首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
In this study we assessed whether osteogenic cells respond in a differential manner to changes in surface roughness depending on their maturation state. Previous studies using MG63 osteoblast-like cells, hypothesized to be at a relatively immature maturation state, showed that proliferation was inhibited and differentiation (osteocalcin production) was stimulated by culture on titanium (Ti) surfaces of increasing roughness. This effect was further enhanced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. In the present study, we examined the response of three additional cell lines at three different maturation states: fetal rat calvarial (FRC) cells (a mixture of multipotent mesenchymal cells, osteoprogenitor cells, and early committed osteoblasts), OCT-1 cells (well-differentiated secretory osteoblast-like cells isolated from calvaria), and MLO-Y4 cells (osteocyte-like cells). Both OCT-1 and MLO-Y4 cells were derived from transgenic mice transformed with the SV40 large T-antigen driven by the osteocalcin promoter. Cells were cultured on Ti disks with three different average surface roughnesses (Ra): PT, 0.5 microm; SLA, 4.1 microm; and TPS, 4.9 microm. When cultures reached confluence on plastic, vehicle or 10(-7) M or 10(-8) M 1,25(OH)2D3 was added for 24 h to all of the cultures. At harvest, cell number, alkaline phosphatase-specific activity, and production of osteocalcin, transforming growth factor beta1 (TGF-beta1) and prostaglandin E2 (PGE2) were measured. Cell behavior was sensitive to surface roughness and depended on the maturation state of the cell line. Fetal rat calvarial (FRC) cell number and alkaline phosphatase-specific activity were decreased, whereas production of osteocalcin, TGF-beta1, and PGE2 were increased with increasing surface roughness. Addition of 1,25(OH)2D3 to the cultures further augmented the effect of roughness for all parameters in a dose-dependent manner; only TGF-beta1 production on plastic and PT was unaffected by 1,25(OH)2D3. OCT-1 cell number and alkaline phosphatase (SLA > TPS) were decreased and production of PGE2, osteocalcin, and TGF-beta1 were increased on SLA and TPS. Response to 1,25(OH)2D3 varied with the parameter being measured. Addition of the hormone to the cultures had no effect on cell number or TGF-beta1 production on any surface, while alkaline phosphatase was stimulated on SLA and TPS; osteocalcin production was increased on all Ti surfaces but not on plastic; and PGE2 was decreased on plastic and PT, but unaffected on SLA and TPS. In MLO-Y4 cultures, cell number was decreased on SLA and TPS; alkaline phosphatase was unaffected by increasing surface roughness; and production of osteocalcin, TGF-beta1, and PGE2 were increased on SLA and TPS. Although 1,25(OH)2D3 had no effect on cell number, alkaline phosphatase, or production of TGF-beta1 or PGE2 on any surface, the production of osteocalcin was stimulated by 1,25(OH)2D3 on SLA and TPS. These results indicate that surface roughness promotes osteogenic differentiation of less mature cells, enhancing their responsiveness to 1,25(OH)2D3. As cells become more mature, they exhibit a reduced sensitivity to their substrate but even the terminally differentiated osteocyte is affected by changes in surface roughness.  相似文献   

