首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The distribution of substance P receptors was examined by autoradiography at all levels of the human postmortem spinal cord using the ligand [125I]Bolton-Hunter substance P. Adjacent sections were used to localize substance P-like immunoreactivity by a radioimmunohistochemical technique. In the control spinal cord substance P-like immunoreactivity was found to be highly concentrated in the superficial layers of the dorsal horn, intermediolateral cell columns and lamina X, while lower levels of immunoreactivity were observed in other areas of the grey matter of the spinal cord. In contrast, high densities of substance P binding sites were localized not only to the substantia gelatinosa of the dorsal horn but also to other regions of the grey matter of the spinal cord, particularly in the area of the preganglionic sympathetic neurons in the intermediolateral cell column and in the region of the somatic motor neurons of the ventral horn. In 5 cases of amyotrophic lateral sclerosis we found a marked reduction of substance P binding, especially in the ventral horn associated with the loss of motor neurons. These results suggest a postsynaptic localization of substance P receptors to the motor neurons of the ventral horn in the human spinal cord and a role for substance P in the function of motor neurons.  相似文献   

2.
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a multifunctional transmembrane glycoprotein, which interacts with a number of molecules, including IGF-II and M6P-containing lysosomal enzymes. The receptor is widely distributed throughout the brain and is known to be involved in lysosomal enzyme trafficking, cell growth, internalization and degradation of IGF-II. In the present study, using autoradiographic, Western blotting and immunocytochemical methods, we provide the first report that IGF-II/M6P receptors are discretely distributed at all major segmental levels of the spinal cord and dorsal root ganglia of the adult rat. In the spinal cord, a high density of [(125)I]IGF-II binding sites was evident in the ventral horn (lamina IX) and in areas around the central canal (lamina X), whereas intermediate grey matter and dorsal horn were associated with moderate receptor levels. The dorsal root ganglia exhibited rather high density of [(125)I]IGF-II binding sites. Interestingly, meninges present around the spinal cord displayed highest density of [(125)I]IGF-II binding compared to any given region of the spinal grey matter or the dorsal root ganglia. Western blot results indicated the presence of the IGF-II/M6P receptor at all major levels of spinal cord and dorsal root ganglia, with little segmental variation. At the cellular level, spinal motorneurons demonstrated the most intense IGF-II/M6P receptor immunoreactivity, followed by interneurons in the intermediate region and deeper dorsal horn. Some scattered IGF-II/M6P immunoreactive fibers were found in the superficial laminae of the dorsal horn and dorsolateral funiculus. The meninges of the spinal cord also seemed to express IGF-II receptor immunoreactivity. In the dorsal root ganglia, receptor immunoreactivity was evident primarily in a subset of neurons of all diameters. These results, taken together, provide anatomical evidence of a role for the IGF-II/M6P receptor in general cellular functions such as transport of lysosomal enzymes and/or internalization followed by clearance of IGF-II in the spinal cord and dorsal root ganglia.  相似文献   

