首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To compare blood glucose control when using insulin glargine twice daily at breakfast- and dinner-times with insulin glargine once daily at dinner time, in unselected people with Type 1 diabetes using insulin aspart at meal-times. METHODS: In this 8-week, two-way, cross-over study, 20 people with Type 1 diabetes were randomized to insulin glargine injection once daily at dinner-time or twice daily at breakfast- and dinner-times, both plus meal-time insulin aspart. Each 4-week treatment period concluded with a 24-h inpatient metabolic profile. RESULTS: Insulin doses, HbA1c, fructosamine concentration and pre-breakfast self-monitored blood glucose (SMBG) concentration did not differ between treatment periods. SMBG concentrations after breakfast, after lunch and before dinner were lower with twice-daily compared with once-daily dinner-time glargine [9.3 +/- 0.5 (+/- se) vs. 6.7 +/- 0.5 mmol/l, P = 0.003; 10.2 +/- 0.9 vs. 7.0 +/- 0.9 mmol/l, P = 0.024; 9.6 +/- 0.5 vs. 6.6 +/- 0.5 mmol/l, P = 0.001]. Mean 24-h SMBG concentration was lower with twice-daily glargine (7.1 +/- 0.5 vs. 8.8 +/- 0.5 mmol/l, P = 0.031). Within-day variability of SMBG concentration was lower with twice-daily glargine (sd 3.2 +/- 0.2 vs. 4.0 +/- 0.3 mmol/l, P = 0.044). Plasma free insulin concentration was higher in the afternoon with twice-daily glargine (21.9 +/- 1.4 vs. 16.1 +/- 1.3 mU/l, P = 0.009), but lower overnight (12.1 +/- 1.7 vs. 17.8 +/- 1.7 mU/l, P = 0.030), compared with once-daily injection. Plasma glucose concentration overnight was higher with twice-daily compared with once-daily glargine (mean 9.0 +/- 0.4 vs. 6.6 +/- 0.4 mmol/l, P = 0.001). CONCLUSIONS: Blood glucose concentration rises in the late afternoon in association with falling plasma insulin levels towards the end of the 24-h period after insulin glargine injection in some people with Type 1 diabetes using once-daily glargine at dinner-time plus a rapid-acting insulin analogue at meal-times. This is prevented by twice-daily injection of insulin glargine.  相似文献   

2.
BACKGROUND: Glargine is a long-acting insulin analogue potentially more suitable than NPH insulin in intensive treatment of Type 1 diabetes mellitus (T1 DM), but no study has proven superiority. The aim of this study was to test superiority of glargine on long-term blood glucose (BG) as well as on responses to hypoglycaemia vs. NPH. METHODS: One hundred and twenty-one patients with T1 DM on intensive therapy on four times/day NPH and lispro insulin at each meal, were randomized to either continuation of NPH four times/day (n = 60), or once daily glargine at dinner-time (n = 61) for 1 year. Lispro insulin at meal-time was continued in both groups. In 11 patients from each group, responses to stepped hyperinsulinaemic-hypoglycaemia were measured before and after 1 year's treatment. RESULTS: Mean daily BG was lower with glargine [7.6 +/- 0.11 mmol/l (137 +/- 2 mg/dl)] vs. NPH [8.1 +/- 0.22 mmol/l (146 +/- 4 mg/dl)] (P < 0.05). HbA(1c) at 4 months did not change with NPH, but decreased with glargine (from 7.1 +/- 0.1 to 6.7 +/- 0.1%), and remained lower than NPH at 12 months (6.6 +/- 0.1%, P < 0.05 vs. NPH). Frequency of mild hypoglycaemia [self-assisted episodes, blood glucose < or = 4.0 mmol/l (72 mg/dl)] was lower with glargine vs. NPH (7.2 +/- 0.5 and 13.2 +/- 0.6 episodes/patient-month, P < 0.05). After 1 year, NPH treatment resulted in no change of responses to hypoglycaemia, whereas with glargine plasma glucose, thresholds and maximal responses of plasma adrenaline and symptoms to hypoglycaemia improved (P < 0.05). CONCLUSIONS: The simpler glargine regimen decreases the percentage of HbA(1c) and frequency of hypoglycaemia and improves responses to hypoglycaemia more than NPH. Thus, glargine appears more suitable than NPH as basal insulin for intensive treatment of T1 DM.  相似文献   