2.
Small particles of ultrahigh molecular weight polyethylene stimulate formation of foreign-body granulomas and bone resorption. Bone formation may also be affected by wear debris. To determine if wear debris directly affects osteoblasts, we characterized a commercial preparation of ultrahigh molecular weight polyethylene (GUR4150) particles and examined their effect on MG63 osteoblast-like cells. In aliquots of the culture medium containing ultrahigh molecular weight polyethylene, 79% of the particles were less than 1 μm in diameter, indicating that the cells were exposed to particles of less than 1 μm. MG63 cell response to the particles was measured by assaying cell number. [3H]thymidine incorporation, alkaline phosphatase specific activity, osteocalcin production, [35S]sulfate incorporation, and production of prostaglandin E2 and transforming growth factor-β. Cell number and [3H]thymidine incorporation were increased in a dose-dependent manner. Alkaline phosphatase specific activity, a marker of cell differentiation for the cultures, was significantly decreased, but osteocalcin production was not affected. [35S]sulfate incorporation, a measure of extracellular matrix production, was reduced. Prostaglandin E2 release was increased, but transforming growth factor-β production was decreased in a dose-dependent manner. This shows that ultrahigh molecular weight polyethylene particles affect MG63 proliferation, differentiation, extracellular matrix synthesis, and local factor production. These effects were direct and dose dependent. The findings suggest that ultrahigh molecular weight polyethylene wear debris particles with an average size of approximately 1 μm may inhibit bone formation by inhibiting cell differentiation and reducing transforming growth factor-β production and matrix synthesis. In addition, increases in prostaglandin E2 production may not only affect osteoblasts by an autocrine pathway but may also stimulate the proliferation and activation of cells in the monocytic lineage. These changes favor decreased bone formation and increased bone resorption as occur in osteolysis.  相似文献   

3.
BACKGROUND: Focal osteolysis due to ultra-high molecular weight polyethylene wear debris involves effects on both bone resorption and bone formation. METHODS: The response of MG63 osteoblast-like osteosarcoma cells to ultra-high molecular weight polyethylene wear debris isolated by enzymatic digestion of granulomatous tissue obtained from the sites of failed total hip arthroplasties was examined. Scanning electron microscopy, particle-size analysis, and Fourier transform infrared spectroscopy were used to characterize the number, morphology, size distribution, and chemical composition of the particles. Cell response was assessed by adding particles at varying dilutions to confluent cultures and measuring changes in cell proliferation (number of cells and [3H]-thymidine incorporation), osteoblast function (alkaline-phosphatase-specific activity and osteocalcin production), matrix production (collagen production and proteoglycan sulfation), and local cytokine production (prostaglandin-E2 production). RESULTS: The mean size of the particles was 0.60 micrometer, and 95 percent of the particles had a size of less than 1.5 micrometers. The number of particles per gram of tissue ranged from 1.39 to 3.38x10(9). Three of the four batches of particles were endotoxin-free. Exposure of the cells to particles of wear debris significantly increased the number of cells (p<0.05) and the [3H]-thymidine incorporation (p<0.05) in a dose-dependent manner. In contrast, the addition of particles decreased alkaline-phosphatase-specific activity and osteocalcin production. Collagen production and proteoglycan sulfation were also decreased, while prostaglandin-E2 synthesis was increased by the addition of particles. CONCLUSIONS: Ultra-high molecular weight polyethylene particles isolated from human tissue stimulated osteoblast proliferation and prostaglandin-E2 production and inhibited cell differentiation and matrix production. These results indicate that particles of wear debris inhibit cell functions associated with bone formation and that osteoblasts may produce factors in response to wear debris that influence neighboring cells, such as osteoclasts and macrophages. CLINICAL RELEVANCE: Particles of wear debris, especially ultra-high molecular weight polyethylene, have been implicated in the loosening of implants and the development of osteolysis. The present study shows that particles of ultra-high molecular weight polyethylene isolated from human tissue inhibit osteoblast functions associated with bone formation. In addition, particles of wear debris induced osteoblasts to secrete factors capable of influencing neighboring cells, such as osteoclasts and macrophages. These results suggest that osteoblasts may play a role in the cascade of events leading to granuloma formation, osteolysis, and failure of orthopaedic implants.  相似文献   