3.
The distribution of two calcium-binding proteins, parvalbumin (PV) and calbindin-D 28K (CaBP), was studied by the peroxidase-anti-peroxidase immunohistochemical method at the light and electron microscopic level in the rat spinal cord and dorsal root ganglia. The possible coexistence of these two proteins was also investigated. PV-positive neurons were revealed in all layers of the spinal cord, except lamina I, which was devoid of labelling. Most of the PV-positive cells were found in the inner layer of lamina II, lamina III, internal basilar nucleus, central gray region, and at the dorsomedial and ventromedial aspects of the lateral motor column in the ventral horn. Neuronal processes intensely stained for PV sharply delineated inner lamina II. With the electron microscope most of them appeared to be dendrites, but vesicle containing profiles were also found in a smaller number. CaBP-positive neurons appeared to be dispersed all over the spinal gray matter. The great majority of them were found in laminae I, II, IV; the central gray region; the intermediolateral nucleus; and in the ventral horn just medial to the lateral motor column. Laminae I and II were densely packed with CaBP-positive punctate profiles that proved to be dendrites and axons in the electron microscope. A portion of labelled neurons in lamina IV and on the ventromedial aspect of the lateral motor column in the ventral horn disclosed both PV- and CaBP-immunoreactivity. All of the funiculi of the spinal white matter contained a large number of fibres immunopositive for both PV and CaBP. The highest density of CaBP-positive fibres was found in the dorsolateral funiculus, which was also densely packed with PV-positive fibres. PV-positive fibres were even more numerous in the dorsal part of the dorsal funiculus. The territory of the gracile funiculus in the brachial cord and that of the pyramidal tract in its whole extent were devoid of labelled fibres. In the thoracic cord, the dorsal nucleus of Clarke received a large number of PV-positive fibres. Dorsal root ganglia displayed both PV- and CaBP-immunopositivity. The cell diameter distribution histogram of PV-positive neurons disclosed two peaks--one at 35 microns and the other at 50 microns. CaBP-positive cells in the dorsal root ganglia corresponded to subgroups of small and large neurons with mean diameters of 25 microns and 45 microns, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The postnatal development of the primary sensory afferent projection to the thoracic (T4) and lumbar (L4) spinal cord of the marsupial species Monodelphis domestica was studied by using anterograde and retrograde neuronal tracers. Large numbers of primary afferents and motoneurons were labelled by application of the carbocyanine dye DiI into individual dorsal root ganglia (DRG) afferents in short-term organ cultures. Dorsal root axons had entered the cord at birth, but most primary afferent innervation of the grey matter and the establishment of cytoarchitectural lamination occurs postnatally. In addition to ipsilateral projections, some primary afferents that projected to the dorsal horn extended across the midline into the equivalent contralateral regions of the grey matter. Similarly, motoneuron dendrites occasionally extended across midline and into the contralateral grey matter. The first fibres innervating the spinal cord project to the ventral horn and formed increasingly complex terminal arbours in the motor columns between P1 and P7. After P5 many afferents were seen projecting to the dorsal horn, with the superficial dorsal horn being the last region of the spinal grey to be innervated. Histochemical labelling with the lectin Griffonia simplicifolia indicated that C fibre primary afferents had arborised in the superficial dorsal horn by P14. The sequence of primary afferent innervation is thus similar to that described in the rat, but this sequence occurs over a period of several weeks in Monodelphis, compared with several days in the rat.  相似文献   

5.
Quinuclidinylbenzilate ([3H]QNB) binding sites are present in the rat spinal cord. The binding sites are muscarinic in character based on displacement of [3H]QNB by cholinoceptive drugs. They are distributed rather uniformly along the cord, although the receptor density is greater in gray matters than in white matter. Binding to white matter may be associated with glial cells. Within the gray matter, the receptor density is higher in the ventral born than in the dorsal horn. In the thoracic region receptor density is about equal in the intermediate zone and ventral horn. Midthoracic transection of the cord does not change the receptor density or the dissociation constant of [3H]QNB in the lumbar cord. In contrast, treatment with the neurotoxin, 6-aminonicotinamide, which produces lesions of the cord, loss of motor control and paralysis, reduces the receptor density and affinity of [3H]QNB for lumbar gray matter but not white matter. The presence of [3H]QNB binding sites throughout the spinal cord as well as the documented presence of acetylcholine-containing neurons, suggest that muscarinic receptors play a role in all phases of spinal cord physiology.  相似文献   

6.
It is generally accepted that neurons in the ventral spinal grey matter, a substantial proportion of which can be regarded as constituents of the spinal motor apparatus, receive and integrate synaptic inputs arising from various peripheral, spinal and supraspinal sources. Thus, a profound knowledge concerning the integrative properties of interneurons in the spinal ventral grey matter appears to be essential for a fair understanding of operational principles of spinal motor neural assemblies. Using the whole cell patch clamp configuration in a correlative physiological and morphological experimental approach, here we demonstrate that the intrinsic membrane properties of neurons vary widely in laminae V-VII of the ventral grey matter of the neonatal rat lumbar spinal cord. Based on their firing patterns in response to depolarizing current steps, we have classified the recorded neurons into four categories: 'phasic', 'repetitive', 'single' and 'slow'. Neurons with firing properties characteristic of the 'phasic', 'repetitive' and 'single' cells have previously been reported also in the superficial and deep spinal dorsal horn, but this is the first account in the literature in which 'slow' neurons have been recovered and described in the spinal cord. The physiological heterogeneity in conjunction with the morphological correlation and distribution of neurons argues that different components of motor neural assemblies in the spinal ventral grey matter possess different signal processing characteristics.  相似文献   