3.
AIMS: To compare blood glucose control using insulin glargine + insulin lispro with that on NPH insulin + unmodified human insulin in adults with Type 1 diabetes managed with a multiple injection regimen. METHODS: In this 32-week, five-centre, two-way cross-over study, people with Type 1 diabetes (n = 56, baseline HbA1c 8.0 +/- 0.8%) were randomized to evening insulin glargine + mealtime insulin lispro or to NPH insulin (once- or twice-daily) + mealtime unmodified human insulin. Each 16-week period concluded with a 24-h inpatient plasma glucose profile. RESULTS: HbA1c was lower with glargine + lispro than with NPH + human insulin [7.5 vs. 8.0%, difference -0.5 (95% CI -0.7, -0.3) %, P < 0.001]. This was confirmed by an 8% lower 24-h plasma glucose area under the curve (AUC) (187 vs. 203 mmol l(-1) h(-1), P = 0.037), a 24% reduction in plasma glucose AUC > 7.0 mmol/l1 (47 vs. 62 mmol l(-1) h(-1), P = 0.017) and a 15% lower post-prandial plasma glucose AUC (75 vs. 88 mmol l(-1) h(-1), P = 0.002). There was no reduction in night-time plasma glucose AUC or increase in plasma glucose area < 3.5 mmol/l. Monthly rate of nocturnal hypoglycaemia was reduced by 44% with glargine + lispro (0.66 vs. 1.18 episodes/month, P < 0.001). CONCLUSIONS: Compared with NPH insulin + unmodified human insulin, the combination of insulin glargine with a rapid-acting insulin analogue as multiple-injection therapy for Type 1 diabetes improves overall glycaemic control as assessed by HbA1c and 24-h plasma glucose monitoring to a clinically significant degree, together with a reduction in nocturnal hypoglycaemia.  相似文献   

4.
PURPOSE: To compare the effects of prandial insulin therapy focusing on postprandial glucose control vs. basal insulin therapy focusing on fasting glucose control in patients with type 2 diabetes. METHODS: This was an open-label, randomized, parallel, three-arm multicenter trial in patients with type 2 diabetes starting insulin treatment. Patients (n=159) were randomly assigned to 24-week treatment with 3x daily insulin lispro, 3x daily lispro mid mixture (MidMix; 50% lispro, 50% protaminated lispro), or 1x daily insulin glargine; oral antihyperglycemic agents were discontinued. Primary end point was the postprandial glucose excursion 2 h after breakfast at the end of study. Secondary outcomes included HbA1c, self-monitored blood glucose profiles, hypoglycemic episodes, body weight, and patient satisfaction. RESULTS: At the end of study, glucose excursions 2 h after breakfast were significantly lower with lispro and MidMix than with glargine (P<.001 for each vs. glargine): lispro, -0.6+/-2.0 mmol/l; MidMix, +0.8+/-2.4 mmol/l; glargine, +2.5+/-2.4 mmol/l. Fasting glucose decreases were significantly greater with glargine (-2.6+/-2.4 mmol/l) than with lispro or MidMix (-0.9+/-2.2 mmol/l; +0.9+/-1.8 mmol/l). Nevertheless, HbA1c decreased by 1.1% (lispro) and 1.2% (MidMix), vs. 0.3% with glargine. Hypoglycemic episodes were rare with 1-1.5 self-reported episodes per 100 patient-days. CONCLUSIONS: In patients with type 2 diabetes starting insulin, 3x daily prandial treatment with a rapid-acting analog focusing on postprandial glucose values enabled better control of postprandial and circadian blood glucose profiles than once-daily glargine, in spite suboptimal fasting glucose levels, which targets fasting glucose values. These results support studies suggesting that control of postprandial hyperglycemia plays a key role in achieving HbA1c targets.  相似文献   

5.
AIM: The aim of this crossover trial was to evaluate the potential of partial substitution of basal insulin with glargine, administered once daily in the morning, to protect against nocturnal ketosis after postprandial interruption of continuous subcutaneous insulin infusion (CSII). METHODS: Seven patients with type 1 diabetes received 4 weeks of treatment with insulin lispro, administered by CSII, and 4 weeks of treatment with CSII and a partial basal replacement dose of insulin glargine administered in the morning. On day 28 of each treatment phase, patients were admitted to the research unit where dinner was served and their usual dinner insulin bolus dose given, after which CSII was discontinued at 7 pm. Plasma (p) beta-hydroxybutyrate and p glucose were measured every hour for 12 h thereafter. RESULTS: Plasma beta-hydroxybutyrate at 7 pm was 0.16+/-0.05 and 0.13+/-0.07 mmol/l with and without glargine, respectively, and increased to 0.17+/-0.10 and 0.60+/-0.3 mmol/l within 6 h (P=0.02). Plasma glucose increased without glargine, from 8.6+/-2.9 to 21.1+/-3.0 mmol/l (P=0.003), but did not rise significantly following glargine (13.6+/-4.7 vs. 12.6+/-5.6 mmol/l; P=0.65). CONCLUSIONS: Partial replacement with a morning dose of insulin glargine protects against the development of ketosis for as much as 12 h after postprandial interruption of CSII. This treatment strategy could, therefore, be useful for patients who are prone to ketosis but, for other reasons, are deemed suitable for CSII.  相似文献   