4.
Osteocytes, the predominant cells in bone, are postulated to be responsible for sensing mechanical and electrical stimuli, transducing signals via gap junctions. Osteocytes respond to induced shear by increasing connexin 43 (Cx43) levels, suggesting that they might be sensitive to physical stimuli like low-frequency electromagnetic fields (EMF). Immature osteoblasts exhibit decreased intercellular communication in response to EMF but no change in Cx43. Here, we examined long term effects of pulsed EMF (PEMF) on MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. In MLO-Y4 cell cultures, PEMF for 8 h/day for one, two or four days increased alkaline phosphatase activity but had no effect on cell number or osteocalcin. Transforming growth factor beta-1 (TGF-beta 1) and prostaglandin E(2) were increased, and NO(2-) was altered. PEMFs effect on TGF-beta1 was via a prostaglandin-dependent mechanism involving Cox-1 but not Cox-2. In ROS 17/2.8 cells, PEMF for 24, 48 or 72 h did not affect cell number, osteocalcin mRNA or osteocalcin protein. PEMF reduced Cx43 protein in both cells. Longer exposures decreased Cx43 mRNA. This indicates that cells in the osteoblast lineage, including well-differentiated osteoblast-like ROS 17/2.8 cells and terminally differentiated osteocyte-like MLO-Y4 cells, respond to PEMF with changes in local factor production and reduced Cx43, suggesting decreased gap junctional signaling.  相似文献   

5.
Periprosthetic osteolysis and implant loosening is associated with the presence of ultrahigh molecular weight polyethylene (UHMWPE) wear debris particles. Osteoblast phenotypic expression in vitro is affected by UHMWPE particles, suggesting that bone formation may also be affected by wear debris. Here we tested the hypothesis that the response of osteoblasts to UHMWPE can be modified by changes in UHMWPE particle chemistry. We used four different commercially available preparations of GUR UHMWPE particles to determine if chemical composition (+/- Ca-stearate) or polymer molecular weight (3.1-4.2 million or 5.4-6.5 million g/mol) modulates osteoblast response. Particles were characterized by size distribution, morphology, and number of particles added to the culture medium. They had an average equivalent circle diameter ranging from 0.46-1.26 microm. MG63 cell response was assessed by measuring cell number, cellular and cell layer alkaline phosphatase, and prostaglandin E2 (PGE2) production. There were dose-dependent effects of the particles on cell response. Cell number and PGE, production were increased, while alkaline phosphatase specific activity was decreased. In addition, there was a marked difference between cultures treated with particles containing Ca-stearate and as a function of polymer molecular weight. Particles of higher molecular weight caused a greater stimulation of proliferation and inhibition of alkaline phosphatase than particles of lower molecular weight. The presence of Castearate exerted a more pronounced depression of osteoblast phenotype as well as a significantly greater increase in PGE2 release by the cells. The present study shows that chemical composition and polymer molecular weight of UHMWPE are capable of modulating osteoblast response to particles. The results suggest that osteoblast differentiation is inhibited by UHMWPE particles, whereas cell proliferation and PGE2 production are stimulated. This may have direct effects on osteoblasts and bone formation, but also paracrine effects on cells of the monocytic lineage inducing bone resorption and promoting inflammation which may lead to aseptic loosening. The present results suggest that the cellular events in aseptic loosening may be modulated or even accelerated by changes in the composition of the UHMWPE used to fabricate implants.  相似文献   

6.
Osteopenia is a complicating problem that may occur during and after treatment for childhood malignancy. Clinical studies suggest that chemotherapeutic agents directly affect osteoblasts in vivo. Since combinations of agents are used for treatment, we individually investigated the chemosensitivity of human osteoblast-like cells to 11 of the chemotherapeutic agents used. The relative chemosensitivity of osteoblast-like cells representing different stages of cell differentiation was also examined. Cell numbers were evaluated following culture of an established human osteoblast-like cell line (MG63) for 3 days with clinically relevant concentrations of the chemotherapeutic agents. The chemosensitivity of MG63 cells was compared to that of a human osteoprogenitor cell line (HCC1) and primary osteoblast-like (HOB) cells derived from pediatric bone. Cell numbers were reduced by all agents in all cell types, although there was a varied response between agents at equimolar concentrations. In MG63 cells the lowest concentration of agent significantly reducing cell numbers varied between agents, for example, methotrexate (10(-7) M), vincristine (10(-9) M), and etoposide (10(-7) M) (all P <0.01). The less differentiated osteoblast phenotypes were significantly more chemosensitive at equimolar concentrations of methotrexate, vincristine, asparaginase, and dexamethasone than more differentiated phenotypes (all P <0.01). Furthermore, four agents significantly increased alkaline phosphatase (AP) activity in HOB cells. We conclude that individual chemotherapeutic agents added to osteoblast cell cultures reduce cell numbers, with osteoblast precursor cells being preferentially depleted. These results suggest that most of the agents may contribute to osteopenia in childhood malignancy by direct effects on cell numbers.  相似文献   