7.
A procedure is described where by ultrasonification one can separate large neurons from their surrounding neuropil from either unfixed brain and peripheral ganglion or from similar tissue fixed in 10 per cent neutral formalin for prolonged periods. The availability of such a technique permits one to readily assess the accumulation of 3H-labeled protein precursors into a wide variety of neurons, utilizing standard liquid scintillation techniques. The separation technique has been applied in this report to determine the effects of morphine, morphine plus naloxone, naloxone given alone and saline on the accumulation of 3H-1-lysine into ventral horn, Purkinje and dorsal root ganglion neurons in Sprague-Dawley rats. The data from the control and morphine-treated animals has then been compared with similar data previously obtained from Wistar rats. In Sprague-Dawley rats, morphine had no effect on 3H-1-lysine accumulation into ventral horn neurons and stimulated accumulation into Purkinje and dorsal root ganglion neurons. Naloxone stimulated lysine accumulation into dorsal root ganglion and ventral horn neurons, but had equivocal effects on Purkinje neuron 3H-lysine accumulation. When Wistar and Sprague-Dawley rats were compared, marked differences in the effect which morphine had on lysine accumulation into neurons were noted between the two strains of rat. Ventral horn and dorsal root ganglion neurons from Wistar rats had markedly higher levels of accumulation in both control and morphine-treated rats than were observed in the Sprague-Dawley animals. With Purkinje neurons, accumulation levels between the two strains overlapped each other. Morphine inhibited lysine accumulation in Wistar Purkinje neurons but stimulated it in the Sprague-Dawley animals. The profiles of the accumulation curves from two rat strains suggest that there are not only differences in rates of uptake of 3H-lysine into protein followed by degradation between various types of neurons, but differences between the two strains as well.  相似文献   

8.
This study examines the expression of pituitary adenylate cyclase activating polypeptide (PACAP) mRNA in the rat spinal cord during normal conditions and in response to sciatic nerve transection. Previously, PACAP immunoreactivity has been found in fibers in the spinal cord dorsal horn and around the central canal and in neurons in the intermediolateral column (IML). Furthermore, in the dorsal root ganglia, PACAP immunoreactivity and PACAP mRNA expression have been observed preferentially in nerve cell bodies of smaller diameter terminating in the superficial laminae of the dorsal horn. However, neuronal expression of PACAP mRNA in adult rat spinal cord appeared limited to neurons of the IML. By using a refined in situ hybridization protocol, we now detect PACAP mRNA expression in neurons primarily in laminae I and II, but also in deeper laminae of the spinal cord dorsal horn and around the central canal. In addition, PACAP mRNA expression is observed in a few neurons in the ventral horn. PACAP expression in the ventral horn is increased in a population of large neurons, most likely motor neurons, both after distal and proximal sciatic nerve transection. The proposed role of PACAP in nociception is strengthened by our findings of PACAP mRNA-expressing neurons in the superficial laminae of the dorsal horn. Furthermore, increased expression of PACAP in ventral horn neurons, in response to nerve transection, suggests a role for PACAP in repair/regeneration of motor neurons.  相似文献   

9.
The identification of endogenous neurotrophic factors and their receptors in human spinal cord is important not only to understand development, but also in the consideration of possible future therapies for neurodegenerative disorders and trauma. Using in situ hybridization, the expression of glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN), persephin (PSP), GFRalpha-1, GFRalpha-2, GFRalpha-3 and RET mRNA in human fetal spinal cord was studied. Strong GDNF mRNA hybridization signal, presumably restricted to Clarke's nucleus, was detected in the thoracic spinal cord. mRNA encoding GFRalpha-1 was expressed in the entire spinal cord gray matter with particularly high expression in the ventral horn. GFRbeta-1 was also expressed more weakly in dorsal root ganglia. NTN and persephin mRNA were not detected in either the fetal spinal cord or the dorsal root ganglia. mRNA coding for GFRalpha-2, however, was found in most cells of the spinal cord gray matter. A strong expression of GFRalpha-3 mRNA was detected in dorsal root ganglia cells and Schwann cells. The transducing receptor RET was expressed strongly in motorneurons and dorsal root ganglion neurons. We conclude that basic features concerning the role of the GDNF family of ligands and their receptors revealed in rodents applies to humans.  相似文献   

