首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Porcine von Willebrand factor (vWF) activates human and primate platelets. Having determined the importance of pulmonary intravascular macrophages (PIMs) in pulmonary xenotransplantation, we evaluated whether, in the absence of PIMs, vWF might play a role in pulmonary xenograft dysfunction. Utilizing a left single-lung transplant model, baboons depleted of anti-alphaGal antibodies received lungs from either vWF-deficient (n = 2); MCP-expressing (n = 5); MCP PIM-depleted (n = 5); or vWF-deficient PIM-depleted swine (n = 3). Two out of three of the PIM-depleted, pvWF deficient grafts survived longer than any previously reported pulmonary xenografts, including PIM-depleted xenografts expressing human complement regulatory proteins. Depletion of PIM's from vWF-deficient lungs, like depletion of PIM's from hMCP lungs, resulted in abrogation of the coagulopathy associated with pulmonary xenotransplantation. Thus, in terms of pulmonary graft survival, control of adverse reactions involving pvWF appears to be equally or even more important than is complement regulation using hMCP expression. However, based on the rapid failure of PIM-sufficient, pvWF-deficient pulmonary xenografts, pVWF-deficient pulmonary xenografts appear to be particularly sensitive to macrophage-mediated damage. These data provide initial evidence that vWF plays a role in the 'delayed' (24 h) dysfunction observed in pulmonary xenotransplantation using PIM depleted hMCP organs.  相似文献   

2.
OBJECTIVE: Unlike cardiac or renal xenotransplants, the depletion of complement using cobra venom factor (CVF) does not improve pulmonary xenograft survival. Several cases suggest that the swine von Willebrand factor (vWF) may play a major role in presenting a different pathogenesis of pulmonary xenograft dysfunction from other organs. To evaluate the role of vWF and the complement system in mediating hyperacute vascular injury of pulmonary xenografts and elucidate pathogenesis of the injury, we performed swine-to-canine orthotropic single lung xenotransplantation after pre-treatment of 1-deamino-8-d-arginine vasopressin (DDAVP) and CVF. METHODS: We set up three groups for lung xenotransplantation: group I served as the control group; group II, recipients pre-treated with CVF; group III, donors pre-treated with DDAVP (9 mg/kg, 3 days)/recipients pre-treated with CVF (60 u/kg). Hemodynamic data, coagulation and complement system parameters, and grafted lung pathologies were examined serially for 3h after transplantation. RESULTS: DDAVP infusion reduced the vWF content in swine lung tissue in vivo (7.7+/-2.4 AU/mg vs 16.0+/-5.6 AU/mg, P < 0.0001). Infusion of CVF 24 h prior to transplantation effectively depleted the recipient's serum C3 and complement hemolytic activity below the detectable range. Regardless of the use of CVF, both groups I and II transplanted with unmodified grafts showed an immediate drop in leukocytes and platelet counts after transplantation. However, in group III, in recipients transplanted with DDAVP pre-treated swine lung, the platelet count did not decrease after transplantation (P = 0.0295). The decrease of plasma antithrombin and fibrinogen tended to be attenuated in group III. Light microscopic examination revealed extensive vascular thromboses in both capillary and larger vessels, as well as early pulmonary parenchymal damage in groups I and II, but were rarely observed in group III. CONCLUSIONS: Complement inhibition alone was not enough to alleviate intravascular thrombosis, the main pathology in pulmonary xenotransplantation. Pre-infusion of DDAVP to the donor animal was effective in preventing platelet sequestration and attenuated intravascular thrombosis. It is suggested that the strategies targeting vWF would be promising for successful pulmonary xenotransplantation.  相似文献   