6.
AIM: To compare insulin lispro mixture (25% insulin lispro and 75% NPL; Mix 25/75) twice-daily plus oral glucose-lowering medications (metformin and/or sulphonylurea) with once-daily insulin glargine plus oral agents with respect to postprandial glycaemic control and other glucose and lipid parameters in patients with Type 2 diabetes inadequately controlled with insulin and/or oral glucose-lowering agents. METHODS: This was a randomized, open-label, crossover study. Prestudy oral agents were continued and patients not already on oral agents were treated with metformin. Mix 25/75 and insulin glargine were adjusted over 3 months to attain premeal plasma glucose (PG) < 6.0 mmol/l and were then given during a 24-h in-patient test meal period with frequent PG, serum triglyceride (TG) and free fatty acid (FFA) measurements. RESULTS: Twenty patients (10 F/10 M; mean +/-sd age 54.0 +/- 10.7 years, body mass index 37.0 +/- 8.6 kg/m2, HbA1c 8.4 +/- 1.01%) participated. Mean doses were 23 U before the morning and 37 U before the evening meal for Mix 25/75 and 44 U for insulin glargine. The combined 2-h morning and evening meal postprandial plasma glucose (PPG) was not different between groups (9.2 +/- 2.04 vs. 9.9 +/- 1.66 mmol/l, P = 0.161). Mix 25/75 was associated with a lower mean 2-h PPG for all meals combined (9.0 +/- 1.88 vs. 9.9 +/- 1.80 mmol/l, P < 0.05) and lower mean 24-h PG (6.7 +/- 1.00 vs. 7.5 +/- 1.32 mmol/l, P < 0.01). Eight patients experienced mild hypoglycaemia (PG < 3.5 mmol/l) with Mix 25/75 and 3 with insulin glargine. The endpoint HbA1c was lower with Mix 25/75 (6.9 +/- 0.52% vs. 7.3 +/- 0.81%, P < 0.05). CONCLUSIONS: In a 24-h test-meal setting in 20 patients, Mix 25/75 insulin plus oral glucose-lowering agents was associated with lower mean PPG and 24-h PG, more mild hypoglycaemia and similar TG, FFA and fasting PG concentrations. HbA1c was lower with Mix 75/25 plus oral agents, although it may not have reached steady state due to ongoing dose adjustment.  相似文献   

7.
AIMS: To compare the glycaemic control of an insulin lispro mixture (25% insulin lispro and 75% NPL) twice daily in combination with metformin to that of once-daily insulin glargine plus metformin in patients with Type 2 diabetes inadequately controlled with intermediate insulin, or insulin plus oral agent(s) combination therapy. RESEARCH DESIGN AND METHODS: Ninety-seven patients were randomized in a multicentre, open-label, 32-week crossover study. Primary variables evaluated: haemoglobin A1c (A1c), 2-h post-prandial blood glucose (BG), hypoglycaemia rate (episodes/patient/30 days), incidence (% patients experiencing > or = 1 episode) of overall and nocturnal hypoglycaemia. RESULTS: At endpoint, A1c was lower with the insulin lispro mixture plus metformin compared with glargine plus metformin (7.54% +/- 0.87% vs. 8.14% +/- 1.03%, P < 0.001). Change in A1c from baseline to endpoint was greater with the insulin lispro mixture plus metformin (-1.00% vs. -0.42%; P < 0.001). Two-hour post-prandial BG was lower after morning, midday, and evening meals (P < 0.001) during treatment with the insulin lispro mixture plus metformin. The fasting BG values were lower with glargine plus metformin (P = 0.007). Despite lower BG at 03.00 hours (P < 0.01), patients treated with the insulin lispro mixture plus metformin had a lower rate of nocturnal hypoglycaemia (0.14 +/- 0.49 vs. 0.34 +/- 0.85 episodes/patient/30 days; P = 0.002), although the overall hypoglycaemia rate was not different between treatments (0.61 +/- 1.41 vs. 0.44 +/- 1.07 episodes/patient/30 days; P = 0.477). CONCLUSION: In patients with Type 2 diabetes and inadequate glucose control while on insulin or insulin and oral agent(s) combination therapy, treatment with a twice-daily insulin lispro mixture plus metformin, which targets both post-prandial and pre-meal BG, provided clinically significant improvements in A1c, significantly reduced post-prandial BG after each meal, and reduced nocturnal hypoglycaemia as compared with once-daily glargine plus metformin, a treatment that targets fasting BG.  相似文献   

