首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
AIM: To assess the potential value of imaging the Achilles tendon with ultrashort echo time (UTE) pulse sequences. MATERIALS AND METHODS: Four normal controls and four patients with chronic Achilles tendinopathy were examined in the sagittal and transverse planes. Three of the patients were examined before and after intravenous gadodiamide. RESULTS: The fascicular pattern was clearly demonstrated within the tendon and detail of the three distinct fibrocartilaginous components of an "enthesis organ" was well seen. T2* measurements showed two short T2* components. Increase in long T2 components with reduction in short T2 components was seen in tendinopathy. Contrast enhancement was much more extensive than with conventional sequences in two cases of tendinopathy but in a third case, there was a region of reduced enhancement. CONCLUSION: UTE pulse sequences provide anatomical detail not apparent with conventional sequences, demonstrate differences in T2* and show patterns of both increased and decreased enhancement in tendinopathy.  相似文献   

2.
目的 探讨3D超短回波时间(UTE)舣回波脉冲序列成像的相关成像参数及后处理技术对图像质量的影响.方法 对主要含短T2成分的人于燥股骨标本及一组健康志愿者的胫骨、膝关节、踝部肌腱行MR 3D UTE舣回波脉冲序列成像.通过计算、比较图像的信噪比(SNR)或对比噪声比(CNR)及对图像伪影的分析,探讨系统内部不同轨道延迟时间(-6、-3、-2、-1、0、1、2、3 s)、不同反转角(4°、8°、12°、16°、20°、24°)、不同TE1(0.08、0.16、0.24、0.35 ms)及不同后处理技术(超短回波减影差异图、容积超短回波减影差异图)对图像质量的影响.结果 骨皮质、骨膜、半月板、肌腱、韧带等在UTE图像上表现为高信号.所设的不同轨道延迟时间中,获得最佳SNR的轨道延迟时阳间为2 s.活体人UTE成像的最佳反转角为8°~12°.不同TE1时间的图像质量不同,TE1为0.08 ms时,图像的CNR最佳.随TE1时阳延长,图像伪影逐渐增多.将原始双回波图经多平面重组后再相减(容积超短回波减影差异图),图像SNR明显增加.结论 短T2成分在3D UTE双回波脉冲序列成像上表现为高信号.通过改变反转角和将2次回波图像经MPR后再相减可增加图像SNR.缩短TE1时间可增加图像质量.
Abstract:
Objective To investigate the effect of imaging parameters and postprocessing methods on the quality of MR imaging of short T2 components with 3D ultrashort TE (UTE) double echo pulse sequence. Methods 3D UTE double echo pulse sequence was performed on dry human femoral specimen and the tibial diaphyses, knee joints, and tendons of ankles of a group of healthy volunteers. To investigate the effect of different trajectory delays of the imaging system(-6, -3, -2, - 1,0, 1,2, 3 s), different flip angles(4°, 8°, 12°, 16°, 20°, 24°), different TEs (0. 08, 0. 16, 0. 24, 0. 35 ms)and different postprocessing methods(difference imaging of subtracted volume and non-volume UTE)on the 3D UTE MR imaging quality, the SNR and CNR were calculated and compared, and the artifacts of the images were analysed. Results The cortical bone, periosteum, tendon and meniscus showed high signal intensity on the images of UTE pulse sequence. The best SNR was acquired with 2 s trajectory delay. The best flip angle was 8° to 12° for the human UTE imaging in vivo. The highest CNR was obtained from the TE of 0. 08 ms. The longer the TE was, the more artifacts appeared. The SNR of difference imagewas improved when image subtraction was performed afer multiplanar reconstruction (MPR) of the primary double echo images.Conclusions The short T2 components show high signal intensity on the MRI of 3D UTE double echo pulse sequence. The imaging quality can be improved by shortening TE, using appropriate flip angle and performing subtraction for difference image after MPR of the primary double echo images.  相似文献   

