首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to identify key variables affecting the initial release (burst) and the encapsulation of leuprolide acetate-containing poly(lactide-co-glycolide) (PLGA) microparticles, which were prepared by the cosolvent evaporation method. Adjusting parameters, which affected the PLGA precipitation kinetics, provided efficient ways to increase the encapsulation efficiency and to control the initial release. Addition of 0.05M NaCl to the external aqueous phase increased the encapsulation efficiency and the initial release; in contrast, NaCl at high concentration (0.5M) delayed polymer precipitation and resulted in non-porous microparticles with a low initial release. The presence of ethanol in the external phase led to porous microparticles with an increased initial release but a decreased encapsulation efficiency. The initial release also decreased with decreasing volume of the external phase and homogenization speed, as well as with covering the preparation apparatus; however, these variations had no significant effect on the encapsulation efficiency. Scale-up of the laboratory size by a factor of 5 and 25 showed insignificant influence on the encapsulation efficiency, particle size, and drug release.  相似文献   

2.
The present study was geared at identifying the conditions to stabilize poly (D,L-lactic-glycolic) (PLGA) and polycaprolactone (PCL) nanoparticles (NP) by freeze-drying with several cryoprotective agents. Differential scanning calorimetry and freeze-thawing studies were used to optimize the lyophilization process. These studies showed that all samples were totally frozen at -45 degrees C and evidenced the necessity of adding sucrose, glucose, trehalose or gelatine to preserve the properties of NP regardless of the freezing procedure. However, only 20% sucrose and 20% glucose exerted an acceptable lyoprotective effect on PLGA and PCL NP, respectively. Nonetheless, the final to initial size ratios ( approximately 1.5) indicated that particle size was slightly affected in both cases. In vivo studies with CyA-loaded PCL NP whose sizes matched those obtained after NP preparation (100 nm) and after being lyophilized (160 nm) showed that the changes of particle size might have some relevance on drug pharmacokinetics. The MRT was significantly (P<0.05) modified after an oral CyA dose of 5 mg/kg and the treatment with 160-nm sized CyA-loaded NP produced a higher drug partition into the liver of Wistar rats potentially affecting the toxic and immunosuppressive profile of the drug. Therefore, although the particle size changes induced by NP lyophilization were slight, they need to be carefully evaluated and cannot be neglected.  相似文献   

3.
This work evaluates and interprets underlying mechanisms behind various aspects related to preparation and physical characteristics of polymeric nanoparticles (NP). These were prepared from different biodegradable polymers according to a water-in-oil-in-water emulsion solvent evaporation method. Polymers used were poly(lactic-co-glycolic) acid (PLGA), poly (lactic acid) (PLA), (PLA-PEG-PLA) triblock and (PLA-PEG-PLA)n multi-block co-polymers. A model DNA, as an example of a hydrophilic drug, was encapsulated in the internal aqueous phase. The primary emulsion was prepared using a high shear turbine mixer. The secondary emulsion was prepared by high-pressure homogenization. Surface morphology and internal structure were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Influence of process variables on the physical properties of NP has been studied. Release of DNA was evaluated. In addition, changes occurring to NP porosity and surface area during degradation were followed. Nanoparticle size was ranging between 200-700 nm, according to the preparation conditions. Homogenizing pressure, concentration of the emulsifying agent used, polymer concentration and type and the concentration of a cryoprotectant had variable effects on NP size, surface area and porosity. Batches of NP where no emulsifying agent was added were obtained successfully. The release rate of the DNA from NP was mainly dependent on porosity, which varied significantly among used polymers. The preparation technique was efficient in encapsulating the model DNA and will be used for plasmid encapsulation in a future work.  相似文献   