8.
OBJECTIVE: To determine the effect of adding nateglinide to therapy with insulin glargine in adults with Type 2 diabetes previously treated with insulin and with poor blood glucose control. RESEARCH DESIGN AND METHODS: In this 16-week, double-blind, placebo-controlled study, people with Type 2 diabetes [n = 55, HbA(1c) 8.2 +/- 1.0 (+/- sd)%, duration of diabetes 12.8 +/- 6.0 years, duration of insulin treatment 6.0 +/- 4.0 years] were transferred to single bedtime injection of insulin glargine for a titration period of 4 weeks, and then randomized to nateglinide or matching placebo before meals in addition to insulin glargine. Metformin was continued if taken. Doses of insulin and oral medication were titrated to protocol for the treatment period of 12 weeks. RESULTS: Baseline-adjusted self-monitored capillary blood glucose concentration at 12 weeks was significantly lower with nateglinide + insulin glargine compared with placebo + insulin glargine after breakfast [difference -2.3 (95% confidence interval -4.4, -0.2) mmol/l, P = 0.030], before lunch [-2.5 (-4.6, -0.3) mmol/l, P = 0.029], and after lunch [-2.3 (-4.3, -0.4) mmol/l, P = 0.021], but not at other times. Baseline-adjusted HbA(1c) was not lower with nateglinide + insulin glargine as compared with placebo + insulin glargine [7.8 +/- 1.4 vs. 8.3 +/- 1.0%, difference -0.43 (-0.98, 0.12)%]. CONCLUSIONS: Addition of nateglinide before meals to once-daily insulin glargine in people with long-standing diabetes already requiring insulin therapy improves blood glucose control in the early part of the day after breakfast and lunch, but does not provide good control of blood glucose levels overall.  相似文献   

9.
AIM: To compare glycaemic control and symptomatic hypoglycaemia rates with glargine versus neutral protamine Hagedorn (NPH) in poorly controlled type 1 diabetes patients. METHODS: Patients (n = 125) received preprandial insulin lispro and either glargine (n = 62) or NPH (n = 63) at bedtime for 30 weeks in a multicentre, randomized, single-blind (a blinded investigator made titration decisions) study. Basal insulin dosage was titrated to achieve fasting blood glucose (FBG) values < 5.5 mmol/L. RESULTS: Baseline characteristics were similar for the two groups (mean diabetes duration 17.5 +/- 10.1 years) except mean glycated haemoglobin (HbA(1c)), which was lower in the glargine versus NPH group (9.2 +/- 1.1% vs 9.7 +/- 1.3%; P < 0.02). At end-point, mean HbA(1c) was 8.3 versus 9.1% for the glargine versus NPH groups. Adjusted least-squares mean (LSM) change from baseline was -1.04 versus -0.51%, a significant treatment benefit of 0.53% for HbA(1c) in favour of glargine (P < 0.01). Mean baseline FBG were similar for the glargine and NPH groups (11.2 vs 11.4 mmol/L). The means for end-point FBG were 7.9 versus 9.0 mmol/L. Adjusted LSM change from baseline was -3.46 versus -2.34 mmol/L, with a significant difference of 1.12 mmol/L in favour of glargine (P < 0.05). There were similar total numbers of daytime mild, moderate or severe hypoglycaemia episodes in the two treatment arms. However, significantly fewer moderate or severe nocturnal hypoglycaemic episodes were observed in the glargine group (P = 0.04 and P = 0.02). CONCLUSION: Glargine is superior to NPH for improving HbA(1c) and FBG levels during intensive insulin therapy in patients with type 1 diabetes, and is associated with less severe nocturnal hypoglycaemia.  相似文献   

10.
BACKGROUND: To compare insulin glargine with NPH human insulin for basal insulin supply in adults with type 1 diabetes. METHODS: People with type 1 diabetes (n = 585), aged 17-77 years, were randomized to insulin glargine once daily at bedtime or NPH insulin either once- (at bedtime) or twice-daily (in the morning and at bedtime) according to their prior treatment regimen and followed for 28 weeks in an open-label, multicentre study. Both groups continued with pre-meal unmodified human insulin. RESULTS: There was no significant difference between the two insulins in change in glycated haemoglobin from baseline to endpoint (insulin glargine 0.21 +/- 0.05% (mean +/- standard error), NPH insulin 0.10 +/- 0.05%). At endpoint, self-monitored fasting blood glucose (FBG) had decreased similarly in each group (insulin glargine -1.17 +/- 0.12 mmol/L, NPH insulin -0.89 +/- 0.12 mmol/L; p = 0.07). However, people on >1 basal insulin injection per day prior to the study had a clinically relevant decrease in FBG on insulin glargine versus NPH insulin (insulin glargine -1.38 +/- 0.15 mmol/L, NPH insulin -0.72 +/- 0.15 mmol/L; p < 0.01). No significant differences in the number of people reporting >or=1 hypoglycaemic episode were found between the two groups, including severe and nocturnal hypoglycaemia. Insulin glargine was well tolerated, with a similar rate of local injection and systemic adverse events versus NPH insulin. CONCLUSIONS: A single, bedtime, subcutaneous dose of insulin glargine provided a level of glycaemic control at least as effective as NPH insulin, without an increased risk of hypoglycaemia.  相似文献   