3.
OBJECTIVE: Pulmonary transplantation has become the preferred treatment for end-stage lung disease, but application of the procedure is limited because of a paucity of donors. One way to solve donor limitations is to use animal organs as a donor source or xenotransplantation. The current barrier to pulmonary xenotransplantation is the rapid failure of the pulmonary xenograft. Although antibodies are known to play a role in heart and kidney xenograft rejection, their involvement in lung dysfunction is less defined. This project was designed to define the role of antibodies in pulmonary graft rejection in a pig-to-baboon model. METHODS: Orthotopic transgenic swine left lung transplants were performed in baboons depleted of antibodies by one of three techniques before transplantation: (1) ex vivo swine kidney perfusion, (2) total immunoglobulin-depleting column perfusion, and (3) ex vivo swine lung perfusion. Results were compared with those of transgenic swine lung transplants in unmodified baboons. RESULTS: All three techniques of antibody removal resulted in depletion of xenoreactive antibodies. Only pretransplantation lung perfusion improved pulmonary xenograft function compared with lung transplantation in unmodified baboons. CONCLUSIONS: The pathogenesis of pulmonary injury in a swine-to-primate transplant model is different from that in renal and cardiac xenografts. Depletion of antibodies alone does not have a beneficial effect and may actually be detrimental.  相似文献   

4.
BACKGROUND: Porcine von Willebrand factor (pvWF) has been shown to bind to human glycoprotein Ib (GPIb) and cause activation of human (or primate) platelets in the absence of shear stress. Pulmonary xenografts develop disseminated intravascular coagulation (DIC) and microvascular thrombosis within hours of reperfusion, and the aberrant interaction between pvWF and human platelets may be a possible cause of xenograft-associated DIC. METHODS: Experimental baboons (n=3) received mouse anti-human GPIb monoclonal antibody before undergoing orthotopic pulmonary xenotransplantation with porcine lungs expressing human membrane cofactor protein (CD46). RESULTS: Blocking the pvWF-GPIb interaction with a monoclonal antibody to GPIb prevented the agglutination of human and baboon platelets by pvWF in vitro. In vivo, the anti-GPIb antibody prevented platelet deposition and prevented the increases in D-Dimers (P=0.011) seen in control xenograft recipients (n=5). However, there was no difference in elevations of prothrombin times (PT) or improvement in the vasoconstriction associated with the loss of xenograft function. CONCLUSIONS: This study indicates that the DIC associated with the hyperacute dysfunction of pulmonary xenografts is a complex phenomenon that is affected by, but not solely dependent on, activation of platelets. Aberrant interactions between pvWF and GPIb play a significant role in DIC associated with pulmonary xenotransplantation.  相似文献   

5.
Abstract: Background: Von Willebrand factor (vWF) has been proposed as a major contributor to the development of coagulopathy in pulmonary xenotransplantation. Pretreatment of donor swine with 1‐deamino‐8‐d ‐arginine vasopressin (DDAVP), an analog of vasopressin, can reduce the content of vWF in pulmonary xenografts. Here, we investigate the effects of DDAVP pre‐treatment in an ex‐vivo perfusion model of pulmonary xenotransplantation. Methods: We set up and performed the ex‐vivo perfusion using porcine pulmonary accessory lobes and fresh human whole blood (n = 12). Half of the donor swine were given 3 μg/kg DDAVP intravenously for 3 days before ex‐vivo perfusion (DDAVP group) and half of them were left untreated (control group). The porcine lung was perfused with fresh blood for 1 h and changes in the following parameters were monitored: pulmonary arterial pressure, pulmonary vascular resistance, blood cell counts, fibrinogen, antithrombin, platelet factor 4, D‐dimer, C3a, C4d, and xenoreactive IgM. The release of Galα1‐3Gal xenoantigen (αGal) from porcine lung which had been perfused and retained for 30 min with human blood was assessed by enzyme‐linked immunosorbent assay using αGal‐binding lectin. Results: Both DDAVP and control groups showed typical findings of immediate pulmonary dysfunction: an increase of pulmonary vascular resistance and sequestration of leukocytes and platelets after ex‐vivo perfusion. However, in the DDAVP group, the increase of platelet factor 4, C3a, and C4d after perfusion was attenuated compared to that in the control group. The release of αGal after blood retention was significantly lower in the DDAVP group than that of the control group. Conclusion: Pre‐infusion of DDAVP to the donor swine was beneficial in attenuating platelet activation as well as complement/coagulation activation. These effects of DDAVP are likely to relate to the reduction of porcine vWF content in the xenograft. Therefore, the modulation of vWF secretion in donor lungs could be an additional therapeutic way to reduce systemic coagulopathy in pulmonary xenotransplantation.  相似文献   

