peroxidase (HRP) resulted in the presence of HRP reaction product throughout the target striatum. These results strongly support the re-establishment of nigrostriatal and striatonigral connections between simultaneous intrastriatal and intranigral dopaminergic transplants and suggest reconstruction of the striato-nigro-striatal loop circuitry.  相似文献   

7.
A soluble fraction was extracted from a chemically deafferentiated striatum of adult Wistar rats after unilateral lesioning of the nigrostriatal pathway by 6-hydroxydopamine (6-OHDA) injection. The soluble extract from the lesioned side enhanced the survival of cultured mesencephalic dopamine (DA) neurons of 14-day-old rat embryos as evidenced by quantitative counting of tyrosine hydroxylase-like immunoreactive cells. The neurotrophic activity of this striatal extract for DA neurons was highest 14 days after 6-OHDA injection and became negligible in 28 days. The extract showed no promoting effects on cultured γ-aminobutyric acid (GABA)-containing mesencephalic neurons. These observations indicate that the striatum of adult rats may initiate de novo synthesis of trophic substance(s) for DA neurons but not for GABA neurons when subjected to nigral dopaminergic deafferentiation.  相似文献   

8.
Peripheral nerve "bridges" demonstrate the ability to facilitate axonal growth and regenerate adult and fetal central nervous system tissue. The purpose of this study was to determine if co-grafted peripheral nerve tissue could enhance the ability of fetal dopamine (DA) cell transplants to reinnervate host striatum that had been denervated unilaterally. Male Fisher-344 rats were unilaterally lesioned with 6-hydroxydopamine to eliminate the nigrostriatal DA pathway. A total of 31 rats demonstrated a pattern of rotation indicative of a greater than 98% depletion in DA. Rats were kept as nongrafted controls (n = 6), grafted with sciatic nerve (PN) minces (n = 6), grafted with fetal ventral mesencephalon (VM; n = 10), or co-grafted with VM and PN minces (n = 9). All groups were then tested for changes in apomorphine-induced rotational behavior. The PN control group showed no significant differences in rotation when compared to pregrafting levels and to the lesioned nongrafted group. Both the VM-grafted group and the VM-PN co-grafted group showed significant (P less than 0.01, one-way ANOVA) decreases in rotations beginning at 1.5 weeks postgrafting. There was a progressive decrease in rotations up to 12 weeks, the last test point examined. Interestingly, the co-graft group revealed a significantly greater decrease in rotation (P less than 0.05) than the VM group beginning at 5 weeks and continuing out to the 12-week test point. Histological and immunocytochemical studies showed good survival of both PN and VM grafts. The augmented recovery could not be accounted for by increased DA cell survival or host brain DA reinnervation in the co-graft group. Taken together, these findings suggest that PN tissue enhances the ability of fetal VM grafts to reinnervate host brain.  相似文献   

9.
Experimental and clinical studies of neural transplantation in Parkinson's disease have focused on the placement of fetal dopaminergic grafts not in their ontogenic site (substantia nigra) but in the main nigral target area (striatum). The reason for this is the apparent inability of intranigral nigral grafts to extend axons for long distances reinnervating the ipsilateral striatum. This review presents previous work by our laboratory [I. Mendez, M. Hong, Reconstruction of the striato-nigro-striatal circuitry by simultaneous double dopaminergic grafts: a tracer study using fluorogold and horseradish peroxidase, Brain Res. 778 (1997) 194–205; I. Mendez, D. Sadi, M. Hong., Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants, J. Neurosci. 16 (1996) 7216–7227] using a new transplantation strategy aimed at restoring dopaminergic innervation of the nigra and striatum by simultaneous dopaminergic transplants placed in the substantia nigra and ipsilateral striatum (double grafts) in the 6-hydroxydopamine lesioned adult rat brain. These double grafts achieve not only greater striatal reinnervation than the standard intrastriatal grafts but also produce a faster and more complete behavioural recovery six weeks after transplantation. Injection of the retrograde tracer fluorogold into the striatum and nigra resulted in fluorescent labeled cells within the intranigral graft and the intrastriatal graft and surrounding striatum, respectively suggesting that these double grafts promote at least partial reconstruction of the nigrostriatal dopaminergic pathway. This double graft strategy may have potential implications in clinical neural transplantation for Parkinson's disease.  相似文献   

