共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The human liver UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), have been studied using microsomes from human liver and insect cells expressing human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B15). 2. The glucuronidation of SN-38 was catalysed by UGT1A1, UGT1A3, UGT1A6 and UGT1A9 as well as by liver microsomes. Among these UGT isoforms, UGT1A1 showed the highest activity of SN-38 glucuronidation at both low (1 µM) and high (200 µM) substrate concentrations. The ranking in order of activity at low and high substrate concentrations was UGT1A1 > UGT1A9 > UGT1A6> UGT1A3 and UGT1A1 > UGT1A3 > UGT1A6 ≥ UGT1A9, respectively. 3. The enzyme kinetics of SN-38 glucuronidation were examined by means of Lineweaver-Burk analysis. The activity of the glucuronidation in liver microsomes exhibits a monophasic kinetic pattern, with an apparent K m and V max of 35.9 µM and 134pmol?min -1?mg -1 protein, respectively. The UGT isoforms involved in SN-38 glucuronidation could be classified into two types: low- K m types such as UGT1A1 and UGT1A9, and high- K m types such as UGT1A3 and UGT1A6, in terms of affinity toward substrate. UGT1A1 had the highest V max followed by UGT1A3. V max of UGT1A6 and UGT1A9 were approximately 1/9 to 1/12 of that of UGT1A1. 4. The activity of SN-38 glucuronidation by liver microsomes and UGT1A1 was effectively inhibited by bilirubin. Planar and bulky phenols substantially inhibited the SN-38 glucuronidation activity of liver microsomes and UGT1A9, and/or UGT1A6. Although cholic acid derivatives strongly inhibited the activity of SN-38 glucuronidation by UGT1A3, the inhibition profile did not parallel that in liver microsomes. 5. These results demonstrate that at least four UGT1A isoforms are responsible for SN-38 glucuronidation in human livers, and suggest that the role and contribution of each differ substantially. 相似文献
2.
A major metabolic pathway of haloperidol is glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT). In this study, we found that two glucuronides were formed by the incubation of haloperidol with human liver microsomes (HLM) and presumed that the major and minor metabolites (>10-fold difference) were O- and N-glucuronide, respectively. The haloperidol N-glucuronidation was catalyzed solely by UGT1A4, whereas the haloperidol O-glucuronidation was catalyzed by UGT1A4, UGT1A9, and UGT2B7. The kinetics of the haloperidol O-glucuronidation in HLM was monophasic with K(m) and V(max) values of 85 μM and 3.2 nmol · min?1 · mg?1, respectively. From the kinetic parameters of the recombinant UGT1A4 (K(m) = 64 μM, V(max) = 0.6 nmol · min?1 · mg?1), UGT1A9 (K(m) = 174 μM, V(max) = 2.3 nmol · min?1 · mg?1), and UGT2B7 (K(m) = 45 μM, V(max) = 1.0 nmol · min?1 · mg?1), we could not estimate which isoform largely contributes to the reaction. Because the haloperidol O-glucuronidation in a panel of 17 HLM was significantly correlated (r = 0.732, p < 0.01) with zidovudine O-glucuronidation, a probe activity of UGT2B7, and the activity in the pooled HLM was prominently inhibited (58% of control) by gemfibrozil, an inhibitor of UGT2B7, we surmised that the reaction would mainly be catalyzed by UGT2B7. We could successfully estimate, using the concept of the relative activity factor, that the contributions of UGT1A4, UGT1A9, and UGT2B7 in HLM were approximately 10, 20, and 70%, respectively. The present study provides new insight into haloperidol glucuronidation, concerning the causes of interindividual differences in the efficacy and adverse reactions or drug-drug interactions. 相似文献
3.