10.
Regional distribution of enzymic activities in acetylcholine (ACh) metabolism was examined on thinly-sectioned transverse slices of human spinal cords obtained during autopsy of 5 motor neuron disease (MND) and 5 control patients without MND. Choline acetyltransferase (ChAT) activity was highly concentrated in the ventral horn regions (gray and white matters) of cervical, thoracic and lumbar spinal cord of non-MND patients. This enzyme activity was found to be remarkably low in the ventral gray and white matter of MND patients compared with that of the controls. Although the distribution of acetylcholinesterase (AChE) activity was found to be high in both ventral and dorsal gray matter of the spinal cord, little difference was observed between each corresponding region of MND and control patients, except relatively low enzyme activity in the cervical ventral horn region of MND patients. Muscarinic cholinergic receptors, examined as specific [3H]quinuclidinylbenzilate ([3H]QNB) binding, was also highly concentrated in the ventral and dorsal gray matter of the control spinal cord, and was strongly reduced in the ventral horn region of MND patients, indicating a quite similar distribution pattern of ChAT activity. These biochemical changes of cholinergic transmission system may be paralleled to the morphological degeneration of the spinal lower motor neurons in MND patients. Activity of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase), a marker enzyme of central myelin structure, was evenly distributed throughout the whole spinal cord section, without regard to the gray and white matter, of both MND and control patients.  相似文献   

11.
To elucidate the relevance of metabotropic glutamate receptors (mGluRs) to the selective vulnerability of motor neurons in the spinal cord in patients with amyotrophic lateral sclerosis (ALS), we investigated the distribution of mRNAs coding mGluR1-5 in the normal human spinal cord. The mRNAs for mGluR1, 4 and 5 were observed in the spinal gray matter, whereas mGluR2 mRNA was absent in the spinal cord and mGluR3 mRNA was displayed only on glial cells in the white matter. Signals for mGluR1 and mGluR5 were enriched in the dorsal horn, while mGluR4 mRNA was abundant in the ventral horn. Since agonists to group I mGluRs (mGluR 1 and 5) have been demonstrated to have neuroprotective effects on spinal motor neurons, less expression of mRNAs coding mGluR1 and mGluR5 in the ventral horn than in the dorsal horn may be implicated in the selective susceptibility of spinal motor neurons in ALS.  相似文献   

