首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Somatostatin (SST) neurons in the ventral respiratory column (VRC) are essential for the generation of normal breathing. Little is known about the neuromodulatory role of SST on ventral respiratory neurons other than that local administration induces apnoea. Here, we describe the cardiorespiratory effects of microinjecting SST into the preBötzinger and Bötzinger complexes which together elaborate a normal inspiratory augmenting and expiratory respiratory pattern, and on spinally projecting respiratory subnuclei (rostral ventral respiratory group; rVRG). Microinjections (20–50 nl) of SST (0.15, 0.45, 1.5 mM) were made into respiratory subnuclei of urethane-anaesthetized, paralysed, vagotomized and artificially ventilated Sprague–Dawley rats (n=46). Unilateral microinjection of SST into the Bötzinger complex converted the augmenting activity of phrenic nerve discharge into a square-wave apneustic pattern associated with a lengthening of inspiratory period and shortening of expiratory time. Following bilateral microinjection the apneusis became pronounced and was associated with a dramatic variability in inspiratory duration. Microinjection of SST into the Bötzinger complex also abolished the post-inspiratory (post-I) motor activity normally observed in vagal and sympathetic nerves. In the preBötzinger complex SST caused bradypnoea and with increasing dose, apnoea. In the rVRG SST reduced phrenic nerve amplitude, eventually causing apnoea. In conclusion, SST powerfully inhibits respiratory neurons throughout the VRC. Of particular interest is the finding that chemical inhibition of the Bötzinger complex with SST ablates the post-I activity that is normally seen in respiratory activity and leads to apneusis. This loss of post-I activity is a unique feature of inhibition with SST and is not seen following inhibition with other agents such as galanin, GABA and endomorphin. The effect seen on post-I activity is similar to the effect of inhibiting the Kölliker–Fuse nucleus in the pons. The mechanism by which SST exerts this effect on Bötzinger neurons remains to be determined.  相似文献   

2.
To elucidate neuronal mechanisms underlying phase-switching from expiration to inspiration, or inspiratory on-switching (IonS), postsynaptic potentials (PSPs) of bulbar respiratory neurons together with phrenic nerve discharges were recorded during IonS evoked by vagal stimulation in decerebrate and vagotomized cats. A single shock stimulation of the vagus nerve applied at late-expiration developed an inspiratory discharge in the phrenic neurogram after a latency of 79+/-11 ms (n = 11). Preceding this evoked inspiratory discharge, a triphasic response was induced, consisting of an early silence (phase 1 silence), a transient burst discharge (phase 2 discharge) and a late pause (phase 3 pause). During phase 1 silence, IPSPs occurred in augmenting inspiratory (aug-I) and expiratory (E2) neurons, and EPSPs in postinspiratory (PI) neurons. During phase 2 discharge, EPSPs arose in aug-I neurons and IPSPs in PI and E2 neurons. These initial biphasic PSPs were comparable with those during inspiratory off-switching evoked by the same stimulation applied at late-inspiration. In both on- and off-switching, phase-transition in respiratory neuronal activities started to arise concomitantly with the phrenic phase 3 pause. These results suggest that vagal inputs initially produce a non-specific, biphasic response in bulbar respiratory neurons, which consecutively activates a more specific process connected to IonS.  相似文献   

3.
The abdominal muscles form part of the expiratory pump in cooperation with the other expiratory muscles, primarily the internal intercostal and triangularis sterni muscles. The discharge of abdominal muscles is divided into four main patterns: augmenting, plateau, spindle and decrementing. The patterns tend to be species-specific and dependent on the state of the central nervous system. Recent studies suggest that the abdominal muscles are more active than classically thought, even under resting conditions. Expiratory bulbospinal neurons (EBSN) in the caudal ventral respiratory group are the final output pathway to abdominal motoneurons in the spinal cord. Electrophysiological and anatomical studies indicated the excitatory monosynaptic inputs from EBSN to the abdominal motoneurons, although inputs from the propriospinal neurons seemed to be necessary to produce useful motor outputs. Respiration-related sensory modulation of expiratory neurons by vagal afferents that monitor the rate of change of lung volume and the end-expiratory lung volume (EELV) play a crucial role in modulating the drive to the abdominal musculature. Studies using in vitro and in situ preparations of neonatal and juvenile rats show bi-phasic abdominal activity, characterized by bursting at the end of expiration, a silent period during the inspiratory period, and another burst that occurs abruptly after inspiratory termination. Since the abdominal muscles rarely show these post-inspiratory bursts in the adult rat, the organization of the expiratory output pathway must undergo significant development alterations.  相似文献   