7.
Transcriptional regulation of a BMP-6 promoter by estrogen receptor alpha.   总被引:5,自引:0,他引:5  
The effects of 17beta-estradiol (E2) and ICI 182,780 (ICI) on activity of a BMP-6 promoter were compared in osteoblast-like and breast cancer cells transiently transfected with ERalpha. E2 but not ICI stimulated BMP-6 reporter activity in breast cancer cells, whereas the opposite was observed in osteoblast-like cells, associated with lack of AF-2 dependence of the response, and absent intranuclear localization of ERalpha, suggesting the involvement of a distinct ERalpha-dependent response mechanism in osteoblasts. INTRODUCTION: Previous studies suggest that the tissue-selective effect of antiestrogens on bone reflects the ability of these compounds to target certain osteoblast regulatory genes. To explore this hypothesis, we examined whether antiestrogens preferentially stimulate the bone morphogenetic protein 6 (BMP-6) promoter in bone cells, and if so, whether this activity is associated with a distinct estrogen receptor (ER)alpha-dependent response mechanism to that in other cell types. MATERIALS AND METHODS: We compared the effects of 17beta-estradiol (E2) and ICI 182,780 (ICI) on activity of a 4.3-kb BMP-6 reporter construct in osteoblast-like cells (human MG63 and SaOS-2 cells and rat ROS 17/2.8 cells), human MCF-7 and T47-D breast cancer cell lines, and HepG2 hepatoma cells, after transient transfection with ERalpha, ERbeta, and mutant ER constructs. RESULTS: E2, but not ICI, stimulated BMP-6 reporter activity by approximately 100% in MCF-7, T47-D cells, and HepG2 cells when transfected with ERalpha. In contrast, in ERalpha-transfected osteoblast-like cells, an increase in reporter activity of approximately 75% was observed after treatment with ICI but not E2. The response of MG63 cells to ICI and MCF-7 cells to E2 both required ERalpha as opposed to ERbeta and the ERalpha activation function (AF)-1 activation domain. However, whereas the AF-2 domain was also required for E2 to stimulate reporter activity in MCF-7 cells, the response to ICI in MG63 cells was AF-2 independent. In further studies where we compared the intracellular distribution of ERalpha associated with these responses, E2-dependent stimulation of the BMP-6 reporter in MCF-7 cells was associated with intranuclear localization of ERalpha, whereas extranuclear localization was seen in rat osteosarcoma cells (ROS) cells treated with ICI. CONCLUSIONS: Antiestrogens selectively stimulate BMP-6 reporter activity in osteoblast-like cells through a distinct ERalpha-dependent mechanism characterized by independence of the AF-2 domain and extranuclear localization of ERalpha.  相似文献   

