首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: Microsatellite instability (MSI) testing of colorectal cancer tumors is used as a screening tool to identify patients most likely to be mismatch repair (MMR) gene mutation carriers. We wanted to examine which microsatellite markers currently used to detect MSI best predict early-onset colorectal cancer caused by germ-line mutations in MMR genes. EXPERIMENTAL DESIGN: Invasive primary tumors from a population-based sample of 107 cases of colorectal cancer diagnosed before age 45 years and tested for germ-line mutations in MLH1, MSH2, MSH6, and PMS2 and MMR protein expression were screened for MSI using the National Cancer Institute panel and an expanded 10-microsatellite marker panel. RESULTS: The National Cancer Institute five-marker panel system scored 31 (29%) as (NCI)MSI-High, 13 (12%) as (NCI)MSI-Low, and 63 (59%) as (NCI)MS-Stable. The 10-marker panel classified 18 (17%) as (10)MSI-High, 17 (16%) as (10)MSI-Low, and 72 (67%) as (10)MS-Stable. Of the 26 cancers that lacked the expression of at least one MMR gene, 24 (92%) were positive for some level of MSI (using either microsatellite panel). The mononucleotide repeats Bat26, Bat40, and Myb were unstable in all (10)MSI-High cancers and all MLH1 and MSH2 mutation carriers (100% sensitive). Bat40 and Bat25 were unstable in all tumors of MSH6 mutation carriers (100% sensitive). Bat40 was unstable in all MMR gene mutation carriers (100% sensitive). By incorporating seven mononucleotide repeats markers into the 10-marker panel, we were able to distinguish the carriers of MSH6 mutations (all scored (10)MSI-Low) from the MLH1 and MSH2 mutation carriers (all scored (10)MSI-High). CONCLUSIONS: In early-onset colorectal cancer, a microsatellite panel containing a high proportion of mononuclear repeats can distinguish between tumors caused by MLH1 and MSH2 mutations from those caused by MSH6 mutations.  相似文献   

2.
Microsatellite instability-high (MSI-H) and tumor mutational burden (TMB) are predictive biomarkers for immune-checkpoint inhibitors (ICIs). Still, the relationship between the underlying cause(s) of MSI and TMB in tumors remains poorly defined. We investigated associations of TMB to mismatch repair (MMR) protein expression patterns by immunohistochemistry (IHC) and MMR mutations in a diverse sample of tumors. Hypothesized differences were identified by the protein/gene affected/mutated and the tumor histology/primary site. Overall, 1057 MSI-H tumors were identified from the 32 932 tested. MSI was examined by NGS using 7000+ target microsatellite loci. TMB was calculated using only nonsynonymous missense mutations sequenced with a 592-gene panel; a subset of MSI-H tumors also had MMR IHC performed. Analyses examined TMB by MMR protein heterodimer impacted (loss of MLH1/PMS2 vs. MSH2/MSH6 expression) and gene-specific mutations. The sample was 54.6% female; mean age was 63.5 years. Among IHC tested tumors, loss of co-expression of MLH1/PMS2 was more common (n = 544/705, 77.2%) than loss of MSH2/MSH6 (n = 81/705, 11.5%; P < .0001), and was associated with lower mean TMB (MLH1/PMS2: 25.03 mut/Mb vs MSH2/MSH6 46.83 mut/Mb; P < .0001). TMB also varied by tumor histology: colorectal cancers demonstrating MLH1/PMS2 loss had higher TMBs (33.14 mut/Mb) than endometrial cancers (20.60 mut/Mb) and other tumors (25.59 mut/Mb; P < .0001). MMR gene mutations were detected in 42.0% of tumors; among these, MSH6 mutations were most common (25.7%). MSH6 mutation patterns showed variability by tumor histology and TMB. TMB varies by underlying cause(s) of MSI and tumor histology; this heterogeneity may contribute to differences in response to ICI.  相似文献   