6.
BACKGROUND: Cigarette smoking results in abnormalities of platelets and endothelium with platelet dysfunction implicated in vascular complications. Healthy endothelium plays a pivotal role in regulating hemostasis via the inhibition of platelet activation and aggregation. Thus, we examined if platelet dysfunction correlated with serum vWF levels-a circulating marker of endothelial dysfunction. MATERIALS AND METHODS: We tested this hypothesis in young male smokers. The parameters of platelet function tested included: CD62/CD63; Glycoprotein (GP) IIb/IIIa; Platelet function analzyer (PFA) studies, platelet aggregometry, flow assessment of platelet microparticles, platelet-leukocyte interactions and receptor numbers. Endothelial dysfunction was assessed with serum von Willebrand Factor (vWF). RESULTS: There was a significant increase in platelet CD62 receptor expression and aggregation with an associated delay in time to aggregation using PFA. Endothelial dysfunction was represented by higher serum levels of von Willebrand Factor. All other platelet parameters tested were within the standardized reference range. CONCLUSIONS: These initial data suggests that anti-platelet therapy may have a role in reduction of platelet activation and aggregation in young smokers and possibly alter vascular endothelial abnormalities.  相似文献   

7.
BACKGROUND: Xenograft rejection is associated with vascular inflammation, thrombocytopenia and the accelerated consumption of coagulation factors. Primary biological incompatibilities of the xenograft in the regulation of clotting appear to amplify pathological processes associated with rejection. The functional incompatibility of porcine von Willebrand factor (vWF) expressed within the xenograft vasculature may heighten interactions with the primate platelet receptor GPIb, hence augmenting formation of platelet microthrombi and vascular injury. Here, we address the functional impact of O-linked glycosylation of the vWF A1 domain on primate platelet activation. METHODS: Recombinant human or porcine vWF A1-domains were transiently over-expressed in COS-7 cells as FLAG-tagged fusion protein, linked to plasma membranes via GPI anchors. O-linked glycosylation was blocked by the addition of phenyl-alpha-GalNAc2 to cultures. Expressed vWF-A1 domains were characterized utilizing cytofluometric- and Western blot analyses. RESULTS: Cytofluometric analysis confirmed equivalent levels of human and porcine vWF A1-domain expression irrespective of the levels of O-linked glycosylation. Differential glycosylation patterns of vWF-A1 under these conditions were confirmed by Western blot analyses. Native porcine vWF A1-domains had enhanced human platelet activation potential when compared with human recombinant vWF A1. However, the loss of O-linked glycosylation abolished differences in aggregatory responses between human and porcine vWF A1 domains. CONCLUSIONS: Various degrees of O-linked glycosylation of vWF-A1-domains modulate levels of functional interaction with platelet receptor GPIb and consequent platelet aggregation responses in vitro. These data may have implications for outcomes of xenotransplantation. We speculate that alterations in glycosylation of vWF and other adhesion proteins associated with the targeting of the alpha1,3-Gal-epitope in mutant swine may have salutatory effects on the primate platelet activation observed in these xenografts.  相似文献   

8.
Primary graft dysfunction (PGD), a form of acute lung injury occurring within 72 h following lung transplantation, is characterized by pulmonary edema and diffuse alveolar damage. We hypothesized that higher concentrations of intercellular adhesion molecule-1 (ICAM-1) and von Willebrand factor (vWF) would be associated with the occurrence of PGD. A total of 128 lung transplant recipients among 7 lung transplant centers were enrolled in a multicenter, prospective, cohort study. Blood specimens were collected preoperatively and at 6, 24, 48 and 72 h following lung transplantation. The primary outcome was Grade 3 PGD at 72 h after transplant. Logistic regression and generalized estimating equations (GEE) were used to analyze plasma ICAM-1 and vWF. At each postoperative timepoint, mean plasma ICAM-1 concentrations were higher for patients with PGD versus no PGD. The GEE contrast estimate for the association of plasma ICAM-1 with PGD was 107.5 ng/mL (95% CI 38.7, 176.3), p = 0.002. In the multivariate analyses, this finding was independent of all clinical variables except pulmonary artery pressures prior to transplant. There was no association between plasma vWF levels and PGD. We conclude that higher levels of plasma ICAM-1 are associated with PGD following lung transplantation.  相似文献   