4.
Membrane potential trajectories of 68 bulbar respiratory neurones from the peri-solitary and peri-ambigual areas of the brain-stem were recorded in anaesthetized cats to explore the synaptic influences of post-inspiratory neurones upon the medullary inspiratory network.A declining wave of inhibitory postsynaptic potentials resembling the discharge of postpinspiratory neurones was seen in both bulbospinal and non-bulbospinal inspiratory neurones, including alpha- and beta-inspiratory, early-inspiratory, late-inspiratory and ramp-inspiratory neurones.Activation of laryngeal and high-threshold pulmonary receptor afferents excited bulbar post-inspiratory neurones, whilst in the case of inspiratory neurones such stimulation produced enhanced postsynaptic inhibition during the same period of the cycle. Activation of post-inspiratory neurones and enhanced post-inspiratory inhibition of inspiratory bulbospinal neurones was accompanied by supression of the after-discharge of phrenic motoneurones.These results suggest that a population of post-inspiratory neurones exerts a widespread inhibitory function at the lower brain-stem level. Implications of such an inhibitory function for the organization of the respiratory network are discussed in relation to the generation of the respiratory rhythm.  相似文献   

5.
Intact unanesthetized cats hyperventilate in response to hypocapnic hypoxia in both wakefulness and sleep. This hyperventilation is caused by increases in diaphragmatic activity during inspiration and expiration. In this study, we recorded 120 medullary respiratory neurons during sleep in hypoxia. Our goal was to understand how these neurons change their activity to increase breathing efforts and frequency in response to hypoxia. We found that the response of medullary respiratory neurons to hypoxia was variable. While the activity of a small majority of inspiratory (58%) and expiratory (56%) neurons was increased in response to hypoxia, the activity of a small majority of preinspiratory (57%) neurons was decreased. Cells that were more active in hypoxia had discharge rates that averaged 183% (inspiratory decrementing), 154% (inspiratory augmenting), 155% (inspiratory), 230% (expiratory decrementing), 191% (expiratory augmenting), and 136% (expiratory) of the rates in normoxia. The response to hypoxia was similar in non-rapid-eye-movement (NREM) and REM sleep. Additionally, changes in the profile of activity were observed in all cell types examined. These changes included advanced, prolonged, and abbreviated patterns of activity in response to hypoxia; for example, some inspiratory neurons prolonged their discharge into expiration during the postinspiratory period in hypoxia but not in normoxia. Although changes in activity of the inspiratory neurons could account for the increased breathing efforts and activity of the diaphragm observed during hypoxia, the mechanisms responsible for the change in respiratory rate were not revealed by our data.  相似文献   

6.
To assess the functional significance of late inspiratory (late-I) neurons in inspiratory off-switching (IOS), membrane potential and discharge properties were examined in vagotomized, decerebrate cats. During spontaneous IOS, late-I neurons displayed large membrane depolarization and associated discharge of action potentials that started in late inspiration, peaked at the end of inspiration, and ended during postinspiration. Depolarization was decreased by iontophoresis of dizocilpine and eliminated by tetrodotoxin. Stimulation of the vagus nerve or the nucleus parabrachialis medialis (NPBM) also evoked depolarization of late-I neurons and IOS. Waves of spontaneous chloride-dependent inhibitory postsynaptic potentials (IPSPs) preceded membrane depolarization during early inspiration and followed during postinspiration and stage 2 expiration of the respiratory cycle. Iontophoresed bicuculline depressed the IPSPs. Intravenous dizocilpine caused a greatly prolonged inspiratory discharge of the phrenic nerve (apneusis) and suppressed late-inspiratory depolarization as well as early-inspiratory IPSPs, resulting in a small constant depolarization throughout the apneusis. NPBM or vagal stimulation after dizocilpine produced small, stimulus-locked excitatory postsynaptic potentials (EPSPs) in late-I neurons. Neurobiotin-labeled late-I neurons revealed immunoreactivity for glutamic acid decarboxylase as well as N-methyl-D-aspartate (NMDA) receptors. These results suggest that late-I neurons are GABAergic inhibitory neurons, while the effects of bicuculline and dizocilpine indicate that they receive periodic waves of GABAergic IPSPs and glutamatergic EPSPs. The data lead to the conclusion that late-I neurons play an important inhibitory role in IOS. NMDA receptors are assumed to augment and/or synchronize late-inspiratory depolarization and discharge of late-I neurons, leading to GABA release and consequently off-switching of bulbar inspiratory neurons and phrenic motoneurons.  相似文献   