4.
白藜芦醇PLGA长效注射微球的制备及工艺考察   总被引:1,自引:1,他引:1  
目的采用乳化溶剂挥发法制备白藜芦醇聚乳酸羟基乙酸[poly(lactic-co-glycolic acid),PL-GA]长效微球,评价各因素对微球性质的影响。方法以微球的包封率、载药量、突释和粒径作为微球的质量评价指标,研究分散相与连续相的体积比、PLGA浓度、聚乙烯醇(polyvinyl alcohol,PVA)浓度、搅拌速度对微球性质的影响,并优化白藜芦醇PLGA微球的制备工艺。结果分散相与连续相的体积比为1∶50时,包封率高,但4 h突释量达到76%,当分散相与连续相体积比由1∶50提升到1∶150时,突释降低了22%;随着聚合物浓度的增加粒径明显增大,突释显著降低;理论载药量对粒径影响不大,在高载药量时突释显著减少;搅拌速度的增加使粒径减小,突释增加;PVA浓度的增加对粒径没有明显的影响,但当PVA的质量浓度从1 g.L-1增加到5 g.L-1时,包封率从93.57%降低到80.31%。结论分散相与连续相的体积比、PLGA浓度、PVA浓度、搅拌速度对微球性质有很大的影响。优化条件下制备的微球形态完整,载药量为(27.86±1.00)%,包封率为(93.57±2.87)%,平均粒径约为21.12μm。白藜芦醇PLGA微球体外释放25 d的累积释药率达(94.04±4.94)%,有望研制成1个月给药1次的给药系统。  相似文献   

5.
胡巧红  许东航  王松 《中国药房》2006,17(10):740-743
目的:研究口服疫苗微球的最佳制备工艺。方法:以鸡新城疫病毒(NDV)作为疫苗模型药物、乳酸-羟基乙酸共聚物(PLGA)为载体材料,采用W/O/W复乳-溶剂挥发法制备NDV-PLGA口服微球。采用正交设计试验,考察活NDV体积、PL GA浓度、初乳搅拌速度、内水相中的保护剂对微球形状、粒径、粘连情况和药物活性的影响,其中以血凝法测定微球中释放药物的效价。结果:NDV口服微球的最佳制备工艺系活NDV体积为200μl、PLGA浓度为4%、初乳搅拌速度为8000r/min、内水相中的保护剂为牛血清白蛋白。结论:本方法为制备口服疫苗微球的最佳制备工艺。  相似文献   

6.
We have produced haloperidol-loaded PLGA/PLA nanoparticles by using two emulsification-solvent evaporation methods: homogenization and sonication. We have established how five independent processing parameters and two materials characteristics control the particle size and drug content. The interdependencies between processing and materials parameters and the subsequent nanoparticle characteristics are discussed in terms of underlying scientific principles that are broadly applicable to the production of drug-loaded polymer nanoparticles. This level of understanding should quicken the pace of designing protocols for making new drug-PLGA nanoparticles. It was determined that the particle size of haloperidol-loaded PLGA/PLA nanoparticles is effectively controlled by the amount of shear stress transferred from the energy source to the organic phase, which is strongly correlated to the following parameters: type of applied energy, aqueous phase volume, and polymer concentration in the organic solvent. The drug content of these nanoparticles is controlled by reducing the diffusion of the drug from the organic to the aqueous phase during the solvent evaporation stage of the preparation and by increasing the drug-polymer interactions. The following significantly inhibit drug diffusion: large particle size, higher polymer concentration and polymer molecular weight, and reducing the drug solubility in the aqueous phase by adjusting the pH. Specific drug-polymer interactions are engineered by optimizing the lactide to glycolide ratio (L:G ratio) and including specific polymer end groups. When optimized, the drug-loaded PLGA/PLA nanoparticles contain as much as 2.5% haloperidol.  相似文献   

7.
Poly(DL-lactide-co-glycolide) (PLGA) microspheres containing all-trans retinoic acid (atRA) were prepared by o/w solvent evaporation method and various preparation parameters, such as poly(vinyl alcohol) (PVA) concentration in aqueous solution, PVA MW, drug weight, solvent, polymer MW, and polymer weight, on the characteristics of microspheres and drug release were investigated. PVA concentration in water phase was a critical factor in making microspheres consistently with smooth surface and round shape. In our study, at least 2% (w/v) of PVA in aqueous solution was necessary for making microspheres with round shape. The particle size of microspheres ranged 10-100 microm. AtRA was slowly released from PLGA microspheres over 30 days. Sterilization of microspheres by ethylene oxide (EO) gas at 37 degrees C did not significantly affect the characteristics of drug release or its morphology. Cell growth inhibition of atRA was affected by preparation process of microspheres rather than the EO-gas sterilization process. These results indicate that PLGA microspheres containing atRA are acceptable for controlled release devices for use in the treatment of brain tumor.  相似文献   