12.
The development of γ-aminobutyric acid (GABA)-immunoreactive neurons was investigated in the embryonic and posthatch chick lumbosacral spinal cord by using pre- and postembedding immunostaining with an anti-GABA antiserum. The first GABA-immunoreactive cells were detected in the ventral one-half of the spinal cord dorsal to the lateral motor exception of the lateral motor column, appeared throughout the entire extent of the ventral one-half of the spinal gray matter by E6. Thereafter, GABA-immunoreactive neurons extended from ventral to dorsal regions. Stained perikarya first appeared at E8 and then progressively accumulated in the dorsal horn, while immunoreactive neurons gradually declined in the ventral horn. The general pattern of GABA immunoreactivity characteristic of mature animals had been achieved by E12 and was only slightly altered afterwards. In the dorsal horn, most of the stained neurons were observed in laminae I–III, both at the upper (LS 1–3) and at the lower (LS 5–7) segments of the lumbosacral spinal cord. In the ventral horn, the upper and lower lumbosacral segments showed marked differences in the distribution of stained perikarya. GABAergic neurons were scattered in a relatively large region dorsomedial to the lateral motor column at the level of the upper lumbosacral segments, whereas they were confined to the dorsalmost region of lamina VII at the lower segments. The early expression of GABA immunoreactivity may indicate a trophic and synaptogenetic role for GABA in early phases of spinal cord development. The localization of GABAergic neurons in the ventral horn and their distribution along the rostrocaudal axis of the lumbosacral spinal cord coincide well with previous physiological findings, suggesting that some of these GABAergic neurons may be involved in neural circuits underlying alternating rhythmic motor activity of the embryonic chick spinal cord. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The development of immunoreactivity for the calcium-binding protein calbindin-D28k (CaB) was investigated in the embryonic and hatched chick lumbosacral spinal cord. CaB-immunoreactive neurons were revealed in the dorsal and ventral horns as well as in the intermediate grey matter from early stages of neuronal development. CaB immunoreactivity was first detected in large neurons in the presumptive dorsal horn at embyronic day 5, while small neurons in the lateral dorsal horn were the last to appear, at embryonic day 10. We have identified and traced the morphological maturation of six CaB-immunoreactive cell groups, three in the dorsal horn and three in the ventral horn. In the dorsal horn these groups were (1) large neurons in the lateral dorsal horn (laminae I and IV), (2) small neurons in the lateral dorsal horn (lamina II), and (3) small neurons in the medial dorsal horn (lamina III). All three groups were present throughout the entire length of the lumbosacral spinal cord and showed persistent CaB immunoreactivity. In the ventral horn, CaB-immunoreactive neurons were classified into the following three categories: (1) Neurons dorsal to the lateral motor column (lamina VII). These neurons were present exclusively in the upper lumbosacral segments (LS1 – 3), and they showed steady CaB immunoreactivity during their maturation. (2) Neurons at the dorsomedial aspect of the lateral motor column (at the border of laminae VII and IX). This population of neurons was characteristic of the lower segments of the lumbosacral cord (LS5 – 7) and presented transient CaB expression. (3) Neurons within the lateral motor column (lamina IX). These neurons were dispersed throughout the length of the lumbosacral spinal cord. They were three to four times more numerous in the upper than in the lower lumbosacral segments, and their numbers declined throughout LS1 – 7 as the animal matured. The characteristic features of the development of neurons immunoreactive for CaB are discussed and correlated with previous neuroanatomical and physiological studies concerning sensory and motor functions of the developing chick spinal cord.  相似文献   

14.
NADPH diaphorase in the spinal cord of rats.   总被引:22,自引:0,他引:22  
To identify spinal neurons that may synthesize nitric oxide, cells and fibers histochemically stained for NADPH diaphorase (a nitric oxide synthase) were studied in the spinal cord of rats. The histochemical reaction gave an image similar to the best Golgi impregnations, staining cells down to their finest processes. Transverse, horizontal, and parasagittal 50 and 100 microns sections were used to follow dendritic and axonal arborizations of stained neurons. Major cell groups were identified in the superficial dorsal horn and around the central canal (at all spinal levels), and in the intermediolateral cell column (at thoracic and sacral levels). Scattered positive cells were also found in deeper dorsal horn, ventral horn, and white matter. In some cases, axons of cells in the dorsal horn could be traced into the white matter; many of these cells resembled neurons projecting to various supraspinal targets. Stained cells in the intermediolateral column, which sent their axons into the ventral root, were presumed to be preganglionic autonomic neurons. Dense plexes of fibers were stained in laminae I and II and in the intermediolateral column. A large number of NADPH diaphorase-positive neurons in the spinal cord appear to be involved in visceral regulation. Fibers of the intermediolateral system had a special relationship with vasculature, suggesting that nitric oxide may help to couple neural activity with regional blood flow in the spinal cord. The abundance of NADPH diaphorase-positive neurons and fibers in the superficial dorsal horn suggests that nitric oxide may also be involved in spinal sensory processing.  相似文献   