11.
AIMS: Insulin glargine is a long-acting insulin analogue that is metabolically active for at least 24 h. We investigated the multiple-dose pharmacokinetic properties of insulin glargine to determine whether daily injections lead to the accumulation of circulating insulin levels and a corresponding decrease in blood glucose levels in patients with Type 1 diabetes. METHODS: Fifteen patients using preprandial insulin lispro (mean age 36 +/- 9 years, body mass index 24.6 +/- 2.2 kg/m(2)) completed the study. Each patient's optimal insulin glargine dose was determined during a dose-finding phase. After a washout period, patients were treated over 12 days with a constant daily dose of insulin glargine injected in the abdominal subcutaneous adipose tissue at 22:00 h, and with preprandial insulin lispro. Free serum insulin (FSI) and blood glucose concentrations were assessed hourly after the first, fourth, and eleventh injection, after which patients fasted for 24 h and did not use any other insulin preparation. RESULTS: There were no changes in daily insulin doses during the dose-finding phase (insulin glargine: initial dose 24 +/- 6 IU, mean change 0 +/- 3 IU; insulin lispro: 18 +/- 9 IU, 0 +/- 7 IU). The time course of FSI was comparable on the three pharmacokinetic study days. Notably, the trough FSI at the end of the sampling periods was almost identical (day 1, 79 +/- 56 pmol/l, day 4, 77 +/- 56 pmol/l, day 11, 86 +/- 60 pmol/l). No changes occurred in any of the pharmacokinetic parameters studied. CONCLUSIONS: There is no evidence that insulin glargine accumulates after multiple injections over 12 days. These results indicate that the predetermined dose of insulin glargine will not need to be reduced after commencing treatment because of a risk of accumulation.  相似文献   

12.
目的 比较谷赖胰岛素和赖脯胰岛素联合甘精胰岛素对糖尿病的有效性、安全性.方法 本研究为多中心、随机、对照研究,包括4周的导人期和12周的治疗期.2007年2月至2008年6月共人选糖尿病患者484例(1型34例,2型450例),患者糖化血红蛋白(HbA1c)为6.5%~11.0%,之前已接受连续3个月的胰岛素治疗.按3:1随机给予谷赖胰岛素(363例)或赖脯胰岛素(121例)每日3次联合甘精胰岛素每日1次治疗,比较两组治疗12周后HbA1c、血糖变化及低血糖发生情况和治疗满意度.组间数据比较采用ANOVA方法.结果 治疗12周后,谷赖胰岛素和赖脯胰岛素组HbA1c分别由8.7%±1.2%降至7.9%±1.0%及由8.8%±1.2%降至7.9%±1.0%(组内治疗前后比较,t=- 12.55、-8.88,均P<0.05).两组空腹血糖(FPG)分别由(8.6±2.8)mmol/L降至(7.7±2.5)mmol/L及由(8.6±2.5) mmol/L降至(7.8±2.2)mmol/L(组内治疗前后比较,t=-6.55、-2.98,均P<0.05).谷赖胰岛素组标准餐后2h血糖(2 h PPG)由(10.6±3.8) mmol/L降至( 10.2±3.7) mmol/L(t=-2.07,P<0.05);赖脯胰岛素组2 h PPG治疗前后差异无统计学意义[由( 10.9±4.0)mmol/L降至(10.4±3.5) mmol/L,t=-1.37,P>0.05].治疗12周期间,谷赖胰岛素组和赖脯胰岛素组低血糖事件发生率分别为33.9% (123/363)和34.7% (42/121).治疗前后谷赖胰岛素组和赖脯胰岛素组治疗满意度总评分分别由29±5升至31±5及由29±5升至31±4(组内治疗前后比较,t =6.81、4.21,均P<0.05).结论 谷赖胰岛素和赖脯胰岛素联合甘精胰岛素治疗糖尿病的临床疗效、安全性及治疗满意度相似.  相似文献   