10.
Fox CM  Gash DM  Smoot MK  Cass WA 《Brain research》2001,896(1-2):56-63
In young adult rats, glial cell line-derived neurotrophic factor (GDNF) can completely protect against 6-hydroxydopamine-induced loss of nigral dopamine neurons when administered 6 h prior to the 6-hydroxydopamine. The present study was undertaken to determine if GDNF would provide similar protective effects in aged rats. Male, Fischer 344 x Brown Norway hybrid rats of 3, 18 and 24 months of age were given an intranigral injection of GDNF or vehicle followed 6 h later with an intranigral injection of 6-hydroxydopamine. Nigral dopamine neuron cell survival, and striatal and nigral dopamine and DOPAC levels, were evaluated 2 weeks after the lesions. In vehicle treated animals cell survival on the lesioned side ranged from 15 to 27%. GDNF promoted significant cell survival in the nigra of all three age groups; however, the percent survival was lowest in the 24-month-old animals (85% at 3 months, 75% at 18 months, 56% at 24 months). Similarly, dopamine levels in the striatum and substantia nigra on the lesioned side remained significantly greater in the GDNF treated animals compared to the vehicle treated animals. As with the cell survival experiment, the protective effects of GDNF on dopamine levels were less in the 24-month-old animals. GDNF pretreatment also protected against 6-hydroxydopamine-induced reductions in striatal DOPAC levels in all age groups. Overall, these results indicate that GDNF can protect nigrostriatal dopamine neurons against the effects of 6-hydroxydopamine in aged as well as young adult rats. However, the extent of protection is less in the aged (24-month-old) animals.  相似文献   

11.
12.
The current transplantation strategy in experimental and clinical Parkinson's disease (PD) has been to place nigral dopaminergic grafts not in their ontogenic site (substantia nigra) but in their target area (striatum). Although intrastriatal dopaminergic grafts are capable of reinnervating the striatum, they fail to reinnervate the nigra, which may be an important factor limiting the efficacy of fetal tissue transplantation in parkinsonian patients. We have previously shown that simultaneous intrastriatal and intranigral dopaminergic grafts (double grafts) may provide a more complete restoration of the nigrostriatal circuitry (Mendez et al. [1996] J Neurosci 16:7216-7227; Mendez and Hong [1997] Brain Res 778:194-205). In the present study, we investigated the contribution of the intranigral graft to functional recovery in double-grafted hemiparkinsonian rats. Twenty Wistar rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway were divided into two groups and received either double grafts (n = 10) or intrastriatal grafts alone (n = 10). Following transplantation, both intrastriatally and double-grafted animals had a significant decrease in rotational behavior. However, only animals with double grafts exhibited a significant increase in contralateral adjusting step performance. The intranigral graft was subsequently lesioned by a second 6-OHDA injection. Following the second lesion, animals with double grafts exhibited a significant reversal of rotational behavior and a 51% reduction in contralateral adjusting step performance. The reversal in functional recovery correlated with a significant loss of intranigral grafted neurons. These results suggest that the intranigral graft has an important role in the functional recovery of double-grafted animals. Restoration of dopaminergic innervation to both the nigra and the striatum may be crucial for optimizing graft efficacy and may be a superior strategy in neural transplantation for PD.  相似文献   