3.
The objective of this study was to demonstrate the red and white zones of the meniscus of the knee using MRI. Ultrashort echo time (UTE) pulse sequences with an initial TE of 0.08 ms and later echoes at 5.95 ms, 11.08 ms and 17.70 ms were used to image the meniscus of the knee in two normal subjects before and after intravenous administration of gadodiamide. Difference images were formed by subtraction of later echo images from the first. The difference images showed obvious enhancement in an area consistent in location and dimensions with the red zone of the meniscus. Regions of interest placed within this area, central to it (corresponding to the white zone), and peripheral to it (corresponding to perimeniscal tissue) all showed increases in signal intensity after intravenous contrast administration. The greatest change in signal intensity in these regions of interest was seen with the shortest TE and in perimeniscal tissue on the original images. The increase in signal intensity was greatest in the red zone on the difference images. Using UTE pulse sequences and difference images derived from them, it is possible to visualize enhancement selectively in the red zone of the meniscus. Less obvious but significant changes in signal intensity were also present in the white zone.  相似文献   

4.
PURPOSE: To assess the values of pulse sequences with ultrashort echo times (0.08 msec) for detecting and characterizing periosteum. MATERIALS AND METHODS: Two normal volunteers aged 33 and 58 years and 12 patients aged seven to 55 years were studied. A total of 10 of the patients had contrast enhancement with intravenous Gadodiamide. Two ovine tibias were examined before and after the periosteum was stripped from the bone. RESULTS: High signal regions were observed adjacent to cortical bone in all parts of the skeleton imaged. They were generally more conspicuous after fat suppression and contrast administration. In the ovine tibia there was a reduction in the high signal normally seen at the surface of the bone after periosteal stripping. The detached periosteum produced a high signal. Mean T(2)* values for adult human periosteum ranged from 5.3 to 11.4 msec. After enhancement the signal intensity increased. In two patients with tibial fractures, increased periosteal signal was seen and this showed marked enhancement. Signals from periosteum could be simulated by fat, contrast-enhanced blood and artifacts. CONCLUSION: The periosteum can be visualized with ultrashort echo time pulse sequences in health and disease.  相似文献   

5.
骨关节系统主要由短T_2组织构成,在常规MRI检查中常表现为低信号或无信号。超短回波时间(UTE)序列是研究短T_2组织最常用的成像技术,短T_2组织在UTE影像上表现为高信号。对UTE成像技术的基本原理进行介绍,并综述其在骨皮质、骨膜、肌腱和韧带、关节软骨和半月板中的具体应用。  相似文献   

6.
PURPOSE: To assess the feasibility of imaging the liver in volunteers and patients with ultrashort echo time (UTE) pulse sequences. MATERIALS AND METHODS: Seven normal controls as well as 12 patients with biopsy-proven generalized liver disease and three patients with focal disease were examined using pulse sequences with initial TEs of 0.08 msec followed by three later echoes, with or without frequency-based fat suppression. T(2)* values were calculated from regions of interest in the liver. RESULTS: Good image quality was obtained in each subject. There was a highly significant difference in the mean T(2)* values between the normal controls and patients with generalized liver disease (P = 0.001). T(2)* was significantly decreased in hemochromatosis (P = 0.002) and increased in cirrhosis (P = 0.04), compared with controls. T(2)* also correlated with functional status assessed by Child's grade (P = 0.001). A hepatocellular carcinoma showed reduced short T(2) components in the region of thermal ablation and evidence of a subcapsular hematoma which were not apparent with conventional imaging. CONCLUSIONS: Imaging of the liver with UTE sequences showed good image quality and tolerance of abdominal motion. T(2)* was specifically correlated with the presence of hemochromatosis, cirrhosis, and functional grade. Imaging of short T(2) relaxation components may provide useful information in disease.  相似文献   