9.
In xenotransplantation, donor endothelium is the first target of immunological attack. Activation of the endothelial cell by preformed natural antibodies leads to platelet binding via the interaction of the glycoprotein (GP) Ib and von Willebrand factor (vWF). TMVA is a novel GPIb-binding protein purified from the venom of Trimeresurus mucrosquamatus. In this study, the inhibitory effect of TMVA on platelet aggregation in rats and the effect on discordant guinea pig-to-rat cardiac xenograft survival were investigated. Three doses (8, 20 or 40 microg/kg) of TMVA were infused intravenously to 30 rats respectively. Platelet aggregation rate was assayed 0.5, 12, and 24 h after TMVA administration. Wister rats underwent guinea pig cardiac cervical heterotopic transplantation using single dosing of TMVA (20 microg/kg, i.v., 0.5 h before reperfusion). Additionally, levels of TXB(2) and 6-keto-PGF(1alpha) within rejected graft tissues were determined by radioimmunoassay. Treatment with TMVA at a dose of 20 or 40 microg/kg resulted in complete inhibition of platelet aggregation 0.5 h after TMVA administration. Rats receiving guinea pig cardiac xenografts after TMVA therapy had significantly prolonged xenograft survival. Histologic and immunopathologic analysis of cardiac xenografts in TMVA treatment group showed no intragraft platelet microthrombi formation and fibrin deposition. Additionally, the ratio of 6-keto-PGF(1alpha) to TXB(2) in TMVA treatment group was significantly higher than those in control group. We conclude that the use of this novel GPIb-binding protein was very effective in preventing platelet microthrombi formation and fibrin deposition in a guinea pig-to-rat model and resulted in prolongation of xenograft survival. The increased ratio of PGI(2)/TXA(2) in TMVA treatment group may protect xenografts from the endothelial cell activation and contribute to the prolongation of xenograft survival.  相似文献   

10.
BACKGROUND: Pig-to-primate cardiac xenografts undergo hyperacute rejection (HAR), in which primate IgM bind to porcine endothelial alpha-Gal molecules and activate membrane attack complex (MAC) deposition. Prolonged graft survival can be achieved by using transgenic pig donors, which express human complement regulatory proteins (hCRP) to inhibit MAC. However, these xenografts invariably fail from delayed xenograft rejection (DXR). We sought to investigate the poorly understood DXR process. MATERIALS AND METHODS: Wild-type (n = 3) and transgenic (n = 3) porcine hearts were heterotopically transplanted into baboons. Biopsies were analyzed by histology and by immunohistochemistry for porcine endothelial markers (vWF, alpha-Gal, and beta-Gal) and primate IgM and MAC deposition. RESULTS: Wild-type xenografts survived 60-80 min but succumbed to rapid IgM/MAC deposition and microvascular thrombosis. Transgenic xenografts avoided HAR but showed increasing IgM/MAC deposition before rejection on days 5, 7, and 11. Serum from baboons after transgenic xenograft rejection showed increased activity against porcine endothelial cells, and in vitro incubation of untransplanted porcine cardiac sections with sensitized baboon serum showed elevated microvascular IgM binding. Increased IgM deposition appeared specific to alpha-Gal, since it competes specifically with alpha-Gal-specific GS-4 lectin, but not with beta-Gal-specific RCA-1 lectin. Competition with GS-4 was not seen if na?ve baboon serum was used. CONCLUSION: DXR may be mediated by increasing baboon IgM binding on porcine microvascular endothelial alpha-Gal molecules.  相似文献   