8.
Paclitaxel (PTX), an antimicrotubular agent used in the treatment of ovarian and breast cancer, was encapsulated in nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL) polymers using the spray-drying technique. Morphology, size distribution, drug encapsulation efficiency, thermal degradation and drug release were characterized. MCF7 cells were employed to evaluate the efficacy of the systems on cell cycle and cytotoxicity. The particle size was in the range 0.8-1?μm. The incorporation efficiency of PTX was more than 80% in all NPs obtained. In?vitro drug release took place during 35 days, and drug release rates were in the order PCL?>?PLGA 50:50?>?PLGA 75:25. Unloaded NPs showed to be cytocompatible at MCF7 cells. PTX-loaded NPs demonstrated the release of the drug block cells in the G2/M phase. All PTX-loaded formulations showed their efficacy in killing MCF7 cells, mainly PTX-loaded PLGA 50:50 and PLGA 75:25 that cause a decrease in cell viability lower than 20%.  相似文献   

9.
A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.  相似文献   

10.
The process parameters such as the compositions of inner and outer aqueous phase and emulsification technique of the primary emulsion were optimized to decrease the burst release of BSA from biodegradable polymer microspheres in double emulsion method. It was found that diminished burst release of -14% was achieved for the microspheres produced by formulations, where no phosphate was present in the inner water phase (non-buffered system). Primary emulsion made by probe sonication rather than homogenization or mechanical stirring led to microspheres with insignificant burst effect. Microspheres obtained using 0.1% aqueous Tween 80 solution as the outer aqueous phase, frequently exhibit reduced burst effect of 2.7%. Low microsphere yield (52.1%), however, was observed. Microsphere yield was, therefore, enhanced by addition of additive such as sodium chloride, glucose or mannitol into the outer aqueous phase. Decrease in BSA entrapment was observed in the presence of sodium chloride, but reduction in entrapment efficiency was observed in the case of glucose. Burst release increased from 2.7% to 9.5% or 3.4% as 2.5% sodium chloride or 7.5% glucose was added into the outer aqueous phase respectively. Marked burst release (>20%) was observed in the presence of additive of higher concentration independent of sodium chloride or glucose. As far as surfactant type was concerned, diminished burst was found when PVP or Tween 80 rather than PVA was utilized as the surfactant during microsphere preparation. In addition to PLGA, the copolymers of L-lactide (LLA) and dimethyl trimethylene carbonate (DTC) or trimethylene carbonate (TMC) were also evaluated. Insignificant burst effect was found for the microspheres composed of DTC or TMC copolymers.  相似文献   

11.
Disodium norcantharidate (DSNC)-loaded poly(epsilon-caprolactone) (PCL) microspheres were prepared by s/o/w solvent evaporation technique, and their morphology and drug release behavior were modified by adding NaCl (3, 6 and 9%) in the continuous phase during the preparation. The addition of NaCl decreased the water influx into the emulsion droplets and the porosity of the resultant microspheres. Higher NaCl concentration resulted in smaller particle size, lower density and higher drug loading of the microspheres. Despite higher drug loading and smaller particle size, the microspheres prepared with NaCl in the continuous phase exhibited slower drug release. The modification of the release profiles was correlated with the changes in the surface and internal morphology of the microspheres. Therefore, by adding NaCl in the continuous phase during the preparation, both morphology and release behavior of the microspheres can be modified to a certain extent.  相似文献   