7.
1. Stimulation of intercostal muscle tendon organs or their afferent fibers reduces medullary inspiratory neuron activity, decreases motor output to inspiratory muscles, and increases the activity of expiratory laryngeal motoneurons. The present study examines the synaptic mechanisms underlying these changes to obtain information about medullary neurons that participate in the afferent limb of this reflex pathway. 2. Membrane potentials of medullary respiratory neurons were recorded in decerebrate paralyzed cats. Postsynaptic potentials (PSPs) elicited in these neurons by intercostal nerve stimulation (INS) were compared before and after intracellular iontophoresis of chloride ions. After chloride injection, the normal hyperpolarization caused by inhibitory (I) PSPs is "reversed" to depolarization. 3. In inspiratory neurons, reversal of IPSPs by chloride injection also reversed hyperpolarization produced by INS when applied during any portion of the respiratory cycle. This observation suggests that increased chloride conductance of the postsynaptic membrane mediated the inhibition. Further, it is very likely that the last-order interneuron in the afferent pathway must be excited by INS and alter inspiratory neuron activity via an inhibitory synapse. The linear relationship between the amplitude of the INS induced PSP and membrane potential of inspiratory neurons provided evidence that neurons in the afferent pathway are not respiratory modulated. 4. The membranes of expiratory vagal motoneurons and post-inspiratory neurons were depolarized by INS during all portions of the respiratory cycle before IPSP reversal. Reversal of IPSPs affected neither this depolarization of expiratory vagal motoneurons during stage I and II expiration nor that of post-inspiratory neurons during stage I expiration. Thus this depolarization probably resulted from synaptic excitation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
gamma-Aminobutyric acid (GABA)-ergic and glycinergic inhibition is believed to play a major role in the respiratory network. In the present study we tested whether specific blockade of glycinergic inhibition resulted in changes in respiratory network interaction and function. Using the working heart-brainstem preparation from adult mice, we recorded phrenic nerve activity and the activity of different types of respiratory neurones located in the ventrolateral medulla. Strychnine (0.03-0.3 microM) was given systemically to block glycine receptors (Gly-R). During exposure to strychnine, post-inspiratory (PI) neurones shifted their onset of discharge into the inspiratory phase. As a consequence, the post-inspiratory phase failed and the rhythm changed from a three-phase cycle (inspiration, post-inspiration, expiration, with a frequency of about. 0.24 Hz) to a faster, two-phased cycle (inspiration expiration, frequency about 0.41 Hz). Inspiratory and expiratory neurones altered their augmenting membrane potential pattern to a rapidly peaking pattern. Smaller voltage oscillations at approximately 10 Hz and consisting of excitatory and inhibitory postsynaptic potential sequences occurred during the expiratory interval. Due to their high frequency and low amplitude, such oscillations would be inadequate for lung ventilation. We conclude that, under physiological conditions, glycinergic inhibition does indeed play a major role in the generation of a normal respiratory rhythm in adult mice. After failure of glycinergic inhibition a faster respiratory rhythm seems to operate through reciprocal GABAergic inhibition between inspiratory and expiratory neurones, while phase switching is organised by activation of intrinsic membrane properties.  相似文献   