Polymorphisms in UGT1A9 were associated with reduced toxicity and increased response to irinotecan in cancer patients. UDP-glucuronosyltransferase (UGT) protein expression, glucuronidation activities for 7-ethyl-10-hydroxycamptothecin (SN-38), and probe substrates of the UGT1A9 and UGT1A1 were measured in 48 human livers to clarify the role of UGT1A9 variants on the in vitro glucuronidation of SN-38. Genotypes were assessed for UGT1A9 (-2152C>T, -275T>A, and -118T(9>10)), three novel UGT1A9 variants (-5366G>T, -4549T>C, and I399C>T), and UGT1A1 (-53TA(6>7), -3156G>A, and -3279T>G). Of all the variants, the UGT1A9 I399C>T was associated with the most dramatic change in SN-38-glucuronide (SN-38G) (2.64-fold; p = 0.0007). Compared with UGT1A9 I399C/C, homozygous I399T/T presented elevated UGT1A1 and UGT1A9 proteins and higher glucuronidation of UGT1A9 and UGT1A1 substrates (p < 0.05). The very low linkage disequilibrium (r(2) < 0.19) between UGT1A9 I399 and all the other UGT1A1 and UGT1A9 variants suggests a direct effect or linkage to unknown functional variant(s) relevant to SN-38 glucuronidation. The UGT1A9 -118T(9/10) was also linked to alteration of SN-38 glucuronidation profiles in the liver (p < 0.05) and was associated with higher UGT1A1 protein (p = 0.03). However, UGT1A9 -118T(10) appears to have low functional impact as a result of the lack of correlation with UGT1A9 protein levels and a modest 1.4-fold higher reporter gene expression associated with the -118T(10) allele in HepG2 cells (p = 0.004). In contrast, the UGT1A9 -5366T, -4549C, -2152T, and -275A, associated with higher UGT1A9 protein (2-fold; p < 0.05), have no influence on SN-38G. Despite limitations resulting from sample size, results indicate that UGT1A9 I399 and -118T(9/10) may represent additional candidates in combination with UGT1A1 promoter haplotypes for the prediction of SN-38 glucuronidation profile in vivo. 相似文献
4.
7-ethyl-10-hydroxy-camptothecin (SN-38), the active metabolite of the anti-cancer agent irinotecan, contains a lactone ring that equilibrates with a carboxylate form. Since SN-38 lactone is the active and toxic form, it is prudent to examine whether the more soluble carboxylate is a surrogate for SN-38 lactone conjugation. Therefore, relative rates of glucuronidation and isoform specificity of SN-38 lactone and carboxylate were characterized. The stability of SN-38 lactone and carboxylate in incubation mixtures of microsomes and UDP-glucuronosyltransferase (UGT) isoforms was used to determine optimal incubation times. Microsomal incubations were conducted using rat and human intestinal and hepatic microsomes and human and rat recombinant UGT1A isoforms. Where estimates of lactone and carboxylate glucuronidation rates could not be established due to short incubation times and detection limits, kinetic modeling was used to recover these rate constants. The stability experiments revealed that the lactone was stabilized by rat microsomes, however, the opposite was observed in human microsomes and recombinant isoforms. For all tissues and most UGT isoforms examined, the lactone consistently had catalytic rates up to 6-fold greater than the carboxylate. The rank order of glucuronidation for both SN-38 lactone and carboxylate was 1A7 > 1A1 > 1A9 > 1A8 and 1A7 > 1A8 > 1A1 for human and rat isoforms, respectively. This study provides further support that SN-38 lactone and carboxylate may be considered pharmacokinetically distinct agents. The in vivo impact of this conjugation difference is unknown, since variations in protein binding and transport proteins may affect intracellular concentrations of the lactone or carboxylate. 相似文献
5.
Carvacrol (2-methyl-5-(1-methylethyl)-phenol), one of the main components occurring in many essential oils of the family Labiatae, has been widely used in food, spice and pharmaceutical industries. The carvacrol glucuronidation was characterized by human liver microsomes (HLMs), human intestinal microsomes (HIMs) and 12 recombinant UGT (rUGT) isoforms. One metabolite was identified as a mono-glucuronide by liquid chromatography/mass spectrometry with HLMs, HIMs, rUGT1A3, rUGT1A6, rUGT1A7, rUGT1A9 and rUGT2B7. The study with a chemical inhibition, rUGT, and kinetics study demonstrated that rUGT1A9 was the major isozyme responsible for glucuronidation in HLMs, and rUGT1A7 played a major role for glucuronidation in HIMs. 相似文献
6.