3.
Synthetic lethal approaches to cancer treatment have the potential to deliver relatively large therapeutic windows and therefore significant patient benefit. To identify potential therapeutic approaches for cancers deficient in DNA mismatch repair (MMR), we have carried out parallel high-throughput RNA interference screens using tumor cell models of MSH2- and MLH1-related MMR deficiency. We show that silencing of the PTEN-induced putative kinase 1 (PINK1), is synthetically lethal with MMR deficiency in cells with MSH2, MLH1, or MSH6 dysfunction. Inhibition of PINK1 in an MMR-deficient background results in an elevation of reactive oxygen species and the accumulation of both nuclear and mitochondrial oxidative DNA lesions, which likely limit cell viability. Therefore, PINK1 represents a potential therapeutic target for the treatment of cancers characterized by MMR deficiency caused by a range of different gene deficiencies.  相似文献   

4.
Background: Lynch syndrome increases lifetime risk of endometrial cancer to 40-60%. Screening with molecular tumor testing for mismatch repair (MMR) proteins have been recommended. This study aims to evaluate the incidence of MMR deficiency and germline mutation in endometrial cancer Thai patients. Methods: Immunohistochemistry for MMR proteins, including MLH1, MSH2, MSH6 and PMS2 were tested in 166 surgical specimens. Patients who had MMR deficiencies were offered genetic counseling and a germline testing using gene-panel next generation sequencing. Results: Fifty-eight of 166 patients (34.9%) had one or more MMR deficiencies which were: MLH1 and PMS2 in 42 patients (25.3%), MSH2 and MSH6 in 11 patients (6.6%), and MSH6 in 5 patients (3.0%). Of the 40 patients (24.1%) who met the revised Bethesda guidelines, 19 patients (47.5%) had MMR deficiency. In contrast, MMR deficiency was found in 39 of the 126 patients (31.0%) who did not meet the revised Bethesda guidelines. A total of 27 patients with MMR deficiencies agreed to have germline genetic testing. Germline MMR mutations were detected in 5 patients (18.5%) including MSH6 (n=2), PMS2 (n=2), and MLH1 mutations (n=1). Incidental germline mutations in other genes were detected in 3 patients (1 BRCA1, 1 PTEN, and 1 BARD1). Among 5 Lynch syndrome patients, 2 patients (40%) did not meet the revised Bethesda guidelines. Eight patients who met the revised Bethesda Guidelines but having MMR proficiency had genetic testing, but no germline mutation was detected. Conclusion: MMR deficiencies were detected in 34.9% of the endometrial cancer patients. Germline mutations were diagnosed in 3.0% of this cohort (5/166 patients). Lynch syndrome screening with MMR immunohistochemistry should be considered in all patients regardless of personal or family history of Lynch syndrome-related cancers.  相似文献   

5.
目的:分析结直肠癌组织微卫星不稳定(MSI)状态及其与临床病理参数之间的相关性。方法:利用免疫组化法检测MLH1、MSH2、MSH6、PMS2错配修复蛋白的表达,分析441例结直肠癌组织的MSI状态。结果:免疫组化检测发现,441例结直肠癌中,微卫星稳定(MSS)为375例,MLH1、MSH2、MSH6、PMS2错配修复蛋白任一表达缺失共66例,占14.97%(66/441);其中MLH1、MSH2、MSH6、PMS2单一表达缺失率分别为1.4%(6/441)、0.2%(1/441)、0.7%(3/441)、2.3%(10/441);MLH1和PMS2同时表达缺失率9.1%(40/441),MSH2和MSH6同时表达缺失率1.1%(5/441),MSH6和PMS2同时表达缺失率0.2%(1/441)。结直肠癌患者MSI与MSS在民族、肿瘤部位、分化程度、T分期、N分期、肿瘤大小等临床病理特征方面存在差异,而在性别、年龄、大体类型、病理类型、M分期、临床分期、神经和脉管侵犯方面均无明显差异。结论:新疆少数民族、右半结肠、低分化、T4、N0、肿瘤>5 cm的结直肠癌患者更易发生MSI。  相似文献   