12.
Sinha VR  Trehan A 《Drug delivery》2005,12(3):133-139
Ketorolac tromethamine has to be given every 6 hr intramuscularly in patients for acute pain, so to avoid frequent dosing and patient inconvenience we found it to be a suitable candidate for parenteral controlled delivery by biodegradable microspheres for the present study. Ketorolac tromethamine-loaded microspheres were prepared by o/w emulsion solvent evaporation technique using different polymers: polycaprolactone, poly lactic-co-glycolic acid (PLGA 65/35), and poly lactic-co-glycolic acid (PLGA 85/15). To tailor the release profile of drug for several days, blends of PLGA 65/35 and PLGA 85/15 were prepared with polycaprolactone (PCL) in different ratios. The results revealed that microspheres made with 1:3 (PLGA65/35: PCL) blend released 97% of the drug in 5 days as compared with 97% in 30 days in with pure PLGA65/35 microspheres. Microspheres made with 1:1 (PLGA65/35:PCL) and 3:1 (PLGA65/35:PCL released 98% of the drug in 30 days. In microspheres made with 1:3 (PLGA85/15:PCL), almost the entire drug was released in a week whereas in batches made with pure PLGA85/15 and 3:1 (PLGA 85/15:PCL) more than 80% of the drug was released in 60 days as compared with 96% in 60 days in 1:1 (PLGA85/15:PCL). Higher encapsulation efficiency was obtained with microspheres made with pure PLGA 65/35. These formulations were characterized for particle size analysis by Malvern mastersizer that revealed particle size in range of 12-15 micron and 12-22 micron for microspheres made with polymer blends of PLGA 65/35:PCL and PLGA85/15:PCL, respectively. In with pure PLGA65/35 and PLGA85/15, particle size was 28 micron and 8 micron, respectively. Surface topography was studied by scanning electron microscopy that revealed a spherical shape of microspheres. From our study it we concluded that with careful selection of different polymers and their combinations, we can tailor the release of ketorolac tromethamine for long periods.  相似文献   

13.
The aim of this study is to investigate both the effects of hydrophilic additives and combined processing parameters on the in vitro release of a model protein, bovine serum albumin (BSA), from poly(lactic-co-glycolic acid) (PLGA) microspheres. Additives including beta-cyclodextrin, HP-beta-cyclodextrin, poly(ethylene glycol) (PEG) 6000, and sorbitol, and processing parameters such as the poly(vinyl alcohol) (PVA) concentration, emulsification temperature, aqueous/oil phase, evaporation method, and dehydration method were evaluated. PLGA microspheres were all prepared by the double-emulsion solvent extraction/evaporation method, and the results showed that no statistically significant differences of particle sizes and entrapment efficiencies appeared. Interestingly, the initial burst releases were markedly changed by both additives and processing parameters. Initial burst releases were accelerated by hydrophilic additives except for PEG 6000 and were retarded by the formulation composed of higher PVA concentration, tween-20 as an emulsifier in the internal aqueous phase, glycerol in the oil phase, and inorganic salt in the external aqueous phase, and operated at low temperature. Scanning electron microscopy showed that the more porous and dimpled the structure on the surface of the PLGA microspheres, the larger the initial burst release. The microspheres that displayed a relatively smooth and compact surface showed the least burst release.  相似文献   

14.
Paclitaxel (PTX), an antimicrotubular agent used in the treatment of ovarian and breast cancer, was encapsulated in nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL) polymers using the spray-drying technique. Morphology, size distribution, drug encapsulation efficiency, thermal degradation and drug release were characterized. MCF7 cells were employed to evaluate the efficacy of the systems on cell cycle and cytotoxicity. The particle size was in the range 0.8–1?µm. The incorporation efficiency of PTX was more than 80% in all NPs obtained. In vitro drug release took place during 35 days, and drug release rates were in the order PCL?>?PLGA 50:50?>?PLGA 75:25. Unloaded NPs showed to be cytocompatible at MCF7 cells. PTX-loaded NPs demonstrated the release of the drug block cells in the G2/M phase. All PTX-loaded formulations showed their efficacy in killing MCF7 cells, mainly PTX-loaded PLGA 50:50 and PLGA 75:25 that cause a decrease in cell viability lower than 20%.  相似文献   

15.
In this work, PLGA nanoparticles were prepared by an emulsification-diffusion technique. The main objective was to optimize the preparation of formulations by evaluating the influence of the technological parameters on the physicochemical properties of PLGA nanoparticles. The effects of variations in polymer and emulsifier concentrations, and homogenization duration, rate and type on the particle size distribution, surface charge and morphology of nanoparticles were assessed. The smallest nanoparticles (177.53 +/- 2.78 nm) were obtained with a 2% PLGA (w/v) concentration in the organic phase and 3% PVA (w/v) in the aqueous phase and were prepared by an emulsification-diffusion method via ultrasonic homogenization at a power of 80 W applied for 30 s. It was observed that nanoparticles prepared by Ultra Turrax were more spherical but larger. In addition, increasing the PVA concentration in the aqueous phase, increasing the PLGA concentration in the organic phase and increasing the homogenization rate decreased the zeta potential values of PLGA nanoparticles.  相似文献   