13.
BACKGROUND AND AIM: While lispro insulin has been reported to lower postprandial blood glucose concentrations, less consistent effects have been shown for glycosylated hemoglobin (HbA1c) levels. Aim of this study was to determine whether pre-meal association of NPH, an intermediate-acting insulin, with lispro improves overall glycemic control in type 1 diabetic patients. METHODS AND RESULTS: Eighty-five type 1 diabetic patients were studied in a multicenter randomized comparative (human regular vs lispro insulin) crossover (3-month) study in which NPH insulin was given as a dinner or bedtime injection and at breakfast and lunch if necessary. The number of injections was kept constant: 42% and 58% of patients injected insulin 3 and 4 times per day, respectively. Fasting and preprandial blood glucose levels were similar, while postprandial levels improved after lispro compared to human regular insulin (breakfast: 8.28 +/- 2.39 vs 9.28 +/- 2.72 mmol/l; lunch: 8.33 +/- 2.67 vs 9.06 +/- 2.67 mmol/l, dinner: 8.06 +/- 2.72 vs 9.28 +/- 2.44 mmol/l, ANOVA: p = 0.003). HbA1c also improved after lispro: 8.1 +/- 0.9 vs 8.3 +/- 0.8%, p < 0.05. The rate of hypoglycemia was similar. Patients showed better acceptance of lispro treatment (p < 0.001). CONCLUSIONS: Lispro improves overall blood glucose control in type 1 diabetic patients without increasing the incidence of hypoglycemia. This can be achieved by an optimal combination of lispro insulin with NPH whenever the time intervals between meals are too long.  相似文献   

14.
AIMS: Administration of bolus insulin after eating may be a useful therapeutic option for some patients. This 6-month, crossover study compared metabolic effects of routine use of preprandial vs. postprandial injection of bolus insulin lispro. METHODS: Thirty-one patients with Type 1 diabetes injected insulin lispro either preprandially or postprandially for a 3-month period followed by the alternate regimen for a further 3 months. HbA1c, fructosamine and eight-point self-determined blood glucose profiles were measured and analysed using an anova model appropriate for a crossover design. RESULTS: Mean HbA1c decreased slightly from baseline with preprandial (-0.15 +/- 0.41%) and increased slightly with postprandial (0.11 +/- 0.48%) insulin lispro so that there was a significant (P = 0.008) difference between treatments in final HbA1c level. Mean fructosamine also decreased slightly with preprandial (-15 +/- 31 micro mol/l) but was almost unchanged (1 +/- 39 micro mol/l) with postprandial insulin lispro. Overall daily blood glucose was not different (P = 0.312) for preprandial compared with postprandial administration. However, mean preprandial glucose was lower (7.5 +/- 2.01 vs. 6.6 +/- 1.22 mmol/l; P = 0.026), whereas mean postprandial glucose was higher (7.7 +/- 1.8 vs. 8.7 +/- 2.1 mmol/l; P = 0.031) with postprandial insulin lispro administration. Mean blood glucose excursions were higher with postprandial compared with preprandial insulin lispro, indicating greater daily fluctuations. No difference in incidence of hypoglycaemia was observed with the two treatment regimens. CONCLUSIONS: Postprandial insulin lispro administration appeared to be an acceptable treatment regimen and may be of benefit in certain situations. However, the benefits of postprandial administration may have to be balanced against poorer glycaemic control with continuous long-term use.  相似文献   

15.
To evaluate the superiority of insulin glargine as basal insulin replacement by continuous glucose monitoring system (CGMS). Twenty-four patients with type 2 diabetes mellitus (T2DM) whose blood glucose was not well controlled with sulphanylureas were enrolled. At first, they were treated with extended-release glipizide (glucotrol XL) 5mg/d before breakfast for 2 weeks, then randomized to combination treatment with glargine (16 patients) or NPH (8 patients) and treated for 12 weeks. CGMS were carried in the second week after treatment with glucotrol XL, and in the 12th week after combination treatment. The data of CGMS showed: (1) When FPG were well controlled in both groups (glargine group versus NPH group: 6.0+/-1.0 mmol/L versus 5.8+/-1.3 mmol/L), the blood glucose level at 3:00 a.m. (5.1+/-0.9 mmol/L versus 4.2+/-0.8 mmol/L) were higher (P<0.05), TPG< or =3.0 mmol/L at night were lower (2.56+/-1.79 versus 5.88+/-1.96), and the rate of nocturnal hypoglycemia (1/16 versus 4/8) were less (P=0.028) in glargine group than those in NPH group. (2) CGMS showed that the daily blood glucose profile excursion were more smoother in glargine group than those in NPH group. In conclusion, it was confirmed with CGMS that compared with traditionally basal insulin replacement with NPH, the combination treatment with glargine injection at bedtime may be predominant for stabilizing the daily blood glucose profile excursion and decreasing the nocturnal hypoglycemia events incidence. So glargine may be a more ideal basal insulin replacement than NPH.  相似文献   