6.
BACKGROUND: The human Mut-L-Homologon-1 (MLH1) and Mut-S-Homologon-2 (MSH2) are post replication mismatch repair (MMR) genes. METHODS: We examined the correlation of the clinical features of 122 patients with esophageal squamous cell carcinoma (ESCC) with the expression of MLH1 and MSH2 by immunohistochemical analysis. RESULTS: According to our criteria, 34 and 25 cases did not express MLH1 and MSH2, respectively. Expression of both the MLH1 and MSH2 gene products was observed in 73 (59.8%) cases; loss of MLH1 or MSH2 expression was detected in 35(28.7%) cases. Fourteen (11.5%) cases demonstrated loss of both MLH1 and MSH2 expression in ESCC. Loss of MLH1 and/or MSH2 gene expression significantly correlated with increases in malignancy, as evidenced by increases in the existence of metastatic lymph nodes (P = 0.0056), extensive invasion (P = 0.0007), and poor differentiation (P = 0.0992). The MLH1-negative patients had a significantly poorer prognosis than those in the MLH1-positive group (P = 0.0043). Similar results were observed for MSH2 expression (P = 0.0002). Patients both MLH1 and MSH2 negative exhibited the most poor clinical outcome than other patients (P < 0.0001). CONCLUSION: We conclude that MMR protein expression, detected by immunohistochemistry, is a useful marker providing information necessary to decide appropriate therapeutic strategies in patients with ESCC.  相似文献   

7.
Defects in DNA mismatch repair (MMR) are associated with a predisposition to tumorigenesis and with drug resistance owing to high mutation rates and failure to engage DNA-damage-induced apoptosis. DNA minor groove binders (MGBs) are a class of anticancer agents highly effective in a variety of human cancers. Owing to their mode of action, DNA MGB-induced DNA damage may be a substrate for DNA MMR. This study was aimed at investigating the effect of loss of MMR on the sensitivity to brostallicin (PNU-166196), a novel synthetic alpha-bromoacrylic, second-generation DNA MGB currently in Phase II clinical trials and structurally related to distamycin A. Brostallicin activity was compared to a benzoyl mustard derivative of distamycin A (tallimustine). We report that the sensitivities of MLH1-deficient and -proficient HCT116 human colon carcinoma cells were comparable after treatment with brostallicin, while tallimustine resulted in a three times lower cytotoxicity in MLH1-deficient than in -proficient cells. MSH2-deficient HEC59 parental endometrial adenocarcinoma cells were as sensitive as the proficient HEC59+ch2 cells after brostallicin treatment, but were 1.8-fold resistant after tallimustine treatment as compared to the MSH2-proficient HEC59+ch2 counterpart. In addition, p53-deficient mouse fibroblasts lacking PMS2 were as sensitive to brostallicin as PMS2-proficient cells, but were 1.6-fold resistant to tallimustine. Loss of neither ATM nor DNA-PK affected sensitivity to brostallicin in p53-deficient mouse embryonic fibroblasts, indicating that brostallicin-induced cytotoxicity in a p53-deficient genetic background does not seem to require these kinases. These data show that, unlike other DNA MGBs, MMR-deficient cells retain their sensitivity to this new alpha-bromoacrylic derivative, indicating that brostallicin-induced cytotoxicity does not depend on functional DNA MMR. Since DNA MMR deficiency is common in numerous types of tumours, brostallicin potentially offers the advantage of being effective against MMR-defective tumours that are refractory to several anticancer agents.  相似文献   