7.
ObjectiveTo evaluate the signal intensity of the periosteum using ultrashort echo time pulse sequence with three-dimensional cone trajectory (3D UTE) with or without fat suppression (FS) to distinguish from artifacts in porcine tibias.Materials and MethodsThe periosteum and overlying soft tissue of three porcine lower legs were partially peeled away from the tibial cortex. Another porcine tibia was prepared as three segments: with an intact periosteum outer and inner layer, with an intact periosteum inner layer, and without periosteum. Axial T1 weighted sequence (T1 WI) and 3D UTE (FS) were performed. Another porcine tibia without periosteum was prepared and subjected to 3D UTE (FS) and T1 WI twice, with positional changes. Two radiologists analyzed images to reach a consensus.ResultsThe three periosteal tissues that were partially peeled away from the cortex showed a high signal in 3D UTE (FS) and low signal on T1 WI. 3D UTE (FS) showed a high signal around the cortical surface with an intact outer and inner periosteum, and subtle high signals, mainly around the upper cortical surfaces with the inner layer of the periosteum and without periosteum. T1 WI showed no signal around the cortical surfaces, regardless of the periosteum state. The porcine tibia without periosteum showed changes in the high signal area around the cortical surface as the position changed in 3D UTE (FS). No signal was detected around the cortical surface in T1 WI, regardless of the position change.ConclusionThe periosteum showed a high signal in 3D UTE and 3D UTE FS that overlapped with artifacts around the cortical bone.  相似文献   

8.
Entheses are the sites of attachment of a tendon, ligament, or joint capsule to bone. In a previous article new options for visualizing entheses and related structures, including ultrashort echo time (UTE) pulse sequences, and magic angle imaging were described. In this article an approach to image interpretation is described together with normal examples using UTE and other pulse sequences with and without magic angle imaging. Examples of images seen in disease are included. The new options for imaging entheses may provide useful options for biomechanical study and recognition of involvement in disease.  相似文献   

9.
Magnetic resonance: an introduction to ultrashort TE (UTE) imaging   总被引:1,自引:0,他引:1  
The background underpinning the clinical use of ultrashort echo-time (UTE) pulse sequences for imaging tissues or tissue components with short T2s is reviewed. Tissues properties are discussed, and tissues are divided into those with a majority of short T2 relaxation components and those with a minority. Features of the basic physics relevant to UTE imaging are described including the fact that when the radiofrequency pulse duration is of the order T2, rotation of tissue magnetization into the transverse plane is incomplete. Consequences of the broad line-width of short T2 components are also discussed including their partial saturation by off-resonance fat suppression pulses as well as multislice and multiecho imaging. The need for rapid data acquisition of the order T2 is explained. The basic UTE pulse sequence with its half excitation pulse and radial imaging from the center of k-space is described together with options that suppress fat and/or long T2 components. Image interpretation is discussed. Clinical features of the imaging of cortical bone, tendons, ligaments, menisci, and periosteum as well as brain, liver, and spine are illustrated. Short T2 components in all of these tissues may show high signals. Possible future developments are outlined as are technical limitations.  相似文献   

10.

Purpose

To obtain positive contrast based on T1 weighting from magnetic iron oxide nanoparticle (IONP) using ultrashort echo time (UTE) imaging and investigate quantitative relationship between positive contrast and the core size and concentration of IONPs.

Materials and Methods

Solutions of IONPs with different core sizes and concentrations were prepared. T1 and T2 relaxation times of IONPs were measured using the inversion recovery turbo spin echo (TSE) and multi‐echo spin echo sequences at 3 Tesla. T1‐weighted UTE gradient echo and T2‐weighted TSE sequences were used to image IONP samples. U87MG glioblastoma cells bound with arginine‐glycine‐aspartic acid (RGD) peptide and IONP conjugates were scanned using UTE, T1 and T2‐weighted sequences.

Results

Positive contrast was obtained by UTE imaging from IONPs with different core sizes and concentrations. The relative‐contrast‐to‐water ratio of UTE images was three to four times higher than those of T2‐weighted TSE images. The signal intensity increases as the function of the core size and concentration. Positive contrast was also evident in cell samples bound with RGD‐IONPs.