16.
AIM: This study compared the time-action profiles of the novel albumin-bound basal insulin analogue NN344 with those of insulin detemir and insulin glargine in individuals with type 2 diabetes. METHODS: Twenty-seven insulin-treated men with type 2 diabetes [body mass index 30.8 +/- 2.6 kg/m(2) (mean +/- s.d.), haemoglobin A(1c) 7.6 +/- 1.1%] were enrolled in this randomized, double-blind trial and participated in six euglycaemic glucose clamp experiments [target blood glucose (BG) 5 mmol/l] each. Participants received NN344 in three experiments at a dose of 0.8, 1.6 and 2.8 dosing units (DU) (1 DU corresponds to 6 nmol NN344) per kilogram of body weight. In the other three experiments, the participants received 0.4, 0.8 and 1.4 U/kg of either insulin detemir or insulin glargine. The insulin preparations were characterized with regards to their effects on glucose infusion rates (GIRs) (in particular duration of action and within-subject and between-subject variabilities), BG, C-peptide, free fatty acids (FFA), endogenous glucose production (EGP) and peripheral glucose uptake (PGU) over 24 h post-dose. RESULTS: The mean GIR profiles for all three preparations were similar in shape/flatness and showed increasing effect (area under the curve for GIR: AUC-GIR(total)) with increasing dose [low dose: 647 +/- 580, 882 +/- 634, 571 +/- 647 mg/kg (insulin detemir vs. NN344 vs. insulin glargine]; medium dose: 1203 +/- 816, 1720 +/- 1109, 1393 +/- 1203 mg/kg and high dose: 2171 +/- 1344, 3119 +/- 1549, 2952 +/- 2028 mg/kg; p = 0.48]. The duration of action increased with rising doses of all insulin preparations, without major differences between treatments. BG remained below 7 mmol/l in nearly all the experiments. Within-subject variability was lower for the albumin-bound insulin analogues, insulin detemir and NN344, than for insulin glargine (p < 0.0001). Between-subject variability did not differ between treatments, nor did the effects on BG, C-peptide, FFA, EGP or PGU. CONCLUSIONS: In individuals with type 2 diabetes, the time-action profiles and the duration of action of the albumin-bound insulin analogues, insulin detemir and NN344, were comparable with those of insulin glargine, whereas within-subject variability in the metabolic effect was significantly lower. Therefore, insulin detemir and NN344 seem to be as well suited as insulin glargine for once-daily administration in type 2 diabetes. The better predictability may be an important characteristic of the albumin-bound analogues as insulin detemir has already been shown to improve hypoglycaemia.  相似文献   

17.
AIMS: The long duration of action of soluble insulin given in the evening could contribute to the high prevalence of nocturnal hypoglycaemia seen in young children with Type 1 diabetes mellitus (T1DM). We examined whether replacing soluble insulin with insulin lispro reduced this risk in children on a three times daily insulin regimen. METHODS: Open crossover study comparing insulin lispro vs. soluble insulin in 23 (16 boys) prepubertal children (age 7-11 years) with T1DM on three injections/day; long-acting isophane insulin remained identical. At the end of each 4-month treatment arm, an overnight 15-min venous sampled blood glucose profile was performed. RESULTS: Despite similar blood glucose levels pre-evening meal (lispro vs. soluble: mean +/- se 6.5 +/- 1.0 vs. 7.1 +/- 1.1 mmol/l, P = 0.5), post-meal (18.00-22.00 h) blood glucose levels were lower on insulin lispro (area under curve 138 +/- 12 vs. 170 +/- 13 mmol min-1 l-1, P = 0.03). In contrast, in the early night (22.00-04.00 h) the prevalence of low blood glucose levels (< 3.5 mmol/l) was lower on lispro (8% of blood glucose levels) than on soluble insulin (13%, P = 0.01). In the early morning (04.00-07.00 h) mean blood glucose and prevalence of low levels were no different between the two treatment groups, and fasting (07.00 h) blood glucose levels were similar (6.1 +/- 0.8 vs. 6.3 +/- 0.9 mmol/l, P = 0.8). At the end of each treatment arm there were no differences in HbA1c (lispro vs. soluble 8.6% vs. 8.4%, P = 0.3), or in insulin doses (mean, range 0.97, 0.68-1.26 vs. 0.96, 0.53-1.22 U/kg per day, P = 0.2). CONCLUSIONS: The shorter duration of action of insulin lispro given before the evening meal may reduce the prevalence of early nocturnal hypoglycaemia without compromising HbA1c in young children with T1DM.  相似文献   