8.
背景与目的:缺氧对DNA错配修复系统(mismatch repair, MMR)活性的调控是肿瘤细胞遗传不稳定的重要原因,但其机制尚不完全清楚.本研究拟观察缺氧状态下人小细胞肺癌H446细胞DNA错配修复基因MLH1、MSH2的表达变化,初步探讨DNA甲基化在其中的作用.方法:应用RT-PCR、Western blot等方法检测H446细胞在缺氧状态下以及甲基转移酶抑制剂5-氮杂-2′-脱氧胞苷(5-Aza-CdR)处理后MLH1、MSH2基因的表达水平,同时,采用甲基化特异性PCR(MSP)方法检测MLH1、MSH2基因启动子CpG岛甲基化状态.结果:缺氧状态下,H446细胞MLH1、MSH2基因在转录和翻译水平均显著性降低.同时,随着缺氧时间延长,MLH1基因启动子逐渐由非甲基化状态、部分甲基化状态转变为完全甲基化状态,而MSH2基因启动子则直接由非甲基化状态转变为完全甲基化状态.甲基转移酶抑制剂5-Aza-CdR可使MLH1、MSH2基因表达水平有所恢复,但去除5-Aza-CdR后其表达再次下调.结论:启动子甲基化可能是缺氧诱导H446细胞显著性下调MLH1、MSH2基因表达的重要机制,甲基转移酶抑制剂5-Aza-CdR可恢复其表达.  相似文献   

9.
Loss of mismatch repair (MMR) capacity may represent an important tumor initiating mechanism in ovarian cancer. We conducted a systematic review to analyze the frequency of microsatellite instability (MSI), immunohistochemical (IHC) staining for MMR proteins, and hypermethylation of the MLH1 promoter region in ovarian cancers. Studies examining MSI, loss of MMR gene expression by IHC staining and MLH1 promoter hypermethylation in ovarian cancer were identified by a systematic literature search of the PubMed electronic database through August 31, 2009. Pertinent data was extracted from eligible studies and estimates for pooled proportions were computed using random effects models. The pooled proportion of MSI detection was 0.10 (95% CI, 0.06-0.14) among 1,234 cases in 22 studies. Dinonucleotide markers had a higher frequency of instability than mononucleotide markers. The pooled proportion of MLH1 or MSH2 staining loss was 0.06 (95% CI, 0.01-0.17) among 474 cases in three studies, with a higher frequency of loss in MLH1. The pooled proportion of MLH1 methylation was 0.10 (95% CI, 0.06-0.15) among 672 cases in seven studies. Data reporting MSI and loss of MMR staining in the same cases was limited. Although MMR deficiency was found in all histologic subtypes, endometrioid cancers had the highest proportion. Approximately 10% of unselected ovarian cancers are related to MMR deficiency. While MMR deficiency is associated with improved survival in other MMR-deficiency related cancer sites, epidemiological and clinical factors related to the MMR-deficient phenotype have not been adequately studied in ovarian cancer to date.  相似文献   

10.
Human mismatch repair (MMR) genes encode highly conserved interacting proteins that correct replication errors predisposing to hereditary gastrointestinal and genitourinary malignancies. A subset of sporadic genitourinary tumors also exhibits MMR deficiency and can be identified by measuring the frequency of microsatellite instability (MSI) in cancer cell DNA. We investigated expression of the two most commonly mutated MMR genes, MSH2 and MLH1, in sporadic testicular germ cell tumor (GCT) in order to: (1) determine the expression pattern of MSH2 and MLH1 proteins in normal seminiferous tubules and histologically distinct GCT subtypes, (2) correlate MMR gene expression with genetic instability in GCT and (3) develop a panel of molecular markers that can identify genetically distinct subsets of GCT for prognostic assessment. MSH2 and MLH1 had differential staining patterns in normal seminiferous tubules and malignant tissues. MSH2 was expressed in all stages of spermatogenesis up to but excluding mature sperm whereas MLH1 was predominantly expressed in premeiotic germ cells. All histological GCT subtypes showed differential immunostaining for MSH2 and MLH1 however pure seminoma had statistically significant fewer low MSH2 staining tumors than other subtypes (p = 0.046). Twenty-five percent of GCT exhibited increased frequency of MSI (MSI+ tumors) with 73, 70 and 43% of MSI+ tumors exhibiting low MSH2, low MLH1 or low MSH2 and low MLH1 staining respectively. Fifteen percent of testicular GCT exhibited loss of heterozygosity (LOH) but no MSI (LOH only tumors). Only 28, 17 or 6% of LOH only tumors exhibited low MSH2, low MLH1 or low MSH2 and low MLH1 staining respectively.  相似文献   