9.
In brainstem-spinal cord preparations isolated from newborn rats, a whole cell recording technique was applied to record membrane potentials of inspiratory (Insp) and pre-inspiratory (Pre-I) neurons in the ventrolateral medulla. Labelling of these respiratory neurons with Lucifer Yellow allowed analysis of their locations and morphology. Intracellular membrane potentials from 25 Insp neurons were recorded. Average resting membrane potential was –49 mV (n=25) and input resistance was 306 M. Insp neurons were classified into three types from the patterns of synaptic potentials. Type I neurons (n=11) had a high probability of excitatory postsynaptic potentials (EPSPs) in the pre- and post-inspiratory phases. Type II neurons (n=7) showed abrupt transition to the burst phase from the resting potential level without increased EPSPs in the preinspiratory phase. Type III neurons (n=7) were hyperpolarized by inhibitory postsynaptic potentials (IPSPs) in the pre- and post-inspiratory phases. These Insp neurons, located in the ventrolateral medulla 80–490m from the ventral surface, were 10–30 m in diameter, and had various soma shapes (pyramidal, spherical or fusiform). Intracellular membrane potentials from 24 Pre-I neurons were recorded. The average resting membrane potential was –45 mV (n=24), and the input resistance was 320 M. Typical Pre-I neurons showed fairly great depolarization accompanied by action potentials during their burst phase and repolarization during the inspiratory phase. Most Pre-I neurons appeared to have a high level of synaptic activity. These cells were located in the ventrolateral medulla 50–440 m below the ventral surface and had pyramidal or fusiform somas of 10–25 m in diameter. Stimulation of the ipsilateral IXth, Xth roots or the spinal cord (C3 level) induced orthodromic responses in most Insp or Pre-I neurons. An antidromic action potential was induced in only one Pre-I neuron by stimulation at the ipsilateral C3 level. Many Insp or Pre-I neurons had dendrites that terminated close to the ventral surface of the medulla. The present study revealed postsynaptic activity of respiratory neurons in the rostral ventrolateral medulla, which is consistent with the excitatory and inhibitory synaptic connections from Pre-I neurons to Insp neurons, and inhibitory synaptic connections for Insp neurons to Pre-I neurons.  相似文献   

10.
Ono K  Shiba K  Nakazawa K  Shimoyama I 《Neuroscience》2006,140(3):1079-1088
To determine the synaptic source of the respiratory-related activity of laryngeal motoneurons, spike-triggered averaging of the membrane potentials of laryngeal motoneurons was conducted using spikes of respiratory neurons located between the Bötzinger complex and the rostral ventral respiratory group as triggers in decerebrate, paralyzed cats. We identified one excitatory and two inhibitory sources for inspiratory laryngeal motoneurons, and two inhibitory sources for expiratory laryngeal motoneurons. In inspiratory laryngeal motoneurons, monosynaptic excitatory postsynaptic potentials were evoked by spikes of inspiratory neurons with augmenting firing patterns, and monosynaptic inhibitory postsynaptic potentials (IPSPs) were evoked by spikes of expiratory neurons with decrementing firing patterns and by spikes of inspiratory neurons with decrementing firing patterns. In expiratory laryngeal motoneurons, monosynaptic IPSPs were evoked by spikes of inspiratory neurons with decrementing firing patterns and by spikes of expiratory neurons with augmenting firing patterns. We conclude that various synaptic inputs from respiratory neurons contribute to shaping the respiratory-related trajectory of membrane potential of laryngeal motoneurons.  相似文献   

11.
The effects of two anesthetic agents, halothane and thiopental, on the membrane potential trajectory of respiratory-related neurons in the ventral respiratory group were investigated in decerebrate cats, of which the carotid sinus and vagal afferents were denervated. Infusion of halothane (2% for 90 s) depolarized the membrane in nearly half of the inspiratory (12/21), post-inspiratory (10/26) and expiratory (4/6) neurons and caused hyperpolarization in the rest of the population. Thiopental (2.5 mg/kg i.v.) produced depolarization in 11 inspiratory and 10 post-inspiratory neurons and hyperpolarization in 1 expiratory, 4 inspiratory and 7 postinspiratory neurons. In both hyperpolarized and depolarized neurons, reduction of the respiratory membrane potential fluctuations and an increase of input resistance were commonly observed. Both drugs depressed spontaneous firing in most of the neurons studied. An increase of firing was observed in 9 out of 47 depolarized cells. These two contrasting effects on the membrane potential trajectory occurred similarly in the known groups of respiratory neurons, but the response of a given cell was consistent for the two anesthetic agents. The present results demonstrate that the anesthetic drugs exert various influences on the ventral respiratory group neuron population in maintaining the membrane potential trajectory and discharge activity. This may reflect a functional heterogeneity in the bulbar respiratory network of neurons.  相似文献   