15.
Sensory axons interrupted in the dorsal roots of adult mammals are normally unable to regenerate into the spinal cord. We have investigated whether the introduction of a neurotrophin gene into the spinal cord might offer an approach to otherwise intractable spinal root injuries. The dorsal roots of the 4th, 5th, and 6th lumbar spinal nerves of adult rats were severed and reanastomosed. Fourteen to nineteen days later, adenoviral vectors containing either the LacZ or NT-3 genes were injected into the ventral horn of the lumbar spinal cord, resulting in strong expression of the transgenes in glial cells and motor neurons between 4 and 40 days after injection. When dorsal root axons were transganglionically labelled with HRP conjugated to cholera toxin subunit B, 16 to 37 days after dorsal root injury, large numbers of labelled axons could be seen to have regenerated into the cord, but only in those animals injected with vector carrying the NT-3 gene. The regenerated axons were found at the injection site, mainly in the grey matter, and had penetrated as deep as lamina V. Gene therapy with adenoviral vectors encoding a neurotrophin has therefore been shown to be capable of enhancing and directing the regeneration of a subpopulation of dorsal root axons (probably myelinated A fibres), into and through the CNS environment. J. Neurosci. Res. 54:554–562, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
In order to determine the contribution made by primary sensory afferents and supraspinal projections to the immunoreactive somatostatin (IRS) content of the spinal cord, measurements were made of the concentration of IRS in the dorsal and ventral halves of the cord in cats subjected to unilateral lumbosacral dorsal rhizotomy (L1-S3) alone or combined with spinal cord transection. The molecular forms of IRS (characterized by gel chromatography) in L7 lumbar spinal cord, L6-S1 dorsal roots, ventral roots and dorsal root ganglia, and sciatic nerve were also determined. S14 was the predominant form in all tissues examined, but two additional molecular forms corresponding to S28 and S11.5 kdalton were present in dorsal root ganglia and spinal cord; S28 but not S11.5 kdalton was detected in both dorsal roots and sciatic nerves. These results indicate that S14 and S28 and S28 are transported along the central and peripheral processes of dorsal root ganglia, but that spinal cord S11.5 kdalton originates in the central nervous system. IRS in the dorsal horn was reduced by ca. 40% following dorsal root section. Neither disruption of descending pathways by spinal transection nor surgical isolation of the lumbar segements lowered cord somatostatin content below that produced by dorsal root section, indicating that most of the somatostatin within the cord arises from the dorsal root and from neurons in local spinal segments. Although the total content of IRS in the dorsal horn was reduced by ca. 40% following dorsal rhizotomy, the pattern of molecular forms was not changed accordingly. Since S14 and S28 but not S11.5 kdalton are transported via the dorsal root, the dorsal root section would be predicted to produce a relatively greater decrease in S14 and S28 than in S11.5 kdalton. Therefore, failure to find a selective loss of S14 and S28 suggests that dorsal rhizotomy affects dorsal horn IRS content not only by removing afferent input but possibly also by modifyinh the processing of IRS by the remaining somatostatinergic neurons.  相似文献   

17.
Selective motor nerve injury by lumbar 5 ventral root transection (L5 VRT) induces neuropathic pain, but the underlying mechanisms remain unknown. Previously, increased expression and secretion of brain-derived neurotrophic factor (BDNF) had been implicated in injury-induced neuropathic pain in the sensory system. In this study, as a step to examine potential roles of BDNF in L5 VRT-induced neuropathic pain, we investigated BDNF gene and protein expression in adult rats with L5 VRT. L5 VRT induced a dramatic upregulation of BDNF mRNA in intact sensory neurons in the ipsilateral L5 dorsal root ganglia (DRG), in non-neuronal cells in the ipsilateral sciatic nerve, and in motoneurons in the ipsilateral spinal cord. L5 VRT also induced de novo synthesis of BDNF mRNA in spinal dorsal horn neurons and in glial cells in the white matter of the ipsilateral spinal cord. Consistent with the mRNA expression pattern, BDNF protein was also mainly upregulated in all populations of sensory neurons in the ipsilateral L5 DRG and in spinal neurons and glia. Quantitative analysis by ELISA showed that the BDNF content in the DRG and sciatic nerve peaked on day 1 and remained elevated 14 days after L5 VRT. These results suggest that increased BDNF expression in intact primary sensory neurons and spinal cord may be an important factor in the induction of neuropathic pain without axotomy of sensory neurons.  相似文献   