目的考察脂质体对7-乙基-10-羟基喜树碱(7-ethyl-10-hydroxycamptothecin,SN-38)活性形式的保护作用。方法建立测定SN-38活性形式的HPLC法,考察不同pH条件对SN-38活性与SN-38非活性形式相互转变动力学和平衡比例的影响;并研究了37℃的pH 7.4、8.0、9.0、10.0条件下脂质体对SN-38活性形式的保护作用。结果在pH<4.3的条件下,SN-38以其活性形式存在;在pH>9的条件下,SN-38主要以其非活性形式存在;在pH 6.5的条件下,SN-38活性和非活性形式之间相互转换最慢。包裹在脂质体内的SN-38在模拟生理条件下8 h活性形式质量分数仍大于98%。结论脂质体能够有效地保护SN-38α-羟基内酯环。 相似文献
7.
Carvacrol (2-methyl-5-(1-methylethyl)-phenol), one of the main components occurring in many essential oils of the family Labiatae, has been widely used in food, spice and pharmaceutical industries. The carvacrol glucuronidation was characterized by human liver microsomes (HLMs), human intestinal microsomes (HIMs) and 12 recombinant UGT (rUGT) isoforms. One metabolite was identified as a mono-glucuronide by liquid chromatography/mass spectrometry with HLMs, HIMs, rUGT1A3, rUGT1A6, rUGT1A7, rUGT1A9 and rUGT2B7. The study with a chemical inhibition, rUGT, and kinetics study demonstrated that rUGT1A9 was the major isozyme responsible for glucuronidation in HLMs, and rUGT1A7 played a major role for glucuronidation in HIMs. 相似文献
8.
Ferulic acid (FA), a member of the hydroxycinnamate family, is an abundant dietary antioxidant that may offer beneficial effects against cancer, cardiovascular disease, diabetes, osteoarthritis and Alzheimer's disease. In this study, evidence for sulfation and glucuronidation of FA was investigated upon incubation with human liver microsomes and cytosol. Two main glucuronides, M1 (ether O-glucuronide) and M2 (ester acylglucuronide), were formed with a similar affinity (apparent K(m) 3.53 and 5.15 mM, respectively). A phenol sulfoconjugate was also formed with a higher affinity (K(m) 0.53 mM). Identification of the UDP-glucuronosyltransferase (UGT) isoforms involved in FA glucuronidation was investigated with 12 human recombinant enzymes. FA was mainly glucuronidated by UGT1A isoforms and by UGT2B7. UGT1A4, 2B4, 2B15 and 2B17 failed to glucuronidate the substance. Examination of the kinetic constants revealed that FA was mainly glucuronidated by UGT1A1 at the two nucleophilic groups. UGT1A3 was able to glucuronidate these two positions with the same, but low, efficiency. UGT1A6 and 1A8 were involved in the formation of the ether glucuronide only, whereas UGT1A7, 1A10 and 2B7 preferentially glucuronidated the carboxyl group. Moreover, octyl gallate, a marker substrate of UGT1A1, competitively inhibited FA glucuronidation mediated by this isoform. Altogether, the results suggest that FA glucuronidation is primarily mediated by UGT1A1. 相似文献
9.