13.
Harvey BK  Mark A  Chou J  Chen GJ  Hoffer BJ  Wang Y 《Brain research》2004,1022(1-2):88-95
Previous studies have demonstrated that pretreatment with bone morphogenetic protein-7 (BMP7) reduces ischemic neuronal injury in vivo. Moreover, exogenous application of BMP7 increases both the number of tyrosine hydroxylase (+) cells and dopamine (DA) uptake in rat mesencephalic cell cultures. The purpose of this study was to investigate the in vivo effects of BMP7 on 6-hydroxydopamine (6-OHDA) induced lesioning of midbrain DA neurons. Adult Fischer 344 rats were anesthetized and injected with BMP7 or vehicle into the left substantia nigra, followed by local administration of 9 microg of 6-OHDA into the left medial forebrain bundle. The lesioned animals that received BMP7 pretreatment, as compared to vehicle/6-OHDA controls, had a significant reduction in methamphetamine-induced rotation 1 month after the surgery. BMP7-pretreatment partially preserved KCl-induced dopamine release in the lesioned striatum and significantly increased TH immunoreactivity in the lesioned nigra and striatum. In summary, our data suggest that BMP7 has neuroprotective and/or neuroreparative effects against 6-OHDA lesioning of the nigrostriatal DA pathway in an animal model of Parkinson's disease (PD).  相似文献   

14.
Exogenous application of transforming growth factors-beta (TGF beta) family proteins, including glial cell line-derived neurotrophic factor (GDNF), neurturin, activin, and bone morphogenetic proteins, has been shown to protect neurons in many models of neurological disorders. Finding a tissue source containing a variety of these proteins may promote optimal beneficial effects for treatment of neurodegenerative diseases. Because fetal kidneys express many TGF beta trophic factors, we transplanted these tissues directly into the substantia nigra after a unilateral 6-hydroxydopamine lesion. We found that animals that received fetal kidney tissue grafts exhibited (1) significantly reduced hemiparkinsonian asymmetrical behaviors, (2) a near normal tyrosine hydroxylase immunoreactivity in the lesioned nigra and striatum, (3) a preservation of K(+)-induced dopamine release in the lesioned striatum, and (4) high levels of GDNF protein within the grafts. In contrast, lesioned animals that received grafts of adult kidney tissues displayed significant behavioral deficits, dopaminergic depletion, reduced K(+)-mediated striatal dopamine release, and low levels of GDNF protein within the grafts. The present study suggests that fetal kidney tissue grafts can protect the nigrostriatal dopaminergic system against a neurotoxin-induced parkinsonism, possibly through the synergistic release of GDNF and several other neurotrophic factors.  相似文献   

15.
The present study examined the role of graft placement and behavioural task complexity in determining the functional efficacy of intrastriatal grafts of dopamine-rich fetal ventral mesencephalon (VM) placed in the dopamine (DA) depleted striatum. The functional effects of two different striatal placements of VM grafts were evaluated using tests of drug-induced motor asymmetry, simple sensorimotor orienting response, and a more complex sensorimotor integrative task (disengage behaviour), in which the rat has to perform the orienting response while in the act of eating. Rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal DA pathway, received either implants of dissociated fetal VM in the central or ventrolateral portions of the denervated striatum. Nongrafted lesioned rats served as controls. Nine weeks after grafting, the rats were tested on separate days for disengage behaviour, sensorimotor orientation, and amphetamine-induced rotational behaviour. Consistent with previous findings, the two graft placements had differential effects on drug-induced motor asymmetry and sensorimotor responses: the centrally placed VM grafts reversed amphetamine-induced rotational asymmetry but had little effect on the sensorimotor deficit, whereas the ventrolaterally placed grafts reversed the sensorimotor orientation deficits without any effect on the drug-induced rotation. In contrast, fetal VM grafts, regardless of their placement, did not ameliorate the observed deficits in disengage behaviour; that is the grafted rats that had recovered their sensorimotor response in the absence of food were unable to perform the same orienting response while eating. These results provide evidence that functional intrastriatal VM grafts which are capable of restoring sensorimotor responses or motor asymmetry fail to affect lesion-induced deficits in a task that requires more complex sensorimotor integration. It is suggested that the degree of anatomical integration of the grafted DA neurons into the host circuitry will determine the efficacy of the grafts to influence more complex sensorimotor integrative deficits in the DA lesion model.  相似文献   