8.
MLO-Y4 osteocyte-like cells support osteoclast formation and activation.   总被引:3,自引:0,他引:3  
Osteocytes are terminally differentiated cells of the osteoblast lineage that have become embedded in mineralized matrix and may send signals that regulate bone modeling and remodeling. The hypothesis to be tested in this study is that osteocytes can stimulate and support osteoclast formation and activation. To test this hypothesis, an osteocyte-like cell line called MLO-Y4 and primary murine osteocytes were used in coculture with spleen or marrow cells. MLO-Y4 cells support osteoclast formation in the absence of 1,25-dihydroxyvitamin D3 [1,25(OD)2D3] or any other exogenous osteotropic factor. These cells alone stimulate osteoclast formation to the same extent or greater than adding 1,25(OH)2D3. Coaddition of 1,25(OH)2D3 with MLO-Y4 cells synergistically increased osteoclast formation. Optimal osteoclast formation and pit formation on dentine was observed with 200-1,000 MLO-Y4 cells per 0.75-cm2 well. No osteoclast formation was observed with 2T3, OCT-1, or MC3T3-E1 osteoblast cells (1,000 cells/well). Conditioned media from the MLO-Y4 cells had no effect on osteoclast formation, indicating that cell contact is necessary. Serial digestions of 2-week-old mouse calvaria yielded populations of cells that support osteoclast formation when cocultured with 1,25(OH)2D3 and marrow, but the population that remained in the bone particles supported the greatest number of osteoclasts with or without 1,25(OH)2D3. To examine the mechanism whereby these cells support osteoclast formation, the MLO-Y4 cells were compared with a series of osteoblast and stromal cells for expression of macrophage colony-stimulating factor (M-CSF), RANKL, and osteoprotegerin (OPG). MLO-Y4 cells express and secrete large amounts of M-CSF. MLO-Y4 cells express RANKL on their surface and their dendritic processes. The ratio of RANKL to OPG mRNA is greatest in the MLO-Y4 cells compared with the other cell types. RANK-Fc and OPG-Fc blocked the formation of osteoclasts by MLO-Y4 cells. These studies suggest that both RANKL and OPG may play a role in osteocyte signaling, OPG and M-CSF as soluble factors and RANKL as a surface molecule that is functional in osteocytes or along their exposed dendritic processes.  相似文献   

9.
Pulsed electromagnetic field stimulation has been used to promote the healing of chronic nonunions and fractures with delayed healing, but relatively little is known about its effects on osteogenic cells or the mechanisms involved. The purpose of this study was to examine the response of osteoblast-like cells to a pulsed electromagnetic field signal used clinically and to determine if the signal modulates the production of autocrine factors associated with differentiation. Confluent cultures of MG63 human osteoblast-like cells were placed between Helmholtz coils and exposed to a pulsed electromagnetic signal consisting of a burst of 20 pulses repeating at 15 Hz for 8 hours per day for 1, 2, or 4 days. Controls were cultured under identical conditions, but no signal was applied. Treated and control cultures were alternated between two comparable incubators and, therefore, between active coils; measurement of the temperature of the incubators and the culture medium indicated that application of the signal did not generate heat above the level found in the control incubator or culture medium. The pulsed electromagnetic signal caused a reduction in cell proliferation on the basis of cell number and [3H]thymidine incorporation. Cellular alkaline phosphatase-specific activity increased in the cultures exposed to the signal, with maximum effects at day 1. In contrast, enzyme activity in the cell-layer lysates, which included alkaline phosphatase-enriched extracellular matrix vesicles, continued to increase with the time of exposure to the signal. After 1 and 2 days of exposure, collagen synthesis and osteocalcin production were greater than in the control cultures. Prostaglandin E2 in the treated cultures was significantly reduced at 1 and 2 days, whereas transforming growth factor-beta1 was increased; at 4 days of treatment, however, the levels of both local factors were similar to those in the controls. The results indicate enhanced differentiation as the net effect of pulsed electromagnetic fields on osteoblasts, as evidenced by decreased proliferation and increased alkaline phosphatase-specific activity, osteocalcin synthesis, and collagen production. Pulsed electromagnetic field stimulation appears to promote the production of matrix vesicles on the basis of higher levels of alkaline phosphatase at 4 days in the cell layers than in the isolated cells, commensurate with osteogenic differentiation in response to transforming growth factor-beta1. The results indicate that osteoblasts are sensitive to pulsed electromagnetic field stimulation, which alters cell activity through changes in local factor production.  相似文献   