Polychlorinated biphenyls (PCBs) are highly toxic environmental contaminants that can cause irreversible damage in humans and wildlife. The mechanism of toxicity is not clear, but biotransformation products such as hydroxy PCBs (OH-PCBs) are a major concern. Efforts to elucidate the metabolism of PCBs and their metabolites, however, have paid little attention to the structure of the compound to be eliminated. The objectives of this study were to clarify organ tissue distribution of the glucuronidation activities toward OH-PCBs and to determine the UDP-glucuronosyltranseferase (UGT) isoforms responsible for glucuronidation in relation to the OH-PCB structure. 2,4,6-Trichlorobiphenyl and 2,3,4,5-tetrachlorobiphenyl were incubated in primary culture of rat hepatocytes, and the metabolites were identified by HPLC. Organ tissue glucuronidation activities toward 10 OH-PCBs were investigated by reactions of microsomes prepared from brain, liver, small and large intestine, lung, kidney, and testis tissues. To determine substrate specificity of the isoforms toward the OH-PCBs, rat UGT isoforms UGT1A1, UGT1A3, UGT1A5, UGT1A6, UGT1A7, UGT2B1, UGT2B3, and UGT2B12 were expressed in yeast strain AH22. Glucuronidation of the PCBs was found to be contingent on their hydroxylation. The organ tissues had strong glucuronidation activities toward the OH-PCBs tested; and most OH-PCBs were glucuronidated by UGT1A1, UGT1A6, and UGT2B1, all of which were substrate-specific. In conclusion, glucuronidation activities of UGT1A1, UGT1A6, and UGT2B1 toward OH-PCBs is relative to expression of the isoforms in each tissue, and glucuronidation intensity of the isoforms is relative to the structure of the OH-PCB to be glucuronidated. 相似文献
10.
目的考察7-乙基-10-羟基喜树碱(SN-38)脂质体经静脉注射后,在大鼠尿液、粪便中的代谢产物以及以SN-38原形药物排泄的量。方法大鼠尾静脉单次给予2.77 mg/kg SN-38脂质体,分别于0~6、6~12、12~24、24~48 h分段收集尿液、粪便,采用UPLC/Q-TOFMS法对SN-38脂质体在大鼠尿液、粪便中的代谢产物进行鉴定,并且建立HPLC法,用于大鼠尿液及粪便样品中SN-38原形药物的排泄量的测定。结果 SN-38脂质体的在大鼠体内的代谢产物经鉴定为SN-38G。48 h内脂质体组共有1.57%的原形药物经过尿液排出,共有12.94%的SN-38原形药物经过粪便排出。结论 SN-38脂质体只有少部分以原形药物经尿液和粪便排出体外。 相似文献
11.
7-乙基-10-羟基喜树碱(SN38)是伊立替康的活性代谢物,在体外的抗肿瘤效果是伊立替康的100~1 000倍。然而,SN38水溶性差、在pH>9.0时完全水解开环为不具有治疗效果的羧酸盐形式。SN38新型给药系统均可提高药物在各种不同癌症模型中的理化性质和体内性能,从而提高其抗肿瘤活性和减少不良反应。因此从物理封装、化学偶联和主动肿瘤靶向3种策略对基于SN38的新型给药系统进行介绍,为后续开发出有效SN38新型给药系统提供参考。 相似文献
12.
目的研究7-乙基-10-羟基喜树碱/聚乙二醇-聚天冬氨酸聚合物胶束(7-ethyl-10-hydroxycamptothecin/polyethylene glycol-polyaspartic acid polymer micelles,SN-38/PEG-pasp)在荷瘤小鼠体内的组织分布特点。方法采用LC-MS法测定荷瘤小鼠血浆和组织中7-乙基-10-羟基喜树碱(7-ethyl-10-hydroxycamptothecin,SN-38)的质量浓度,并用SPSS13.0统计学软件对测定的数据进行分析。结果药物在肿瘤组织中相对摄取率(r_e)达到10,远远高于其他组织,除去肝其余组织作为非靶向组织时,肿瘤的靶向效率(t_e)均大于1,呈现出明显的肿瘤靶向特征,胶束组药物在体内质量浓度排布顺序:肿瘤>肝>肺>脾>肾>心>血。结论 SN-38/PEG-pasp在肿瘤组织中药物浓度明显高于除肝脏外的其他各组织,具有明确的肿瘤靶向性。 相似文献
13.