11.
Abstract: Endothelial cell activation is thought to play an important role in xenograft rejection through cell retraction and expression of pro-coagulant and pro-inflammatory factors. Identification of antibodies recognizing porcine endothelial molecules would be useful to study and manipulate the inflammatory response to a xenograft. The aim of this study was to investigate the cross-reactivity of antibodies directed against human adhesion molecules and von Willebrand factor (vWF). Binding of monoclonal antibodies (mAbs) directed against human CD31, CD44, CD49, CD54, CD62E, CD102, and CD106 was evaluated on resting and activated endothelial cells from human and pig by flow cytometry. Among 30 antibodies tested, 4 were shown to react with pig cells. Two of them, directed against human CD62E (E-selectin) and rabbit CD 106 (VCAM-1) reacted strongly with activated and/or resting pig cells, whereas two others, directed to human CD31 (PECAM) and CD44 (H-CAM), bound weakly to pig cells. In addition, we analyzed the cross-reactivity of five polyclonal or monoclonal antibodies to human or pig vWF with human, baboon, rhesus, pig, and rat vWF. Binding of antibodies was tested by ELISA by using platelet lysates as source of vWF from the different species. Four anti-human or porcine vWF antibodies exhibited a broad reactivity with vWF from all species, whereas one anti-human vWF antibody was specific for primate vWF. In this study, we identified a small number of cross-reacting antibodies that may prove useful to study in vitro and in vivo xenogeneic responses. However, the weak antibody cross-reactivity observed with most porcine molecules points out the necessity of producing species-specific antibodies to study the immune response to xenografts or for use as specific immunosuppressive therapeutic reagents.  相似文献   

12.
BACKGROUND: Prolonged cold storage of organs for transplantation may lead to inflammatory damage upon reperfusion. The aim of this study was to investigate whether organs from living donors experience less damage upon reperfusion than those retrieved from cadaver donors, where cold ischemia times are significantly longer. METHODS: Biopsies were obtained from cadaveric (n=23) and living-related donor (LRD) (n=10) liver transplants before and 2 hours after reperfusion. Cryosections were stained with antibodies against neutrophils, platelets, activated platelets, and endothelium. RESULTS: LRD liver allografts showed minimal changes postreperfusion. In contrast, after reperfusion of cadaver allografts, neutrophil infiltration was detected in 22% and increased expression of von Willebrand factor (vWF), CD41, and P-selectin in 48%, 30%, and 13% of allografts, respectively. In cadaver allografts with deposition of activated platelets expressing either P-selectin or vWF, the cold ischemia time was significantly longer (885 +/- 123 min vs. 608 +/- 214 min, P=0.04; 776.8 +/- 171 min vs. 559.3 +/- 216 min, P=0.01, respectively). Increases in neutrophils and platelets after reperfusion were not significantly associated with clinical events posttransplant. However, in cadaver transplants that experienced early acute rejection, the mean cold ischemia time was significantly longer than in allografts with no rejection (732 +/- 174 min vs. 480 +/- 221 min, P=0.006). CONCLUSIONS: This study demonstrates that in the clinical situation, cold ischemia causes platelet deposition and neutrophil infiltration after reperfusion of cadaveric liver allografts. These early inflammatory events may contribute to make the graft more susceptible to acute rejection.  相似文献   

13.
BACKGROUND: The influence of platelet von Willebrand factor (vWF)-glycoprotein (GP)Ib-V-IX and GPIIb-IIIa receptor interactions in the context of hyperacute rejection (HAR) of pulmonary xenografts has not previously been explored. METHODS: Aurintricarboxylic acid (ATA, an inhibitor of platelet-GPIb interactions with vWF), SC52012A (SC, a synthetic GPIIb/IIIa inhibiting peptide), or both were added to heparinized whole human blood before perfusion of isolated piglet lungs. Results were compared with unmodified blood ("unmodified"). RESULTS: Perfusion of porcine lungs with unmodified human blood resulted in an immediate rise in pulmonary vascular resistance (PVR), fluid and platelet sequestration in the lung, and, without exception, cessation of function within 15 minutes with a mean survival of 8 minutes. Addition of ATA or SC before lung perfusion significantly decreased the rise in PVR, diminished histamine release, and prolonged survival to 31+/-11 and 31+/-22 minutes, respectively. When the therapies were combined, mean survival was 156+/-77 minutes (P<0.05 vs. either monotherapy). Complement activation was synergistically attenuated only when the drugs were used together. CONCLUSIONS: Platelet protein receptor adhesive interactions play an important role in amplification of complement activation during hyperacute lung rejection. Inhibiting recruitment of platelets at the site of initial immunologic injury to endothelial cells may protect porcine organs against thrombosis and inflammation during the initial exposure to human blood.  相似文献   