12.
The distribution and discharge pattern of respiratory neurons in the ‘pneumotaxic center’ of the rostral pons in the rat has remained unknown. We performed optical recordings and whole-cell patch clamp recordings to clarify respiratory neuron activity in the rostral pons of a brainstem-spinal cord preparation from a newborn rat. Inspiratory nerve activity was recorded in the 4th cervical nerve and used as a trigger signal for optical recordings. Respiratory neuron activity was detected in the limited region of the rostral-lateral pons. The main active region was presumed to be primarily the Kölliker-Fuse nucleus. The location of respiratory neurons was further confirmed by Lucifer Yellow staining after conducting whole-cell recordings. From a membrane potential analysis of the respiratory neurons in the rostral pons, the respiratory neurons were divided into four types: inspiratory neuron (71.9%), pre-inspiratory neuron (5.3%), post-inspiratory neuron (19.3%), and expiratory neuron (3.5%). A noticeable difference between pontine and medullary respiratory neurons was that post-inspiratory neurons were more frequently encountered in the pons. Application of a μ-opioid agonist, [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin, transformed the burst pattern of post-inspiratory neurons into that of pre-inspiratory neurons. The electrical stimulation of the sensory root of the trigeminal nerve induced three types of responses in 85% of pontine respiratory neurons: inhibitory postsynaptic potentials (42.7%), excitatory postsynaptic potentials (37.7%) and no response (15.1%). Our findings provide the first evidence in the rat for the presence of respiratory neurons in the rostral pons, with localization in the lateral region approximately overlapping with the Kölliker-Fuse nucleus.  相似文献   

13.
In order to test whether glycinergic inhibition is essential for the in vivo respiratory rhythm, we analysed the discharge properties of neurones in the medullary respiratory network after blockade of glycine receptors in the in situ perfused brainstem preparation of mature wild type and oscillator mice with a deficient glycine receptor. In wild type mice, selective blockade of glycine receptors with low concentrations of strychnine (0.03-0.3 microM) provoked considerable changes in neuronal discharge characteristics: The cycle phase relationship of inspiratory, post-inspiratory and expiratory specific patterns of membrane potential changes was altered profoundly. Inspiratory, post-inspiratory and expiratory neurones developed a propensity for fast voltage oscillations that were accompanied by multiple burst discharges. These burst discharges were followed by "after-burst" hyperpolarisations that were capable of triggering secondary burst discharges. Blockade of glycine receptors and the "big" Ca2+-dependent K+-conductance by charybdotoxin (3.3 nM) resulted in loss of the respiratory rhythm, whilst only tonic discharge activity remained. In contrast, rhythmic activity was only weakened, but preserved after the "small" Ca2+-dependent activated K+ conductance was blocked with apamin (8 nM). Also low concentrations of pentobarbital sodium (6 mg/kg) abolished rhythmic respiratory activity after blockade of glycine receptors in the wild type mice and in glycine receptor deficient oscillator mice. The data imply that failure of glycine receptors provokes enhanced bursting behaviour of respiratory neurones, whilst the additional blockade of BKCa channels by charybdotoxin or with pentobarbital abolishes the respiratory rhythm.  相似文献   