Abstract1.?Leonurine is a potent component of herbal medicine Herba leonuri. The detail information on leonurine metabolism in human has not been revealed so far.2.?Two primary metabolites, leonurine O-glucuronide and demethylated leonurine, were observed and identified in pooled human liver microsomes (HLMs) and O-glucuronide is the predominant one.3.?Among 12 recombinant human UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A8, UGT1A9, and UGT1A10 showed catalyzing activity toward leonurine glucuronidation. The intrinsic clearance (CL int) of UGT1A1 was approximately 15-to 20-fold higher than that of UGT1A8, UGT1A9, and UGT1A10, respectively. Both chemical inhibition study and correlation study demonstrated that leonurine glucuronidation activities in HLMs had significant relationship with UGT1A1 activities.4.?Leonurine glucuronide was the major metabolite in human liver microsomes. UGT1A1 was principal enzyme that responsible for leonurine glucuronidation in human liver and intestine microsomes. 相似文献
14.
目的:制备透明质酸(HA)修饰7-乙基-10-羟基喜树碱纳米混悬液(S1C1),探究其抗肿瘤治疗作用,为纳米制剂临床应用提供参考。 方法:经电荷吸附法制备纳米混悬液(S1C1-HA);经动态光散射粒径仪进行制剂表征和粒径稳定性考察;运用高效液相色谱法(HPLC)测定S1C1-HA的包封率和载药量;采用噻唑蓝法考察游离纳米混悬液对4T1细胞的增殖抑制作用;运用3D多细胞肿瘤球考察纳米混悬剂的肿瘤球渗透力;通过考察纳米混悬液的体内药动学行为、脏器分布行为和抗肿瘤治疗,评价制剂的体内药效。 结果:S1C1-HA平均粒径138.04 nm,电位-8.03 mV,体外24 h内粒径稳定性良好,载药量5.44%,包封率90.07%;S1C1半数抑制浓度为S1C1-HA的4.59倍,S1C1-HA的肿瘤渗透能力显著增强;S1C1-HA的半衰期和药时曲线下面积为S1C1的5.55,17.12倍,其体内抗肿瘤治疗效果显著增强。 结论:修饰后S1C1-HA能显著增强药物的稳定性、细胞毒性、肿瘤渗透能力,有更优异的体内生物利用度和抗肿瘤治疗作用,S1C1-HA较S1C1更有临床应用潜力。 相似文献
15.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans. 相似文献
16.
目的:研究7-乙基-10-羟基喜树碱长循环脂质体(Lip-SN38)的制备方法以及在大鼠体内的药动学.方法:采用两步合成法制备脂质体空间稳定膜材甲氧基聚乙二醇.磷脂酰乙醇胺(mPEG-PE);同时采用薄膜分散法制备Lip-SN38;用阳离子交换树脂微型小柱层析法分离游离药物和脂质体,紫外分光光度法测定包封率;HPLC法测定大鼠血浆中药物浓度.结果:Lip-SN38平均粒径<200 nm,药物包封率>90%;48 h只有<30%的药物体外释放;大鼠尾静脉注射Lip-SN38,剂量为10 mg·kg-1,与SN3.8溶液剂相比,t1/2β增加4.61倍.结论:采用薄膜分散法可制得包封率高、粒径小的脂质体,mPEG-PE修饰磷脂膜可增加Lip-SN38的t1/2β,延长药物在血中的循环时间. 相似文献
17.