Conclusion

UTE imaging allows for imaging of IONPs and IONP bound tumor cells with positive contrast and provides contrast enhancement and potential quantification of IONPs in molecular imaging applications. J. Magn. Reson. Imaging 2011;33:194–202. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Magnetic resonance imaging of short T2 components in tissue   总被引:5,自引:0,他引:5  
The most widely used clinical magnetic resonance imaging techniques for the diagnosis of parenchymal disease employ heavily T(2)-weighted sequences to detect an increase or decrease in the signal from long T(2) components in tissue. Tissues also contain short T(2) components that are not detected or only poorly detected with conventional sequences. These components are the majority species in tendons, ligaments, menisci, periosteum, cortical bone and other related tissues, and the minority in many other tissues that have predominantly long T(2) components.The development and clinical application of techniques to detect short T(2) components are just beginning. Such techniques include magic angle imaging, as well as short echo time (TE), and ultrashort TE (Ute) pulse sequences. Magic angle imaging increases the T(2) of highly ordered, collagen-rich tissues such as tendons and ligaments so signal can be detected from them with conventional pulse sequences. Ute sequences detect short T(2) components before they have decayed, both in tissues with a majority of short T(2) components and those with a minority. In the latter case steps usually need to be taken to suppress the signal from the majority of long T(2) components. Fat suppression of different types may also be helpful. Once signal from short T(2) components has been detected, different pulse sequences can be used to determine increases or decreases in T(1) and T(2) and study contrast enhancement.Using these approaches, signals have been detected from normal tissues with a majority of short T(2) components such as tendons, ligaments, menisci, periosteum, cortical bone, dentine and enamel (the latter four tissues for the first time) as well as from the other tissues in which short T(2) components are a minority. Some diseases such as chronic fibrosis, gliosis, haemorrhage and calcification may increase the signal from short T(2) components while others such as loss of tissue, loss of order in tissue and an increase in water content may decrease them. Changes of these types have been demonstrated in tendonopathy, intervertebral disc disease, ligament injury, haemachromatosis, pituitary perivascular fibrosis, gliomas, multiple sclerosis and angiomas.Use of these techniques has reduced the limit of clinical detectability of short T(2) components by about two orders of magnitude from about 10 ms to about 100 micros. As a consequence it is now possible to study tissues that have a majority of short T(2) components with both "bright" and "dark" approaches, with the bright (high signal) approach offering options for developing tissue contrast of different types, as well as the potential for tissue characterization. In addition, tissues with a minority of short T(2) components may demonstrate changes in disease that are not apparent with conventional heavily T(2)-weighted sequences.  相似文献   

12.
Twenty patients [15 men, 5 women, 19-71 years old (mean 52 years)] highly suspected of having tumoral liver pathology were prospectively studied with motion compensated T2-weighted spin echo (SE) [repetition time (TR) 2,200 ms, echo time (TE) 90 ms] and Gd-DOTA enhanced gradient echo fast low angle shot [TR 60 ms, TE 10 ms, angle 30 degrees) sequences. The final diagnoses were hemangioma (five), hepatocellular carcinoma (four), focal nodular hyperplasia (one), adenoma (one), metastasis (two), abscess (two), echinococcal cyst (one), tumor of unknown origin (three), cirrhosis (one). Contrast enhanced images were obtained during the early vascular phases after intravenous bolus injection of Gd-DOTA at a dose of 0.1 mmol/kg (0.2 ml/kg). After Gd-DOTA, positive contrast enhancement was seen in 11 cases, negative enhancement in 4, and nonenhancement in 6. Contrast patterns were similar to contrast enhanced CT. In terms of visibility of lesions, the unenhanced motion-compensated T2 SE sequences were superior to the nonenhanced gradient echo sequences in 12 patients and equal in 8. After gadolinium enhancement, T2-weighted SE images were superior to the postcontrast gradient echo images in eight cases, equal in eight and inferior in four cases.  相似文献   