11.
Although there is a relationship between DNA repair deficiency and temozolomide (TMZ) resistance in glioblastoma (GBM), it remains unclear which molecule is associated with GBM recurrence. We isolated three TMZ-resistant human GBM cell lines and examined the expression of O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair (MMR) components. We used immunohistochemical analysis to compare MutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2) and MGMT expression in primary and recurrent GBM specimens obtained from GBM patients during TMZ treatment. We found a reduction in MLH1 expression and a subsequent reduction in PMS2 protein levels in TMZ-resistant cells. Furthermore, MLH1 or PMS2 knockdown confered TMZ resistance. In recurrent GBM tumours, the expression of MLH1 and PMS2 was reduced when compared to primary tumours.  相似文献   

12.
Hereditary non-polyposis colorectal cancer (HNPCC) represents 1-3% of all colorectal cancers. HNPCC is caused by a constitutional defect in a mismatch repair (MMR) gene, most commonly affecting the genes MLH1, MSH2 and MSH6. The MMR defect results in an increased cancer risk, with the greatest lifetime risk for colorectal cancer and other cancers associated to HNPCC. The HNPCC-associated tumor phenotype is generally characterized by microsatellite instability (MSI) and immunohistochemical loss of expression of the affected MMR protein. The aim of this study was to determine the sensitivity of IHC for MLH1, MSH2 and MSH6, and MSI analysis in tumors from known MMR gene mutation carriers. Fifty-eight paired normal and tumor samples from HNPCC families enrolled in our high-risk colorectal cancer registry were studied for the presence of germline mutations in MLH1, MSH2 and MSH6 by DGGE and direct sequencing. MSI analysis and immunostaining for MLH1, MSH2 and MSH6 were evaluated. Of the 28 patients with a real pathogenic mutation, loss of immunohistochemical expression for at least 1 of these MMR proteins was found, and all except 1 have MSI-H. Sensitivity by MSI analysis was 96%. IHC analysis had a sensitivity of 100% in detecting MMR deficiency in carriers of a pathogenic MMR mutation, and can be used to predict which gene is expected to harbor the mutation for MLH1, MSH2 and MSH6. This study suggests that both analyses are useful for selecting high-risk patients because most MLH1, MSH2 and MSH6 gene carriers will be detected by this 2-step approach. This practical method should have immediate application in the clinical work of patients with inherited colorectal cancer syndromes.  相似文献   

13.
14.
Human DNA mismatch repair (MMR) is involved in the response to certain chemotherapy drugs, including 6-thioguanine (6-TG). Consistently, MMR-deficient human tumor cells show resistance to 6-TG damage as manifested by a reduced G(2)-M arrest and decreased apoptosis. In this study, we investigate the role of the BRCA1 protein in modulating a 6-TG-induced MMR damage response, using an isogenic human breast cancer cell line model, including a BRCA1 mutated cell line (HCC1937) and its transfectant with a wild-type BRCA1 cDNA. The MMR proteins MSH2, MSH6, MLH1, and PMS2 are similarly detected in both cell lines. BRCA1-mutant cells are more resistant to 6-TG than BRCA1-positive cells in a clonogenic survival assay and show reduced apoptosis. Additionally, the mutated BRCA1 results in an almost complete loss of a G(2)-M cell cycle checkpoint response induced by 6-TG. Transfection of single specific small interfering RNAs (siRNA) against MSH2, MLH1, ATR, and Chk1 in BRCA1-positive cells markedly reduces the BRCA1-dependent G(2)-M checkpoint response. Interestingly, ATR and Chk1 siRNA transfection in BRCA1-positive cells shows similar levels of 6-TG cytotoxicity as the control transfectant, whereas MSH2 and MLH1 siRNA transfectants show 6-TG resistance as expected. DNA MMR processing, as measured by the number of 6-TG-induced DNA strand breaks using an alkaline comet assay (+/-z-VAD-fmk cotreatment) and by levels of iododeoxyuridine-DNA incorporation, is independent of BRCA1, suggesting the involvement of BRCA1 in the G(2)-M checkpoint response to 6-TG but not in the subsequent excision processing of 6-TG mispairs by MMR.  相似文献   