16.
Approaches used to avoid uptake of the injected particles by the reticuloendothelial system include modification of the particle properties such as surface charge and particle size. In the present study the effect of mean particle size of etoposide-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of sizes 105 nm ((99m)Tc-Eto-PLGA NP(105)) and 160 nm ((99m)Tc-Eto-PLGA NP(160)) on biodistribution and blood clearance were studied after intravenous administration of the radiolabeled formulations and compared to that of free drug ((99m)Tc-Eto). It was found that etoposide-loaded PLGA NPs of size 105 nm were present in the blood at higher concentrations up to 24 h and were able to reduce their uptake by the reticuloendothelial system as compared to that of etoposide-loaded PLGA NPs of size 160 nm and pure drug. Moreover, the pure drug ((99m)Tc-Eto) did not cross the blood-brain barrier, whereas (99m)Tc-Eto-PLGA NP(105) showed relatively high concentrations of 0.58% of injected dose in brain in 1 h (8-fold higher), 0.6% in 4 h (20-fold higher) and 0.22% in 24 h (10-fold higher) than the concentration of (99m)Tc-Eto-PLGA NP(160). In bone, concentration of (99m)Tc-Eto-PLGA NP(105) was about 7.2 times higher than the concentration of (99m)Tc-Eto in 24 h. The study concludes that NPs of size ~100 nm can be used for long-term circulation without the need for surface modification. Such NPs could be exploited for use in leukemia therapy for providing sustained release of etoposide by long-term circulation. LAY ABSTRACT: Approaches used to avoid uptake of the injected particles by the reticuloendothelial system include modification of the particle properties such as surface charge and particle size. In the present study the effect of mean particle size of etoposide-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of sizes 105 nm and 160 nm on biodistribution studies after intravenous administration in mice and blood clearance studies after intravenous administration in rats was studied. It was found that etoposide-loaded PLGA-NPs of size 105 nm were present in the blood at higher concentrations up to 24 h and were able to reduce their uptake by the reticuloendothelial system as compared to that of etoposide-loaded PLGA-NP of size 160 nm and pure drug. Moreover, the NPs of size 105 nm had greater uptake in bone and brain, in which concentration of free drug and NPs of size 160 nm was negligible. The study concludes that NPs of size ~100 nm can be used for long-term circulation without the need for surface modification.  相似文献   

17.
Ketorolac tromethamine has to be given every 6 hr intramuscularly in patients for acute pain, so to avoid frequent dosing and patient inconvenience we found it to be a suitable candidate for parenteral controlled delivery by biodegradable microspheres for the present study. Ketorolac tromethamine-loaded microspheres were prepared by o/w emulsion solvent evaporation technique using different polymers: polycaprolactone, poly lactic-co-glycolic acid (PLGA 65/35), and poly lactic-co-glycolic acid (PLGA 85/15). To tailor the release profile of drug for several days, blends of PLGA 65/35 andPLGA85/15 were prepared with polycaprolactone (PCL) in different ratios. The results revealed that microspheres made with 1:3 (PLGA65/35: PCL) blend released 97% of the drug in 5 days as compared with 97% in 30 days in with pure PLGA65/35 microspheres. Microspheres made with 1:1 (PLGA65/35:PCL) and 3:1 (PLGA65/35:PCL released 98% of the drug in 30 days. In microspheres made with 1:3 (PLGA85/15:PCL), almost the entire drug was released in a week whereas in batches made with pure PLGA85/15 and 3:1 (PLGA 85/15:PCL) more than 80% of the drug was released in 60 days as compared with 96% in 60 days in 1:1 (PLGA85/15:PCL). Higher encapsulation efficiency was obtained with microspheres made with pure PLGA 65/35. These formulations were characterized for particle size analysis by Malvern mastersizer that revealed particle size in range of 12–15 micron and 12–22 micron for microspheres made with polymer blends of PLGA 65/35:PCL and PLGA85/15:PCL, respectively. In with pure PLGA65/35 and PLGA85/15, particle size was 28 micron and 8 micron, respectively. Surface topography was studied by scanning electron microscopy that revealed a spherical shape of microspheres. From our study it we concluded that with careful selection of different polymers and their combinations, we can tailor the release of ketorolac tromethamine for long periods.  相似文献   