10.
BACKGROUND: Extracorporeal shockwave therapy (ESWT) has been increasingly applied to treat orthopedic and musculoskeletal pathologies. ESWT involves mechanical perturbations that, as with other physical therapies, can result in mechanical stimuli to a large number of cells, including bone cells. The aim of this study was to evaluate the effects of shock waves on osteoblast-like cells (MG63) when using two different generators of shock waves (electrohydraulic and electromagnetic devices), in terms of cell damage, cell viability, osteogenic phenotype expression, and cytokine production. METHODS: MG63 cells were suspended in 1.5 mL screw-cap cryotubes (1 x 10 cells/mL), containing phosphate buffer solution (PBS), which were maintained at 37 degrees C during all the experimental times. Two levels of energy flux density (EFD) were evaluated for each device: 0.15 to 0.18 mJ/mm2 and 0.40 mJ/mm2. Cells were then cultivated for 72 hours starting from a concentration of 1 x 10 cells/mL, and biological activity and viability were evaluated 24 and 72 hours after treatment. RESULTS: The results obtained demonstrate that the factors most affecting osteoblast activity involve both the device and the level of EFD selected, and they must be considered all together. CONCLUSIONS: The use of the electromagnetic device and a level of EFD lower than 0.40 mJ/mm2 would appear to induce fewer immediate cytodestructive effects and better stimulate subsequent proliferation and the synthetic activity of MG63.  相似文献   

11.
Aseptic loosening of implant components is a common and important complication of both cemented and uncemented prosthetic joint replacements. Wear particles derived from organic polymer and metal implant biomaterials are commonly found within macrophages and macrophage polykaryons in the fibrous membrane between loose implant components and the host bone undergoing resorption. In order to determine whether biomaterial particle-containing, foreign-body macrophages may contribute to periprosthetic bone resorption, we cultured murine monocytes that had phagocytosed particles of biomaterials commonly employed in bone implant surgery [polymethylmethacrylate (PMMA), ultra-high molecular weight polyethylene (PE), titanium and chromium-cobalt] on bone slices and glass coverslips with UMR 106 osteoblast-like stromal cells in the presence of 1,25-dihydroxy-vitamin D3. Under these conditions, all biomaterial particle-containing, foreign-body macrophages differentiated into osteoclastic cells, i.e. tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells capable of extensive lacunar bone resorption. This study shows that particle phagocytosis by macrophages does not abrogate the ability of these cells to undergo osteoclast differentiation. These findings emphasise the importance of the foreign-body macrophage response to biomaterial wear particles in the pathogenesis of aseptic loosening.  相似文献   

12.
Bu R  Borysenko CW  Li Y  Cao L  Sabokbar A  Blair HC 《BONE》2003,33(5):760-770
We studied how tumor necrosis-factor (TNF)-family proteins interact with osteoblasts to resolve several controversial points. We measured expression of TNFs, TNF-receptors, and nonsignaling (decoy) TNF receptors in human osteoblasts derived from mesenchymal stem cells and in MG63 human osteosarcoma cells using unamplified mRNA screening, with secondary Western or PCR analysis where indicated, and studied the effects of TNFs on osteoblasts in cell culture. Expression of TNFs and receptors was similar in MG63 cells and osteoblasts. TNF-R1 (p55), TRAIL receptor 1 and 2 (DR4 and 5), and Fas were expressed; RANK was undetectable. TNF-family ligands RANKL, TRAIL, and TNFalpha were expressed, but mRNAs were typically at low levels relative to receptors, suggesting that osteoblastic TNF signals, including RANKL, require specific stimuli. Flow cytometry of MG63 cells confirmed TNFalpha receptors and identified subpopulations with high surface-bound TNFalpha. Decoy receptors expressed included a novel soluble form of TNFRSF25 (formerly DR3 or Apo3), implicated in rheumatoid-arthritis linkage studies, as well as osteoprotegerin, a well-characterized osteoblast protein that binds TRAIL and RANKL, and DcR2, which binds TRAIL. Osteoblast apoptosis was studied using terminal deoxynucleotidyl transferase labeling and annexin V binding. MG63 cells were resistant to apoptosis by exogenous TNFalpha except when grown in media promoting osteoblast-like growth or matrix nodules. However, in media supporting osteoblast-like phenotype, apoptosis was induced by anti-Fas or TNF, in contrast to other studies with human osteoblasts. TRAIL caused cell retraction, supporting functional TRAIL response in cell differentiation, but did not cause apoptosis. We conclude that human osteoblasts have functional receptors for FasL, TNFalpha, TRAIL, but not RANKL, and that osteoblasts are protected by multiple nonsignaling TNF receptors against destruction by TNF-family proteins under conditions favoring cell growth.  相似文献   