14.
BACKGROUND: Recent work has indicated a role for anti-Gal alpha 1-3Gal (Gal) and anti-non-Gal xenoantibodies in the primate humoral rejection response against human-decay accelerating factor (hDAF) transgenic pig organs. Our laboratory has shown that anti-porcine xenograft antibodies in humans and non-human primates are encoded by a small number of germline IgV(H) progenitors. In this study, we extended our analysis to identify the IgV(H) genes encoding xenoantibodies in immunosuppressed cynomolgus monkeys (Macaca fascicularis) transplanted with hDAF-transgenic pig organs. METHODS: Three immunosuppressed monkeys underwent heterotopic heart transplantation with hDAF porcine heart xenografts. Two of three animals were given GAS914, a poly-L-lysine derivative shown to bind to anti-Gal xenoantibodies and neutralize them. One animal rejected its heart at post-operative day (POD) 39; a second animal rejected the transplanted heart at POD 78. The third monkey was euthanized on POD 36 but the heart was not rejected. Peripheral blood leukocytes (PBL) and serum were obtained from each animal before and at multiple time points after transplantation. We analyzed the immune response by enzyme-linked immunosorbent assay (ELISA) to confirm whether anti-Gal or anti-non-Gal xenoantibodies were induced after graft placement. Immunoglobulin heavy-chain gene (V(H)) cDNA libraries were then produced and screened. We generated soluble single-chain antibodies (scFv) to establish the binding specificity of the cloned immunoglobulin genes. RESULTS: Despite immunosuppression, which included the use of the polymer GAS914, the two animals that rejected their hearts showed elevated levels of cytotoxic anti-pig red blood cell (RBC) antibodies and anti-pig aortic endothelial cell (PAEC) antibodies. The monkey that did not reject its graft showed a decline in serum anti-RBC, anti-PAEC, and anti-Gal xenoantibodies when compared with pre-transplant levels. A V(H)3 family gene with a high level of sequence similarity to an allele of V(H)3-11, designated V(H)3-11(cyno), was expressed at elevated levels in the monkey that was not given GAS914 and whose graft was not rejected until POD 78. IgM but not IgG xenoantibodies directed at N-acetyl lactosamine (a precursor of the Gal epitope) were also induced in this animal. We produced soluble scFv from this new gene to determine whether this antibody could bind to the Gal carbohydrate, and demonstrated that this protein was capable of blocking the binding of human serum xenoantibody to Gal oligosaccharide, as had previously been shown with human V(H)3-11 scFv. CONCLUSIONS: DAF-transgenic organs transplanted into cynomolgus monkeys induce anti-Gal and anti-non-Gal xenoantibody responses mediated by both IgM and IgG xenoantibodies. Anti-non-Gal xenoantibodies are induced at high levels in animals treated with GAS914. Antibodies that bind to the Gal carbohydrate and to N-acetyl lactosamine are induced in the absence of GAS914 treatment. The animal whose heart remained beating for 78 days demonstrated increased usage of an antibody encoded by a germline progenitor that is structurally related, but distinct from IGHV311. This antibody binds to the Gal carbohydrate but does not induce the rapid rejection of the xenograft when expressed at high levels as early as day 8 post-transplantation.  相似文献   

15.
BACKGROUND: Profound coagulopathy has been proposed as a barrier to xenotransplantation. Disseminated intravascular coagulation (DIC) has been observed with the rejection of renal and bone marrow xenografts but has not yet been described in pulmonary xenografts. METHODS: This study examined the coagulation parameters in five baboons that received pulmonary xenografts and one baboon that was exposed to porcine lung during an extracorporeal perfusion. Platelet counts, prothrombin times (PT), and levels of fibrinogen, D-dimers, and thrombin-antithrombin III complex (TAT) were analyzed. In addition, serum levels of plasminogen activator inhibitor-1 (PAI-1), thrombomodulin (TM), tissue plasminogen activator (tPA), and tissue factor (TF) were determined. RESULTS: Hyperacute pulmonary xenograft dysfunction, which occurred within 0-9 hr of graft reperfusion, was associated with clinically evident DIC. This coagulopathy was characterized by thrombocytopenia, decreased fibrinogen levels, elevations in PT, and increases in D-dimers and TAT. Furthermore, transient increases in PAI-1, increases in TM, and increases in tPA were observed in the serum of some but not all recipients. None of the baboons demonstrated measurable increases in soluble TF. CONCLUSIONS: Although DIC in renal or bone marrow xenotransplantation develops over a period of days, DIC associated with hyperacute pulmonary xenograft dysfunction develops within hours of graft reperfusion. Thus, the DIC in pulmonary xenotransplantation may represent a unique and/or accelerated version of the coagulopathy observed with renal and bone marrow xenotransplantation.  相似文献   