16.
Rats with a unilateral transplant of embryonic substantia nigra, placed in a cortical cavity overlying the caudate-putamen, were compared with control animals on a range of behavioral tests following bilateral 6-OHDA lesions of the ascending dopaminergic nigrostriatal pathway. Tests designed to reveal behavioural asymmetry--such as spontaneous, tail-pinch and amphetamine-induced rotation, sensorimotor orientation, and side preference in a T-maze--revealed that the rats with bilateral 6-OHDA lesions and a unilateral transplant are similar to unilaterally lesioned animals with one intact nigrostriatal pathway. Both transplanted and bilaterally lesioned control rats became spontaneously akinetic after the second 6-OHDA lesion. This akinesia could be reversed by a low dose of amphetamine (0.5 mg/kg) in the transplanted but not in the non-transplanted control rats. The attenuated effects of apomorphine and L-DOPA on activity and rotation suggest that the nigral transplant produced a partial reversal of receptor supersensitivity following the 6-OHDA lesion on the same side as the transplant. However, other effects of the bilateral 6-OHDA lesion, including the development of aphagia, adipsia and akinesia, were not reversed by the presence of the transplant. The transplants were shown by fluorescence histochemistry to have densely reinnervated the dorsal parts of the denervated caudateputamen on the side ipsilateral to the transplant. The results show that intracortical nigral grafts reinnervating parts of the dorsal caudate-putamen can reverse some, but not all, functional impairments associated with bilateral destruction of the nigrostriatal pathway.  相似文献   

17.
Glial cell line-derived neurotrophic factor (GDNF) has prominent survival-promoting effects on lesioned nigrostriatal dopamine neurons, but understanding of the conditions under which functional recovery can be obtained remains to be acquired. We report here the time course of nigrostriatal axon degeneration in the partial lesion model of Parkinson's disease and the morphological and functional effects of sequential administration of GDNF in the substantia nigra (SN) and striatum during the first 5 weeks postlesion. By 1 day postlesion, the nigrostriatal axons had retracted back to the level of the caudal globus pallidus. Over the next 6 days axonal retraction progressed down to the SN, and during the following 7 weeks 74% of tyrosine hydroxylase-positive (TH(+)) and 84% of retrogradely labeled nigral neurons were lost, with a more pronounced loss in the rostral part of the SN. GDNF administration protected 70 and 72% of the nigral TH(+) and retrogradely labeled cell bodies, respectively, but did not prevent the die-back of the lesioned nigrostriatal axons. Although clear signs of sprouting were observed close to the injection site in the striatum as well as in the globus pallidus, the overall DA innervation of the striatum [as measured by [(3)H]-N-[1-(2-benzo(b)thiopenyl)cyclohexyl]piperidine-binding autoradiography] was not improved by the GDNF treatment. Moreover, the lesion-induced deficits in forelimb akinesia and drug-induced rotation were not attenuated. We conclude that functional recovery in the partial lesion model depends not only on preservation of the nigral cell bodies, but more critically on the ability of GDNF to promote significant reinnervation of the denervated striatum.  相似文献   