15.
16.
背景与目的:林奇综合征(Lynch syndrome,LS)相关的子宫内膜癌有着独特的临床病理学特征及治疗手段。对新发子宫内膜癌患者采用免疫组织化学(immunohistochemistry,IHC)染色的方法检测错配修复(mismatch repair,MMR)蛋白表达情况,可以有效地筛查LS相关的癌症患者。本研究探讨MMR蛋白(MLH1、MSH2、MSH6及PMS2)在子宫内膜样腺癌中的表达情况及其与患者临床病理学特征的关系。方法:收集中国医科大学盛京医院2018年1月—2020年8月共515例子宫内膜样腺癌连续性病例为研究对象,年龄范围为28 ~ 81(57.73±8.41)岁。采用IHC染色的方法检测癌组织中MLH1、MSH2、MSH6和PMS2蛋白表达情况,应用聚合酶链式反应(polymerase chain reaction,PCR)方法对MLH1蛋白表达缺失的标本进行基因的甲基化检测,并且分析MMR蛋白表达缺失情况与子宫内膜样腺癌临床病理学特征的关系。只要有一种MMR蛋白表达缺失即判定为MMR蛋白错配修复缺陷(deficient mismatch repair,dMMR),蛋白全部阳性则判定为MMR表达完整(proficient mismatch repair,pMMR)。结果:515例子宫内膜样腺癌中有138例(26.8%)发生MMR蛋白表达缺失,MLH1、PMS2、MSH2及MSH6蛋白表达缺失率分别是16.3%(84/515)、19.0%(98/515)、5.4%(28/515)、8.0%(41/515)。MMR蛋白的缺失以MLH1和PMS2联合表达缺失(60.9%,84/138)为主;其次为MSH2和MSH6联合表达缺失(18.8%,26/138);MSH2、MSH6和PMS2联合表达缺失有2例(1.4%,2/138);PMS2、MSH2和MSH6蛋白单独表达缺失比例分别为8.0%(11/138)、1.4%(2/138)、10.1%(14/138)。对27例MLH1蛋白表达缺失标本进行甲基化检测,结果显示,阳性率为85.2%(23/27)。515例子宫内膜样腺癌组织中的MMR蛋白表达缺失与患者发病年龄、国际妇产科联合会(The International Federation of Gynecology and Obstetrics,FIGO)分期、组织学分化程度、浸润深度、脉管转移、神经侵犯、淋巴结转移、p53异常表达、肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte,TIL)及肿瘤伴瘤周淋巴细胞有相关性,而与是否累及子宫下段无关。与pMMR的患者相比,dMMR的患者发病年龄更小,FIGO临床分期多为Ⅲ ~ Ⅳ期,组织学分化程度多为低分化,肿瘤多无肌层浸润,肿瘤多出现脉管神经侵犯及淋巴结转移,肿瘤浸润淋巴细胞增多,且肿瘤伴瘤周淋巴细胞更显著,MSH6蛋白缺失患者多无p53异常表达。结论:dMMR的子宫内膜样腺癌患者具有独特的临床病理学特征。应用免疫组织化学染色方法检测MMR蛋白表达情况,并对MLH1表达缺失的标本进行基因甲基化检测,能初步筛查LS患者,对肿瘤患者免疫治疗具有一定指导意义。  相似文献   