13.
14.
The articulating surfaces of 6 ultra-high molecular weight polyethylene cups were exposed to curing polymethyl methacrylate (PMMA) bone-cement and examined with scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Three of the cups were exposed to blood and bone-cement, and the rest were exposed to bone-cement only. After removal of the bone-cement bulk, PMMA particles were found and identified in all 6 cups. The particles were verified by identifying zirconium with energy-dispersive x-ray fluorescence spectroscopy in 5 cups and with LA-ICPMS in 1 cup. The degree of surface contamination was estimated with LA-ICPMS. The number of zirconium-containing particles detected was on average 10 to 20/mm2. PMMA bone-cement left in polyethylene cups during polymerization can contaminate the articulating surface with adherent PMMA particles.  相似文献   

15.
Implant surface morphology regulates osteoblast phenotypic expression. Osteoblast sensitivity to non-biologic surfaces suggests that native bone surface features may also affect osteoblast response. To test this, MG63 osteoblast-like cells were grown for 7 days on bovine cortical bone wafers pretreated with rat bone marrow osteoclasts for 0, 10 or 20 days. Response to osteoclast-treated surfaces was compared to the response of MG63 cells to titanium surfaces with smooth and rough microtopographies. Cell number, differentiation (alkaline phosphatase activity and osteocalcin levels), and local factors (PGE(2) and TGF-beta1) were measured in confluent cultures. Compared to culture on plastic, cell number was reduced on all three types of bone wafers; this effect was dose-dependent with increasing resorption of the surface. Alkaline phosphatase specific activity was increased (P相似文献   

16.
During endochondral bone formation, as occurs in fracture healing, chondrocytes are one of the first cells to see an implant surface. We tested the hypothesis that chemical composition and surface roughness affect chondrocyte differentiation, matrix synthesis, and local factor production and that the nature of the response is dependent on the state of maturation of the cells. To do this, we harvested rat growth zone and resting zone chondrocytes and examined their response to smooth and rough disk surfaces manufactured from either commercially pure titanium or titanium alloy. Profilometry, scanning electron microscopy, Auger spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the surfaces. Average roughness values were 0.22 microm for smooth titanium surfaces, 0.23 microm for smooth titanium alloy surfaces, 4.24 microm for rough titanium surfaces, and 3.20 microm for rough titanium alloy surfaces. Cells were grown on the different disk surfaces until the cultures had reached confluence on plastic. The effect of the surfaces was determined by assaying cell number and [3H]thymidine incorporation as measures of cell proliferation, cell layer and cell alkaline phosphatase specific activity as markers of differentiation, and collagen production and [35S]sulfate incorporation as indicators of extracellular matrix production. In addition, the synthesis of prostaglandin E2 and transforming growth factor-beta were examined to measure changes in local factor synthesis. In growth zone and resting zone cultures, cell number and [3H]thymidine incorporation were decreased on rough surfaces; however, this effect was greater on commercially pure titanium surfaces. Cell layer and cell alkaline phosphatase specific activity were decreased in resting zone cells grown on rough surfaces. Cell alkaline phosphatase specific activity in growth zone cells was decreased on rough surfaces, whereas cell layer alkaline phosphatase specific activity was increased only in growth zone cells grown on rough commercially pure titanium surfaces. Resting zone cell collagen production was decreased only on rough commercially pure titanium, whereas in growth zone cells, collagen production was increased. Increased prostaglandin E2 release into the media was found for growth zone and resting zone cell cultures on the disks with rough surfaces. The observed effect was greater on rough commercially pure titanium. Production of transforming growth factor-beta by resting zones was similarly affected, whereas an increase in its production by growth zone cells was measured only on rough commercially pure titanium. These results indicate that surface roughness affects chondrocyte proliferation, differentiation, matrix synthesis, and local factor production and that these parameters are also affected by chemical composition. Furthermore, the nature and extent of the cell response is dependent on cell maturation. The overriding variable in response to an implant material, however, appears to be roughness of the surface.  相似文献   