18.
Wang  Nuo  Wu  Xue Shen  Li  Jia Kui 《Pharmaceutical research》1999,16(9):1430-1435
Purpose. To prepare a heterogeneously structured composite based on poly (lactic-co-glycolic acid) (PLGA) microspheres and poly(vinyl alcohol) (PVA) hydrogel nanoparticles for long-term protein drug delivery. Methods. A heterogeneously structured composite in the form of PLGA microspheres containing PVA nanoparticles was prepared and named as PLGA-PVA composite microspheres. A model protein drug, bovine serum albumin (BSA), was encapsulated in the PVA nanoparticles first. The BSA-containing PVA nanoparticles was then loaded in the PLGA microspheres by using a phase separation method. The protein-containing PLGA-PVA composite microspheres were characterized with regard to morphology, size and size distribution, BSA loading efficiency, in vitroBSA release, and BSA stability. Results. The protein-containing PLGA-PVA composite microspheres possessed spherical shape and nonporous surface. The PLGA-PVA composite microspheres had normal or Gaussian size distribution. The particle size ranged from 71.5 m to 282.7 m. The average diameter of the composite microspheres was 180 m. The PLGA-PVA composite microspheres could release the protein (BSA) for two months. The protein stability study showed that BSA was protected during the composite microsphere preparation and stabilized inside the PLGA-PVA composite microspheres. Conclusions. The protein-containing PLGA-PVA composite may be suitable for long-term protein drug delivery.  相似文献   

19.
Lisinopril, an angiotensin converting enzyme (ACE) inhibitor drug, was encapsulated in poly(lactide-co-glicolide) (PLGA) nanoparticles (NP) for site-specific delivery by catheters in prevention of restenosis. NP were prepared by emulsification–diffusion method. The PLGA type, stabilizing agent type and its concentration were studied as process variables. The z-average particle size varied between 265–412 nm. The highest zeta potential was seen in NP prepared with Pluronic F-68. None of the studied variables or their interactions had a significant effect on the particle size while all had main effect on the zeta potential. The highest entrapment efficiency was 93% and all studied variables and their interactions except PLGA type and its interaction with the stabilizer type had significant effects on the loading. Baker-Lonsdale model was the most appropriate model for release of lisinopril from NP. Five per cent PLGA 75 : 25 and 5% Pluronic F-68 showed promising results for 21 days release of lisinopril as an anti-restenotic agent.  相似文献   

20.
Abstract

The objective of this study was to prepare poly lactic-co-glycolic acid (PLGA)-based microparticles as potential carriers for recombinant human epidermal growth factor (rhEGF). In order to optimize characteristic parameters of protein-loaded microspheres, bovine serum albumin (BSA) was selected as the model protein. To reduce burst release as a common problem of microspheres, a proper alteration in the particle composition was used, such as addition of poly vinyl alcohol and changes in initial drug loading. The effects of these parameters on particle size, encapsulation efficiency and in vitro release kinetics of BSA in PLGA microspheres were investigated using a Box–Behnken response surface methodology. The biological activity of the released rhEGF was assessed using human skin fibroblasts cell proliferation assay. The prepared rhEGF-loaded microspheres had an average size of 6.44?±?2.45?µm, encapsulation efficiency of 97.04?±?1.13%, burst release of 13.06?±?1.35% and cumulative release of 22.56?±?2.41%. The proliferation of human skin fibroblast cells cultivated with rhEGF releasate of microspheres was similar to that of pure rhEGF, indicating the biological activity of released protein confirming the stability of rhEGF during microsphere preparation. These results are in agreement with the purpose of our study to prepare rhEGF-entrapped PLGA microparticles with optimized characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号