17.
Defects in the DNA mismatch repair (MMR) pathway have recently been shown to be associated with resistance to several of the cytotoxic drugs used in the treatment of children with acute lymphoblastic leukaemia (ALL). We have assessed the MMR status of a range of leukaemic cell lines using an in vitro repair assay and correlated this with protein expression of the best characterized components of the system. We have also assessed MMR in leukaemic blasts from a limited panel of children with ALL and related this to Ki67 expression as a measure of proliferative capacity. Out of nine leukaemic cell lines tested, five of the seven lymphoid lines showed little or no repair using the in vitro assay and had low MMR protein expression. In three (NALM-6, Reh and MOLT 4) MMR defects have not been previously reported. Immunohistochemistry of clinical samples showed a wide range of expression of MLH1, MSH2 and Ki67 in nine cases studied at presentation, with a highly statistically significant correlation between MLH1 and Ki67 expression (r(2) = 0.96, P < 0.0001, Pearson correlation). Western blotting demonstrated high expression of MLH1, PMS2, MSH2 and MSH6 proteins. In vitro analysis of G.T repair using lymphoblast cytosol from the same patients showed a wide range of proficiency, which was markedly reduced in one case studied at relapse. These results suggest that MMR defects are more common in leukaemic cell lines and acute lymphoblastic leukaemias than previously thought.  相似文献   

18.
Mutations of the mismatch repair (MMR) genes MLH1 and MSH2 are associated with hereditary nonpolyposis colorectal cancer (HNPCC), a highly penetrant autosomal dominant condition characterized by hypermutability of short tandemly repeated sequences in tumor DNA. Mutations of another MMR gene, MSH6, seem to be less common than MLH1 and MSH2 defects, and have been mostly observed in atypical HNPCC families, characterized by a weaker tumor family history, higher age at disease onset, and low degrees of microsatellite instability (MSI), predominantly involving mononucleotide runs. We have investigated the MSH6 gene sequence in the peripheral blood of 4 HNPCC and 20 atypical HNPCC probands. Two frameshift mutations within exon 4 were detected in 2 patients. One mutation was found in a proband from a typical HNPCC family, who had developed a colorectal cancer (CRC), a gastric cancer and a rectal adenoma. The CRC and the adenoma showed mild MSI limited to mononucleotide tracts, while the gastric carcinoma was microsatellite stable. The other mutation was detected in an atypical HNPCC proband, whose CRC showed widespread MSI involving both mono- and dinucleotide repeats. The phenotypic variability associated with MSH6 constitutional mutations represents a complicating factor for the optimization of strategies aimed at identifying candidates to MSH6 genetic testing.  相似文献   

19.
The mechanisms driving the inverse association between recreational physical activity (RPA) and breast cancer risk are complex. While exercise is associated with increased reactive oxygen species production it may also improve damage repair systems, particularly those that operate on single‐strand breaks including base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR). Of these repair pathways, the role of MMR in breast carcinogenesis is least investigated. Polymorphisms in MMR or other DNA repair gene variants may modify the association between RPA and breast cancer incidence. We investigated the individual and joint effects of variants in three MMR pathway genes (MSH3, MLH1 and MSH2) on breast cancer occurrence using resources from the Long Island Breast Cancer Study Project. We additionally characterized interactions between RPA and genetic polymorphisms in MMR, BER and NER pathways. We found statistically significant multiplicative interactions (p < 0.05) between MSH2 and MLH1, as well as between postmenopausal RPA and four variants in DNA repair (XPC‐Ala499Val, XPF‐Arg415Gln, XPG‐Asp1104His and MLH1‐lle219Val). Significant risk reductions were observed among highly active women with the common genotype for XPC (OR = 0.54; 95% CI, 0.36–0.81) and XPF (OR = 0.62; 95% CI, 0.44–0.87), as well as among active women who carried at least one variant allele in XPG (OR = 0.46; 95% CI, 0.29–0.77) and MLH1 (OR = 0.46; 95% CI, 0.30–0.71). Our data show that women with minor alleles in both MSH2 and MLH1 could be at increased breast cancer risk. RPA may be modified by genes in the DNA repair pathway, and merit further investigation.  相似文献   

20.
The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号