18.
Previously, we observed that an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF), injected near the rat substantia nigra (SN), protects SN dopaminergic (DA) neuronal soma from 6-hydroxydopamine (6-OHDA)-induced degeneration. In the present study, the effects of Ad GDNF injected into the striatum, the site of DA nerve terminals, were assessed in the same lesion model. So that effects on cell survival could be assessed without relying on DA phenotypic markers, fluorogold (FG) was infused bilaterally into striatae to retrogradely label DA neurons. Ad GDNF or control treatment (Ad mGDNF, encoding a deletion mutant GDNF, Ad lacZ, vehicle, or no injection) was injected unilaterally into the striatum near one FG site. Progressive degeneration of DA neurons was initiated 7 days later by unilateral injection of 6-OHDA at this FG site. At 42 days after 6-OHDA, Ad GDNF prevented the death of 40% of susceptible DA neurons that projected to the lesion site. Ad GDNF prevented the development of behavioral asymmetries which depend on striatal dopamine, including limb use asymmetries during spontaneous movements along vertical surfaces and amphetamine-induced rotation. Both behavioral asymmetries were exhibited by control-treated, lesioned rats. Interestingly, these behavioral protections occurred in the absence of an increase in the density of DA nerve fibers in the striatum of Ad GDNF-treated rats. ELISA measurements of transgene proteins showed that nanogram quantities of GDNF and lacZ transgene were present in the striatum for 7 weeks, and picogram quantities of GDNF in the SN due to retrograde transport of vector and/or transgene protein. These studies demonstrate that Ad GDNF can sustain increased levels of biosynthesized GDNF in the terminal region of DA neurons for at least 7 weeks and that this GDNF slows the degeneration of DA neurons and prevents the appearance of dopamine dependent motor asymmetries in a rat model of Parkinson's disease (PD). GDNF gene therapy targeted to the striatum, a more surgically accessible site than the SN, may be clinically applicable to humans with PD.  相似文献   

19.
C Rosenblad  D Kirik  A Bj?rklund 《Neuroreport》1999,10(8):1783-1787
We investigated here the effect of the novel glial cell line-derived neurotrophic factor (GDNF)-family member neurturin (NTN) on transplanted fetal dopamine (DA) neurons. Three groups of rats with complete unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA system received intrastriatal grafts of embryonic ventral mesencephalic tissue. Following transplantation animals received repeated injections of vehicle or NTN (0.3 microg or 3.0 microg) over three weeks posttransplantation. NTN-treated animals had significantly (1.8-fold) more tyrosine hydroxylase-immunoreactive (TH-IR) neurons. Graft volume, TH-IR cell volume and overall dopaminergic host reinnervation remained unchanged. Amphetamine-induced rotation was rapidly compensated in all grafted rats. We conclude that administration of NTN may be a powerful way to increase survival of transplanted fetal DA neurons.  相似文献   

20.
Previously, we observed that injection of an adenoviral (Ad) vector expressing glial cell line-derived neurotrophic factor (GDNF) into the striatum, but not the substantia nigra (SN), prior to a partial 6-OHDA lesion protects dopaminergic (DA) neuronal function and prevents the development of behavioral impairment in the aged rat. This suggests that striatal injection of AdGDNF maintains nigrostriatal function either by protecting DA terminals or by stimulating axonal sprouting to the denervated striatum. To distinguish between these possible mechanisms, the present study examines the effect of GDNF gene delivery on molecular markers of DA terminals and neuronal sprouting in the aged (20 month) rat brain. AdGDNF or a control vector coding for beta-galactosidase (AdLacZ) was injected unilaterally into either the striatum or the SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the side of vector injection. Two weeks postlesion, rats injected with AdGDNF into either the striatum or the SN exhibited a reduction in the area of striatal denervation and increased binding of the DA transporter ligand [(125)I]IPCIT in the lesioned striatum compared to control animals. Furthermore, injections of AdGDNF into the striatum, but not the SN, increased levels of tyrosine hydroxylase mRNA in lesioned DA neurons in the SN and prevented the development of amphetamine-induced rotational asymmetry. In contrast, the level of T1 alpha-tubulin mRNA, a marker of neuronal sprouting, was not increased in lesioned DA neurons in the SN following injection of AdGDNF either into the striatum or into the SN. These results suggest that GDNF gene delivery prior to a partial lesion ameliorates damage caused by 6-OHDA in aged rats by inhibiting the degeneration of DA terminals rather than by inducing sprouting of nigrostriatal axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号