18.
AIMS: To evaluate the acceptability and efficacy of an injection of insulin lispro, before an afternoon meal. METHODS: The subjects, 43 patients with Type 1 diabetes, 16 boys and 27 girls, aged 12.4 +/- 2.4 years, were randomly assigned to the treatment (n = 20) or the untreated control group (n = 23). The treatment was an injection of insulin lispro immediately before the afternoon meal. The control group had no injection. The treatment and the control group consumed identical types of meals for 2 months. The mean before-dinner blood glucose was measured during the last 2 weeks of the study. RESULTS: Injection of insulin lispro resulted in a significant reduction in the before-dinner blood glucose compared with the untreated control group (10.4 +/- 3.8 mmol/l vs. 14.7 +/- 3.9 mmol/l, respectively). The number of days on which the blood glucose was > 10 mmol/l was reduced by half in the insulin lispro group. The difference in HbA1c between baseline and endpoint differed slightly but significantly between the two groups, in boys. Treated patients ate the meal less frequently (11.4 +/- 3.0 times per 15 days) than the control patients (14.4 +/- 0.6 times per 15 days) and injected themselves with insulin 8.9 +/- 3.6 times per 15 days. The HbA1c increased significantly with the number of meals taken without injection. There was no statistically significant difference in the frequency of hypoglycaemia or changes in weight between the two groups. CONCLUSIONS: We conclude that an injection of insulin lispro before the afternoon meal can effectively lower the before-dinner blood glucose, and in boys also lowers the HbA1c. Patients were satisfied with the lower blood glucose before dinner, and did not find the insulin lispro injection difficult. However, compliance with the protocol procedures decreased during a subsequent 6-month period.  相似文献   

19.
Pharmacokinetic and pharmacodynamic profiles of the rapid-acting insulin analogues lispro and aspart were compared in a randomized, double-blind crossover study of 20 fasting healthy men following a single subcutaneous injection. Either insulin lispro or aspart, 0.05 U/kg-body-weight, was injected subcutaneously and followed by determination of 5-h profiles of plasma glucose, serum C-peptide and insulin concentrations. Lowest glucose concentrations were observed after 50 min in the aspart group (3.2 +/- 0.1 mmol/l versus lispro 3.5 +/- 0.1 mmol/l; p = 0.026) and after 60 min in the lispro group (3.4 +/- 0.1 mmol/l). For blood glucose t min was 59.3 +/- 3.4 min in the aspart and 63.5 +/- 5.3 min in the lispro group (ns). After 40 min a lower C-peptide was determined for aspart (225 +/- 21 pmol/l versus lispro 309 +/- 33 pmol/l; p = 0.031), whereas minimal C-peptide concentrations were reached in both groups after 105 min (lispro 117 +/- 21 pmol/l versus aspart 105 +/- 18 pmol/l). The maximal concentration of insulin was detected in both groups after 40 min (lispro 20.8 +/- 1.1 mU/l versus aspart 24.6 +/- 1.3 mU/l; p = 0.032). For insulin t max was 33.0 +/- 2.6 min in the aspart versus 33.3 +/- 2.6 min in the lispro group (ns). The present results indicate a more rapid absorption of insulin aspart in comparison to insulin lispro. Higher insulin concentrations after subcutaneus injection may be advantageous in meal-related treatment of diabetes.  相似文献   

20.
AIM: The aim of the study was to compare the pharmacokinetics and glucodynamics of insulin lispro and soluble human insulin following intramuscular (i.m.) injection in patients with Type 2 diabetes with secondary failure of sulphonylureas. METHODS: Single 15-U i.m. doses of insulin lispro or soluble human insulin were administered to 16 patients in a two-way, randomized, crossover design. Glucodynamic and pharmacokinetic parameters were determined over 6 h after insulin injection using clamp techniques. RESULTS: Insulin C(max) was significantly higher (971 +/- 217 vs. 659 +/- 141 pmol/l, P < 0.001) and T(max) was significantly shorter (46.9 +/- 27 vs. 94.7 +/- 50.1 min, P = 0.002) with insulin lispro. Glucose infusion rate (GIR) curves showed clear separation 20 min after injection and were significantly greater for insulin lispro during the 40-60, 60-80 and 80-100-minute time intervals. Total glucose infused was only approximately 5% larger with insulin lispro during the 6-h follow-up, due to lower insulinaemia at later time points. The glucose R(max) and TR(max) were not statistically different between insulin treatments. CONCLUSION: This study shows that i.m. injection of insulin lispro is followed by its more rapid absorption, which results in stronger metabolic effect in the first 2 h when compared with soluble human insulin under the same test conditions. Diabet. Med. 18, 562-566 (2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号