Flurbiprofen is a nonsteroidal anti-inflammatory drug used as a racemic mixture. Although glucuronidation is one of its elimination pathways, the role of UDP-glucuronosyltransferase (UGT) in this process remains to be investigated. Thus, the kinetics of the stereoselective glucuronidation of racemic (R,S)-flurbiprofen by recombinant UGT isozymes and human liver microsomes (HLMs) were investigated, and the major human UGT isozymes involved were identified. UGT1A1, 1A3, 1A9, 2B4, and 2B7 showed glucuronidation activity for both (R)- and (S)-glucuronide, with UGT2B7 possessing the highest activity. UGT2B7 formed the (R)-glucuronide at a rate 2.8-fold higher than that for (S)-glucuronide, whereas the other UGTs had similar formation rates. The glucuronidation of racemic flurbiprofen by HLMs also resulted in the formation of (R)-glucuronide as the dominant form, which occurred to a degree similar to that by recombinant UGT2B7 (2.1 versus 2.8). The formation of (R)-glucuronide correlated significantly with morphine 3-OH glucuronidation (r = 0.96, p < 0.0001), morphine 6-OH glucuronidation (r = 0.91, p < 0.0001), and 3'-azido-3'-deoxythymidine glucuronidation (r = 0.85, p < 0.0001), a reaction catalyzed mainly by UGT2B7, in individual HLMs. In addition, the formation of both glucuronides correlated significantly (r = 0.99, p < 0.0001). Mefenamic acid inhibited the formation of both (R)- and (S)-glucuronide in HLMs with similar IC(50) values (2.0 and 1.7 muM, respectively), which are close to those in recombinant UGT2B7. In conclusion, these findings suggest that the formation of (R)- and (S)-glucuronide from racemic flurbiprofen is catalyzed by the same UGT isozyme, namely UGT2B7. 相似文献
18.
CPT-11 is a clinically used cancer drug, and it is a prodrug of the potent topoisomerase I inhibitor, SN-38 (7-ethyl-10-hydroxycamptothecin). To bypass the need for the in vivo conversion of CPT-11 and increase the therapeutic index, bifunctional derivatives of SN-38 were prepared for use in antibody-based targeted therapy of cancer. The general synthetic scheme incorporated an acetylene-azide click cycloaddition step in the design, a short polyethylene glycol spacer for aqueous solubility, and a maleimide group for conjugation. Conjugates of a humanized anti-CEACAM5 monoclonal antibody, hMN-14, prepared using these SN-38 derivatives were evaluated in vitro for stability in buffer and human serum and for antigen-binding and cytotoxicity in a human colon adenocarcinoma cell line. Conjugates of hMN-14 and SN-38 derivatives 16 and 17 were found promising for further development. 相似文献
19.
Epirubicin is one of the most active agents for breast cancer. The formation of epirubicin glucuronide by liver UDP-glucuronosyltransferase (UGT) is its main inactivating pathway. This study aimed to investigate epirubicin glucuronidation in human liver microsomes, to identify the specific UGT isoform for this reaction, and to correlate epirubicin glucuronidation with other UGT substrates. Microsomes from human livers were used. UGTs specifically expressed in cellular systems, as well as two UGT2B7 variants, were screened for epirubicin glucuronidation. Epirubicin, morphine, and SN-38 glucuronides were measured by high-pressure liquid chromatography. The mean +/- S.D. formation rate of epirubicin glucuronide in human liver microsomes (n = 47) was 138 +/- 37 pmol/min/mg (coefficient of variation, 24%). This phenotype was normally distributed. We screened commercially available UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15 for epirubicin glucuronidation. Only UGT2B7 converted epirubicin to its glucuronide. No differences in epirubicin glucuronidation were found in HK293 cells expressing the two UGT2B7 variants at position 268. Catalytic efficiency (V(max)/K(m)) of epirubicin glucuronidation was 1.4 microl/min/mg, a value higher than that observed for morphine, a substrate of UGT2B7. Formation of epirubicin glucuronide was significantly related to that of morphine-3-glucuronide (r = 0.76, p < 0.001) and morphine-6-glucuronide (r = 0.73, p < 0.001). No correlation was found with SN-38, a substrate of UGT1A1 (r = 0.04). UGT2B7 is the major human UGT catalyzing epirubicin glucuronidation, and UGT2B7 is the candidate gene for this phenotype. The reported tyrosine to histidine polymorphism in UGT2B7 does not alter the formation rate of epirubicin glucuronide, and undiscovered genetic polymorphisms in UGT2B7 might change the metabolic fate of this important anticancer agent. 相似文献
|