13.
RATIONALE AND OBJECTIVES: Spin lock imaging has been shown to be useful in characterizing head and neck tumors. The purposes of this study were to explore and develop multiple-slice spin lock gradient-echo (SL-GRE) sequences for head and neck imaging and to compare the tumor contrast on SL images to spin-echo (SE) T2-weighted images at 0.1 T. METHODS: On the basis of measured relaxation times of tumors and head and neck tissues, the authors evaluated with signal equations the effect of imaging parameters on tissue contrast produced by the SL-GRE sequence. In the clinical study, 34 patients with pathologically verified head and neck tumors were imaged with multiple-slice SL-GRE (repetition time 1500 ms/echo time 30 ms) out-of-phase fat/water sequences and compared with T2-weighted SE (repetition time 1500 ms/echo time 120 ms) sequences. The conspicuity of tumors was evaluated by calculating the contrast-to-noise ratios (CNRs). RESULTS: The combination of a short echo time of 30 ms and the length of locking pulses in the range of 10 to 35 ms produced optimal CNRs for head and neck tumor imaging. The measured CNRs and subjective evaluation for tumor detection were satisfactory with both imaging sequences. However, the CNRs between tumors and salivary gland tissues were significantly greater with the SL sequence than with the T2-weighted sequence. CONCLUSIONS: The multiple-slice SL-GRE technique provides image contrast comparable to that of SE T2-weighted imaging for head and neck tumors at 0.1 T. With short locking pulse lengths and echo times, wide anatomic coverage and reduced motion and susceptibility artifacts can be achieved. The out-of-phase SL technique is useful in imaging salivary gland tumors.  相似文献   

14.
As well as the long-T2 relaxation components normally detected with conventional imaging techniques, the brain has short-T2 components. We wished to use ultra-short (0.08 ms) echo time (UTE) pulse sequences to assess the feasibility of imaging these in normal subjects and patients. UTE sequences were employed, with or without fat suppression, 90 degree long-T2 suppression pulses, and selective nulling of long-T2 components using an inversion pulse. Subtraction of later echoes from the first was also used to reduce the signal from long-T2 components. We studied dive normal subjects and 15 patients with various diseases. Short-T2 components were demonstrated in grey and white matter. Increased signal from these components was seen in meningeal disease, probable calcification, presumed cavernomas, melanoma metastases and probable gliosis. Reduced signal was seen in some tumours, infarcts, mild multifocal vascular disease and vasogenic oedema. Further development and evaluation of these pulse sequences is warranted.  相似文献   

15.
Ultrashort echo time MRI requires specialized pulse sequences with nominal echo times as low as a few microseconds to detect signals from the short T(2) tissues frequently encountered in the musculoskeletal system. Usually, magnitude images are reconstructed and these often show low tissue contrast. Ultrashort echo time phase images of the meniscus show surprisingly high contrast despite their very short echo time. In this article, we investigated the source of this contrast using the Bloch equations, simulations, phantom experiments, and tissue studies. Phase evolution was shown to occur in ultrashort echo time sequences during the finite radiofrequency pulse and readout periods, and previously unrecognized susceptibility differences between fiber groups were observed in the meniscus.  相似文献   

16.
关节软骨损伤、变性是骨关节炎(OA)的首要因素,OA早期软骨生化成分最先发生改变,软骨结构逐渐破坏。传统MRI序列的回波时间(TE)较长,采集不到短T_2/T_2~*软骨组织的信号,而超短回波时间(UTE)序列采用超短TE可实现对短T_2/T_2~*的深层软骨和软骨钙化层的直接观察及对其生化组成的定量研究,在探讨OA发生机制及早期诊断中有较好的应用前景。对UTE序列在关节软骨变性早期的定量研究进行综述。  相似文献   