17.
A higher degree of cross-linking has been shown to improve wear properties of ultra-high molecular weight polyethylene in laboratory studies. However, cross-linking can also affect the mechanical properties of ultra-high molecular weight polyethylene. Fatigue crack propagation resistance was determined for electron beam cross-linked ultra-high molecular weight polyethylene and compared with gamma irradiation cross-linked and noncross-linked polyethylene fatigue specimens. Crosslinking was done with different dosages of irradiation followed by melting. For one irradiation dose (50 kGy) extrusion and molding processes were compared. A fracture mechanics approach was used to determine how the degree of cross-linking affects resistance to crack propagation in ultra-high molecular weight polyethylene. Fatigue crack propagation resistance was reduced in proportion to the irradiation dose. The type of irradiation (gamma or electron beam) or manufacturing method (extrusion or molding) did not affect fatigue crack propagation resistance. The reduced fatigue strength of highly cross-linked ultra-high molecular weight polyethylene could lead to mechanical failure in conditions that are associated with cyclic local tensile stresses.  相似文献   

18.
19.
聚丙交酯-猪衍生异种骨复合材料的体外细胞亲和性研究   总被引:4,自引:0,他引:4  
目的研究聚丙交酯(poly—L—lactide,PLI。A)-猪衍生异种骨(porcine—derived xenogeneic bone,PDXB)复合材料作为骨组织工程细胞支架材料的可行性。方法采用溶液浇铸法制备PLLA—PDXB复合膜,溶液浇铸一致孔剂溶出法制备PLLA—PDXB复合支架。对PLLA—PDXB复合膜和支架的表面进行水解处理,扫描电镜观察形貌特征,并测量复合膜的吸水率。用鼠OCT-1类成骨细胞作为种子细胞进行体外培养和扩增,并种植于复合膜和支架上,观察OCT-1类成骨细胞在复合膜上的黏附率、黏附形态、增殖活力和生长形态。结果PDXB粉末粒径均匀分布在50μm左右,物相结构与羟基磷灰石相似,但钙磷比降低。PLLA—PDXB复合材料经表面碱水解处理,PDXB粉末得以暴露。复合材料的亲水性和粗糙度明显增加。复合材料的细胞黏附率及细胞增殖活力均优于纯PLLA材料;细胞倾向于生长在有PDXB粉末暴露的表面上;在复合支架上培养的细胞能够迁移至支架内部旺盛生长。结论PLLA—PDXB复合材料具有优良的细胞亲和性,可望成为一类新的骨组织工程细胞支架材料。  相似文献   

20.
目的 探讨瘦素对人成骨样细胞MG63 Ⅰ型胶原A1基因表达的影响.方法 MG63细胞以3个不同浓度的瘦素(10~(-8)~10~(-6) mol/L)分别干预24、48、72 h,用实时荧光定量PCR法检测MG63细胞Ⅰ型胶原A1基因 mRNA的表达量,分析量效关系和时效关系,以17β-雌二醇作为阳性对照.结果 瘦素可上调MG63细胞Ⅰ型胶原A1基因 mRNA的表达,并存在浓度依赖和时间依赖效应,其最佳浓度为10~(-7) mol/L,最佳作用时间点为72 h.17β-雌二醇则以10~(-7) mol/L浓度组在24 h表达为最强.结论 瘦素可上调MG63细胞Ⅰ型胶原A1基因mRNA的表达,其作用较17β-雌二醇持久和滞后.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号