18.
目的研究Nogo—A在成年正常大鼠脊髓和背根节的分布。方法免疫组织化学方法(ABC法)和免疫荧光双标记法。结果正常成年大鼠的脊髓灰质分布有大量的Nogo—A免疫阳性的寡突胶质细胞、运动神经元和中间神经元,免疫阳性反应产物主要分布于细胞的胞体和部分突起中。Nogo—A广泛分布于穿行于脊髓白质的纤维包裹的髓鞘和轴突上。在脊髓前根、后根和坐骨神经的运动和感觉的有髓和无髓纤维也可观察到Nogo—A的表达。而背根神经节的神经元也大量表达Nogo—A,其强度由弱至强不等,广泛分布于大、中、小各类感觉神经元的胞质及突起中。结论Nogo—A在成年大鼠脊髓,背根神经节和外周神经纤维的广泛存在提示其在正常状态下的神经功能中可能起重要作用。  相似文献   

19.
Calcitonin gene-related peptide (CGRP) immunoreactivity was found throughout the entire spinal cord of man, marmoset, horse, pig, cat, guinea pig, mouse, rat, and frog. CGRP-immunoreactive fibers were most concentrated in the dorsal horn. In the ventral horn of some species large immunoreactive cells, tentatively characterized as motoneurons, were present. Pretreatment of rats with colchicine enhanced staining of these large cells but did not reveal CGRP-immunoreactive cell bodies in the dorsal horn. In the dorsal root ganglia, CGRP immunoreactivity was observed in most of the small and some of the intermediate sized cells. Substance P immunoreactivity, where present, was co-localized with CGRP to a proportion of the small cells. In the cat the ratio of substance P-immunoreactive to CGRP-immunoreactive ganglion cells was 1:2.7 (p less than 0.001). The concentration of CGRP-immunoreactive material in tissue extracts was determined by radioimmunoassay. In the dorsal horn of the rat spinal cord the levels of peptide were found to range from 225.7 +/- 30.0 pmol/gm of wet weight in the cervical region to 340.6 +/- 74.6 pmol/gm in the sacral spinal cord. In the rat ventral spinal cord, levels of 15.7 +/- 2.7 to 35.1 +/- 10.6 pmol/gm were found. The concentration in dorsal root ganglia of the lumbar region was 225.4 +/- 46.9 pmol/gm. Gel permeation chromatography of this extractable CGRP-like immunoreactivity revealed three distinct immunoreactive peaks, one eluting at the position of synthetic CGRP and the others, of smaller size, eluting later. In cats and rats, rhizotomy induced a marked loss of CGRP-immunoreactive fibers from the dorsal horn of the spinal cord. In the cat, unilateral lumbosacral dorsal rhizotomy resulted in a significant (p less than 0.05) reduction of extractable CGRP from the ipsilateral lumbar dorsal horn (5.6 +/- 1.2 pmol/gm of wet weight) compared to the contralateral side (105.0 +/- 36.0 pmol/gm of wet weight). We conclude that the major origin of CGRP in the dorsal spinal cord is extrinsic, from afferent fibers which are probably derived from cells in the dorsal root ganglia. The selective distribution of CGRP throughout sensory, motor, and autonomic areas of the spinal cord suggests many putative roles for this novel peptide.  相似文献   

20.
D Dahl  A Bignami 《Brain research》1991,553(1):163-166
Axonless horizontal cells in the outer plexiform layer of rat retina were studied with 19 monoclonal antibodies reacting with phosphorylated and non-phosphorylated epitopes of the two high molecular weight neurofilament proteins (NF 150K and NF 200K). With 6 antibodies, immunoreactivity was confined to the nerve fiber layer on the inner surface of the retina. Horizontal cells were not stained. Four antibodies in this group were axon-specific, while the remaining two stained motor and sensory neuron perikarya in rat spinal cord and dorsal root ganglia, respectively. Of the 13 antibodies which stained horizontal cells, 11 reacted with phosphorylated epitopes and failed to decorate motor neuron perikarya in the spinal cord, while in dorsal root ganglia, they stained a subpopulation of sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号