首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A novel missense mutation, A1754G, in exon 11 of the erythroid-specific delta-aminolaevulinate synthase gene (ALAS2) was identified in a Japanese male with sideroblastic anaemia. ALAS activity in bone marrow cells of the patient was reduced to 53.3% of the normal control. Consistent with this finding, activity of a bacterially expressed ALAS2 mutant protein harbouring this mutation was 19.5% compared with the normal control, but was increased up to 31.6% by the addition of pyridoxal 5'-phosphate (PLP) in vitro. RFLP analysis with Bsp HI restriction revealed that his mother was a carrier of the mutation. These findings suggest that A1754G mutation was inherited in this family in a manner consistent with X-linked inheritance, and is responsible for sideroblastic anaemia in the patient.  相似文献   

2.
Abstract: DNA sequencing of the coding region of the erythroid 5-aminolaevulinate synthase (ALAS2) cDNA from a male with pyridoxine-responsive sideroblastic anaemia revealed a missense mutation, a G561T transversion in exon 5 of the gene. Previously, the mutation G561A has been shown to be responsible for sideroblastic anaemia in females and thought to be lethal in males (1). The mutation G561T results in the loss of an MspA1-I cutting site. Analysis of MspA1-I restriction enzyme digests of amplified exon 5 genomic DNA from other family members revealed that the proband's mother, aunt and youngest sister, who were not anaemic, were heterozygous carriers of the mutation. The G561T mutation results in an arginine to leucine substitution at amino acid residue 170. This arginine residue is conserved in both the erythroid and housekeeping ALAS in vertebrates as well as in all other known ALAS proteins and is located in a predicted alpha-helix region close to the amino-terminus of the enzymatic region of the protein.  相似文献   

3.
DNA sequencing of the coding region of the erythroid 5-aminolaevulinate synthase (ALAS2) cDNA from a male with pyridoxine-responsive sideroblastic anaemia revealed a missense mutation C1622G and a closely linked polymorphism C1612A in exon 10 of the gene. Sequence analysis of the genomic DNA from other family members revealed that the proband's mother and daughter were heterozygous carriers of the mutation, consistent with the X-linked inheritance. The C1622G mutation results in a histidine to aspartic acid substitution at amino acid residue 524. The histidine residue is conserved in both the erythroid and housekeeping ALAS proteins in vertebrates, all other known ALAS proteins and other oxamine synthases that have pyridoxal 5'-phosphate as a co-factor. This histidine is located in a predicted loop, preceding a long alpha-helix region near the carboxy-terminus.  相似文献   

4.
A R411C missense mutation of the erythroid-specific δ-aminolaevulinate synthase (ALAS2) gene was identified in a pedigree with X-linked pyridoxine-responsive sideroblastic anaemia (XLSA). The normal and the mutant cDNAs were expressed in E. coli , and the enzyme protein was purified. ALAS activity of the mutant enzyme was 12% and 25%, when incubated in the absence and the presence of pyridoxal 5'-phosphate, respectively, compared with that of the wild-type enzyme. These findings suggest that the R411C mutation accounts for low ALAS activity and a partial pyridoxine-responsiveness of the disease in the patient.  相似文献   

5.
Two brothers with X-linked ataxia (XLA) were found to have hypochromic red cells and increased erythrocyte protoporphyrin despite normal iron stores. The mother was unaffected by ataxia and had normal iron stores but showed evidence of some red cell hypochromia with heavy basophilic stippling that stained positive for iron. Bone marrow biopsy confirmed the presence of ring sideroblasts in one of the brothers. The absence of mutations in the ALAS2 gene and the predominance of zinc over free protoporphyrin led to a search using a combination of DNA and cDNA analysis for the presence of mutations in the ABC7 gene. ABC7 encodes a mitochondrial half-type ATP Binding Cassette transporter involved in iron homeostasis. The published cDNA sequence was used to search databases for the genomic sequence of which 12 exons spanning 23.4 kb were mapped leaving the most 5' nucleotides unaccounted for. The identified exons and their exon-intron boundaries were amplified from DNA while the most 5' sequence including the initiation codon was amplified from cDNA of peripheral blood cells. Direct sequencing revealed hemizygosity in the brothers and heterozygosity in the mother for a G-->C transversion at position 1299 of the published cDNA. This predicts a V411L substitution at the beginning of the last of six putative transmembrane regions of the protein. Restriction enzyme digestion confirmed the presence of this mutation in the three family members but could not detect it in 200 normal alleles. An uncle affected by ataxia also carried this mutation. This study supports the recently hypothesized involvement of the ABC7 gene in XLSA/A and highlights a protein structure region of importance to this syndrome.  相似文献   

6.
Forty Caucasian patients with primary acquired sideroblastic anaemia (SA), were investigated for the presence of the Cys282Tyr and/or His63Asp mutation as possible cofactor(s) for iron overload. One patient was heterozygous for the Cys282Tyr mutation and 13 heterozygotes and one homozygote for the His63Asp mutation were found (no difference compared with controls). SA patients with normal codon 63 had a mean ferritin level of 923+/-815 microg/l whereas those with codon 63 mutation had 769+/-577 microg/l (P=0.64). We conclude that ineffective erythropoiesis with no associated mutation in the HFE gene can lead to iron overload in SA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号