16.
Models of pig-to-baboon xenografting were examined to identify the mechanisms and pathologic characteristics of acute humoral xenograft rejection (AHXR). Thymus and kidney (composite thymokidney) from human decay accelerating factor-transgenic swine were transplanted into baboons (n = 16) that were treated with an immunosuppressive regimen that included extracorporeal immunoadsorption of anti-alphaGal antibody and inhibition of complement activation. Morphologic and immunohistochemical studies were performed on protocol biopsies and graftectomy samples. All renal xenografts avoided hyperacute rejection. However, graft rejection coincided with the increase of anti-alphaGal antibody in the recipient's circulation. The 16 xenografts studied were divided into two groups dependent on the rapid return (group 1) or gradual return (group 2) of anti-alphaGal antibody after immunoadsorption. In group 1 (n = 6), grafts were rejected to day 27 with development of typical AHXR, characterized by marked interstitial hemorrhage and thrombotic microangiopathy in the renal vasculature. In group 2 (n = 10), grafts also developed thrombotic microangiopathy affecting mainly the glomeruli by day 30 but also showed minimal evidence of interstitial injury and hemorrhage. In the injured glomeruli, IgM and C4d deposition, subsequent endothelial cell death and activation with upregulation of von Willebrand factor and tissue factor, and a decrease of CD39 expression developed with the formation of fibrin-platelet multiple microthrombi. In this model, the kidney xenografts, from human decay accelerating factor-transgenic swine, in baboons undergo AHXR. In slowly evolving AHXR, graft loss is associated with the development of thrombotic microangiopathic glomerulopathy. Also, anti-alphaGal IgM deposition and subsequent complement activation play an important role in the mechanism of glomerular endothelial injury and activation and the formation of multiple microthrombi.  相似文献   

17.
BACKGROUND: Recent years have brought dramatic progress in the field of xenotransplantation, with the development of transgenic swine and various other means of overcoming the rejection mediated by xenoreactive antibodies. Although progress has been rapid with kidney and heart xenografts, progress with pulmonary xenografts has lagged behind. Recent findings have suggested that donor pulmonary intravascular macrophages may play a critical role in the hyperacute dysfunction of pulmonary xenografts. METHODS: The function of pulmonary xenografts from pigs depleted of pulmonary intravascular macrophages was compared with the function of xenografts from normal pigs. RESULTS: Pulmonary xenografts from pigs from which pulmonary intravascular macrophages were depleted survived (23.5+/-0.9 hours) about five times longer than normal (macrophage sufficient) xenografts (4.4+/-1.41 hours) (P< 0.0001). At 21 hours post-reperfusion, the left pulmonary arterial flow was 225.0+/-34 ml/min in lungs depleted of pulmonary intravascular macrophages, whereas all normal xenografts had failed. CONCLUSIONS: These findings indicate that donor macrophages play a critical role in pulmonary xenograft dysfunction. This finding has broad implications for xenotransplantation, suggesting that porcine macrophages might pose a barrier to the engraftment and function of a variety of porcine organ xenografts.  相似文献   