17.
Ultra-short echo time (UTE) MRI requires both short excitation ( approximately 0.5 ms) and short acquisition delay (<0.2 ms) to minimize T(2)-induced signal decay. These requirements currently lead to low acquisition efficiency when high resolution (<1 mm) is pursued. A novel pulse sequence, acquisition-weighted stack of spirals (AWSOS), is proposed here to acquire high-resolution three-dimensional (3D) UTE images with short scan time ( approximately 72 s). The AWSOS sequence uses variable-duration slice encoding to minimize T(2) decay, separates slice thickness from in-plane resolution to reduce the number of slice encodings, and uses spiral trajectories to accelerate in-plane data collections. T(2)- and off-resonance induced slice widening and image blurring were calculated from 1.5 to 7 Tesla (T) through point spread function. Computer simulations were performed to optimize spiral interleaves and readout times. Phantom scans and in vivo experiments on human heads were implemented on a clinical 1.5T scanner (G(max) = 40 mT/m, S(max) = 150 T/m/s). Accounting for the limits on B(1) maximum, specific absorption rate (SAR), and the lowered amplitude of slab-select gradient, a sinc radiofrequency (RF) pulse of 0.8ms duration and 1.5 cycles was found to produce a flat slab profile. High in-plane resolution (0.86 mm) images were obtained for the human head using echo time (TE) = 0.608 ms and total shots = 720 (30 slice-encodings x 24 spirals). Compared with long-TE (10 ms) images, the ultrashort-TE AWSOS images provided clear visualization of short-T(2) tissues such as the nose cartilage, the eye optic nerve, and the brain meninges and parenchyma.  相似文献   

18.

Purpose:

To use a tissue specific algorithm to numerically optimize UTE sequence parameters to maximize contrast within temporomandibular joint (TMJ) donor tissue.

Materials and Methods:

A TMJ specimen tissue block was sectioned in a true sagittal plane and imaged at 3 Tesla (T) using UTE pulse sequences with dual echo subtraction. The MR tissue properties (PD, T2, T2*, and T1) were measured and subsequently used to calculate the optimum sequences parameters (repetition time [TR], echo time [TE], and θ).

Results:

It was found that the main contrast available in the TMJ could be obtained from T2 (or T2*) contrast. With the first echo time fixed at 8 μs and using TR = 200 ms, the optimum parameters were found to be: θ ≈ 60°, and TE2 ≈ 15 ms, when the second echo is acquired using a gradient echo and θ ≈ 120°, and TE2 ≈ 15 ms, when the second echo is acquired using a spin echo.

Conclusion:

Our results show that MR signal contrast can be optimized between tissues in a systematic manner. The MR contrast within the TMJ was successfully optimized with facile delineation between disc and soft tissues. J. Magn. Reson. Imaging 2011;. © 2011 Wiley Periodicals, Inc.  相似文献   

19.

Objectives:

Susceptibility artefacts from dental materials may compromise MRI diagnosis. However, little is known regarding MRI artefacts of dental material samples with the clinical shapes used in dentistry. The present phantom study aims to clarify how pulse sequences and sequence parameters affect MRI artefacts caused by metal–ceramic restorations.

Methods:

A phantom consisting of nickel–chromium metal–ceramic restorations (i.e. dental crowns and fixed bridges) and cylindrical reference specimens immersed in agar gel was imaged in 1.5 and 3.0 T MRI scanners. Gradient echo (GRE), spin echo (SE) and ultrashort echo time (UTE) pulse sequences were used. The artefact area in each image was automatically calculated from the pixel values within a region of interest. Mean values for similar pulse sequences differing in one parameter at a time were compared. A comparison between mean artefact area at 1.5 and 3.0 T, and from GRE and SE was also carried out. In addition, a parametric correlation between echo time (TE) and artefact area was performed.

Results:

A significant correlation was found between TE and artefact area in GRE images. Higher receiver bandwidth significantly reduced artefact area in SE images. UTE images yielded the smallest artefact area at 1.5 T. In addition, a significant difference in mean artefact area was found between images at 1.5 and 3.0 T field strengths (p = 0.028) and between images from GRE and SE pulse sequences (p = 0.005).

Conclusions:

It is possible to compensate the effect of higher field strength on MRI artefacts by setting optimized pulse sequences for scanning patients with metal–ceramic restorations.  相似文献   

20.
It is now possible to detect signals from tissues and tissue components with short T(2)s, such as cortical bone, using ultrashort TE (UTE) pulse sequences. The background to the use of these sequences is reviewed with particular emphasis on MR system issues. Tissue properties are discussed, and tissues are divided into those with a majority and those with a minority of short T(2) components. UTE pulse sequences and their variants are described and clinical applications are illustrated. System design requirements for sequences of this type, including gradient performance, RF switching, and data-processing issues, are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号