14.
1. An analysis of the spatial and temporal patterns of activity of neurons of the respiratory motor-pattern generation system in an in vitro neonatal rat brain stem-spinal cord preparation is presented. Impulse discharge patterns of spinal and cranial moto-neurons as well as respiratory neurons in the medulla were analyzed. Patterns of motoneuronal discharge were characterized at the population level from recordings of motor-nerve discharge and at the single-cell level from intracellular recordings. These patterns were compared to patterns generated in the neonatal rat and adult mammal in vivo to establish the correspondence between in vitro and in vivo states. 2. The in vitro system generated a complex spatiotemporal pattern of spinal and cranial motoneuron activity during inspiratory (I) and expiratory (E) phases of the respiratory cycle. The respiratory cycle consisted of three distinct phases of neuronal activity (I, early E, and late E phase) similar to the temporal organization of the cycle in the intact mammal. The spike discharge pattern of motoneurons during the I phase consisted of a rapidly peaking-slowly decrementing discharge envelope with a high degree of synchronization on a time scale of 25-50 ms (approximately 20-40 Hz). A similar pattern was generated in the neonate in vivo under conditions comparable with the in vitro state (i.e., nervous system isolated from mechanosensory afferent inputs). However, the I-phase-motoneuron discharge pattern and cycle-phase durations differed from those characteristic of the intact neonatal or adult systems in vivo. This difference could be accounted for primarily by removal of vagal mechanosensory afferent inputs. 3. The synaptic drive potentials of spinal motoneurons during the I phase in vitro consisted of a rapidly peaking-slowly decrementing potential envelope similar in shape to the spike-frequency histogram of single motoneurons and the envelope of the motoneuron-population discharge. The drive potentials had prominent high-frequency amplitude fluctuations superimposed on the slower drive-potential envelope that were temporally correlated with the generation of motoneuron action potentials. The dominant frequency components of these fast-membrane-potential oscillations (20-35 Hz) were similar to the frequency components of the amplitude fluctuations in the motoneuron-population discharge. One class of medullary neurons with I-phase discharge also exhibited a rapidly peaking-slowly decrementing pattern of impulse discharge and synaptic drive potential with similar high-frequency components.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Vagal influence on the facilitation of phrenic neural activity during respiratory phase-locked, gastrocnemius muscle nerve nociceptive electrical stimulation was examined in anesthetized, glomectomized, paralyzed, and artificially ventilated cats. (1) In the vagi-intact state, respiratory reflex facilitation was characterized by a sharp rise in peak amplitude, maximum rate of rise or slope, and mean rate of rise of integrated phrenic nerve activity. This was greater during inspiratory phase-locked (T1-locked) muscle nerve electrical stimulation than during expiratory phase-locked (TE-locked) muscle nerve electrical stimulation. "Evoked post-inspiratory phrenic activity" during the early expiratory phase was also observed during TE-locked muscle nerve electrical stimulation. (2) Bilateral vagotomy significantly attenuated the respiratory facilitation during both T1- and TE-locked muscle nerve electrical stimulation. In particular, the "evoked post-inspiratory phrenic activity" during TE-locked muscle nerve electrical stimulation was also attenuated or almost completely abolished. (3) Conditioning electrical stimulation of the vagus nerve revealed facilitatory reflexes which co-exist with inspiratory inhibitory reflexes. (4) The "evoked post-inspiratory phrenic activity" during TE-locked muscle nerve electrical stimulation, which was attenuated or abolished after vagotomy, was restored after vagal T1-locked conditioning stimuli combined with TE-locked muscle nerve electrical stimulation. The results suggest that vagal facilitatory reflexes augment the respiratory reflex facilitation during muscle nociceptive stimulation.  相似文献   

16.
In anaesthetized rats, extracellular and intracellular recordings were taken from 106 respiratory neurones in the intermediate region of the nucleus ambiguus. We observed unprovoked shortening of expiratory time accompanied, in all classes of respiratory neurone, by the elimination of the changes in membrane potential that were characteristic of stage II expiration. The demonstration of the elimination of stage II expiration in both the rat and cat strongly supports the functional division of expiration into stage I expiration (post-inspiration) and stage II expiration. In order to identify the neurones in the rat that receive inputs from vagal afferents and modulate the central respiratory rhythm, we examined whether any respiratory neurones responded to stimulation of the vagus nerve. Some post-inspiratory and stage II expiratory neurones responded. The short latency (< 2 ms) of four of the responses indicates that some vagal afferents act on post-inspiratory neurones via a disynaptic pathway. While repetitive stimulation of the vagus nerve could inhibit the phrenic rhythm, it appears that most inspiratory neurones in the intermediate region of the nucleus ambiguous complex are not directly involved in integrating the information from vagal afferents with the central respiratory rhythm.  相似文献   