18.
BACKGROUND: A pig-to-goat orthotopic lung xenograft model was developed to test whether depletion of goat xenoreactive antibodies against pig red blood cells would prolong pig lung xenograft survival. METHODS: Adult goats with anti-pig xenoreactive antibodies underwent left pneumonectomy followed by orthotopic transplantation of pig left lung (group 1) or immunodepletion of their xenoreactive antibodies by extracorporeal right pig lung perfusion before transplantation without (group 2) or with (group 3) complete clampage of the right pulmonary artery. In group 4, goat left lungs were orthotopically transplanted into pigs and served as negative controls (pig serum does not have anti-goat xenoreactive antibodies). Each study group included 5 animals. Immunosuppression in surviving recipients included cyclosporine and azathioprine. RESULTS: Group 1 recipients died 7 +/- 3 hours after xenograft reimplantation of severe pulmonary hypertension and dysfunction and vasogenic shock, with little evidence of histologic xenograft injury. Group 2 xenografts had a stable circulatory and respiratory function on reperfusion and survived 9 +/- 4 days. Group 3 animals also tolerated complete occlusion of the right pulmonary artery, and xenografts assured the total respiratory support for 4 +/- 1 days. After immunodepletion, goat serum showed no detectable titers of xenoreactive antibodies, which began to reappear by postoperative day 2, where xenografts showed histologic stigmata of acute (humoral and cellular-mediated) rejection that evolved to a complete xenograft necrose at death. Group 4 xenografts showed scattered features of acute rejection 5 +/- 1 days after the operation. CONCLUSIONS: Pig left lung xenografts can provide prolonged and complete respiratory support after depletion of goat xenoreactive antibodies, but they ultimately necrose once recipient xenoreactive antibodies return to pretransplantation values.  相似文献   

19.
BACKGROUND: Removal of xenoreactive antibodies in pig-to-human lung transplantation by columns or organ perfusions proofed to be unsatisfactory and associated with adverse effects. In an ex-vivo lung perfusion model, we evaluated the potential of a soluble trisaccharide polymer (GAS914) to bind alpha-Gal antibodies and to protect a pulmonary xenograft from hyperacute rejection (HAR) and pulmonary xenograft dysfunction. METHODS: Porcine lungs were perfused with fresh human blood for 240 min. In the GAS914 treated group (n=6) the polymer was applied in three different concentrations. The control group (n=6) received no GAS914. Survival and function of perfused xenografts were monitored, and alpha-Gal antibodies as well as cytolytic anti-porcine antibodies analyzed. RESULTS: In the GAS-treated group survival of lungs was significantly prolonged, pulmonary vascular resistance reduced, pulmonary edema prevented, and oxygenation improved. On histopathological evaluation application of GAS resulted in minimal graft injury and significantly less deposition of the terminal complement complex C5b-9. Following application of GAS914, up to 89.8% of IgG alpha-Gal, 79.5% of IgM and 73.6% of anti-porcine antibodies in the human blood were bound by the polymer. Subsequent perfusion of porcine lungs resulted in absorption of only 3% of the baseline IgG alpha-Gal antibodies in the GAS914 group, compared to 87% in the controls. CONCLUSIONS: In this ex-vivo lung perfusion model, a trisaccharide polymer prevented immediate HAR, due to effective removal of alpha-Gal antibodies. In combination with additional strategies GAS914 may be a valuable tool in overcoming HAR and dysfunction of pulmonary xenografts.  相似文献   

20.
BACKGROUND: In our previously described primate renal allograft model, T cell ablation leads to long-term graft survival. The role of endothelial cell alteration in chronic rejection was examined in our model. METHODS: Renal transplants were performed in rhesus monkeys using a T cell- depleting immunotoxin, FN18-CRM9. Sections from 10 rejected kidneys (5 acute and 7 chronic rejection) were examined after immunohistochemical staining for expression of endothelium-related proteins [von Willebrand factor (vWF), CD62P, and CD31], fibrinogen, and a macrophage marker (CD68). Glomerular staining for each antigen was graded on a semiquantitative scale. RESULTS: Intense staining for vWF was consistently observed in glomerular endothelium, subendothelium, and mesangium in all kidneys removed due to chronic rejection. vWF staining was weak in kidneys showing acute rejection. The difference in glomerular staining was statistically significant. Staining for vWF in extraglomerular vessels was nearly identical in kidneys showing acute and chronic rejection. Expression of CD62P was increased in extraglomerular vessels in allografts with chronic rejection, but the glomeruli showed little or no staining. There was no significant difference in the glomerular staining for CD62P or CD31 in organs showing acute and chronic rejection. Fibrinogen staining of glomerular mesangium was seen in kidneys with chronic rejection. Macrophages (CD68+) infiltrating glomeruli were more numerous in kidneys showing chronic rejection. CONCLUSION: Increased glomerular deposition of vWF in renal allografts showing chronic rejection, without increased staining for CD62P or CD31, suggests increased constitutive secretion of vWF from endothelial cells as a component of the mechanism of chronic rejection in our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号