17.
The involvement of GABA mediated neurotransmission in the central control of respiration was investigated by administration of the specific GABA, receptor agonist muscimol and the specific GABA, receptor antagonist bicuculline into the fourth cerebral ventricle of the rabbit. Cycle-triggered averaging of the phrenic nerve activity (PNA) was used to quantify drug-induced changes of the central respiratory pattern. Muscimol reduced the peak amplitude of PNA and increased the duration of the respiratory phases. High amounts of muscimol led to a long-lasting but reversible central apnea. Bicuculline very effectively blocked the effects of externally applied muscimol. Blockade of intrinsically active GABAergic neurotransmission by bicuculline resulted in a multitude of effects. Peak amplitude of PNA increased whereas the duration of both inspiration and expiration decreased. In this respect, effects of bicuculline and muscimol were complementary. Bicuculline reduced the slope of the inspiratory ramp, increased postinspiratory activity and induced an augmenting type of discharge activity in the last part of expiration resulting in a smooth transition between expiration and inspiration. In some cases the respiratory modulation was completely lost and PNA became perfectly tonic. This ‘apneustic’ type of respiratory pattern could be transformed into rhythmic breathing by increasing the respiratory drive. We conclude that neurotransmission via GABA, receptors is important for the maintenance of respiratory rhythm as well as the generation of normal respiratory pattern.  相似文献   

18.
1. Activity of inspiratory neurons was recorded extracellularly from the caudal portion of the nucleus ambiguous (0-3.5 mm rostral to the obex) in decerebrated, spontaneously breathing cats. Using a micropressure ejection method, we tested the responsiveness of the inspiratory neurons to direct applications of serotonin (5-HT) and noradrenaline (NA) in comparison with applications of glutamate and control artificial cerebrospinal fluid (ACSF) by means of a multibarreled micropipette. 2. We made detailed examinations of 52 inspiratory neurons that were excited by glutamate but did not react to control ACSF. Those inspiratory neurons were further classified into two subgroups based on the differences in firing patterns: inspiratory neurons with an augmenting firing pattern ["augmenting I units" (22/52)] and inspiratory neurons with a decrementing firing pattern ["decrementing I units" (30/52)]. 3. Although application of NA produced predominantly inhibitory effects on both the decrementing (22/30) and augmenting I units (20/22), application of 5-HT resulted in distinct or opposing effects on these two types of inspiratory neurons: the decrementing I units (25/30, 83%) were excited by 5-HT, whereas the augmenting I units (17/22, 77%) were inhibited by 5-HT. 4. The excitation of the decrementing I units with 5-HT was characterized by a long onset-latency of response and a prolonged recovery process. The increase in firing rate occurred not only during the inspiratory active phase but also during the expiratory phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
在32只麻醉、自主呼吸的SD大鼠,用细胞外记录方法,在旁巨细胞外侧核尾侧半(cPGCL)记录到181个自发单位放电。结果发现cPGCL区存在着非呼吸相关神经元(NRRNs,134/181个,占被测试神经元的74%)和呼吸相关神经元(RRNs,47/181个,占26%)。RRNs可分为递增型吸气神经元(I—Aug,35/47个,占74.7%)、递减型吸气神经元(I—Dec,2/47个,4.2%)、稳定型或钟型吸气神经元(I—Con or I—bell,2/47个,4.2%)、递减型呼气神经元(E—Dee,4/47个,8.5%)、稳定型或钟型呼气神经元(E—Con or E—bell,2/47个,4.2%)、稳定型呼—吸跨时相神经元(EINs,2/47个,4.2%)六种亚型。RRNs以递增型吸气神经元为主,主要分布在cPGCL背外侧。(PGCL区RRNs在存在提示该区参与呼吸的调控。)  相似文献   

20.
A network of neurons in the rostral dorsal lateral pons and pons/mescencephalic junction constitute the pontine respiratory group (PRG) and is essential for reflex cough. As a next step in understanding the role of the PRG in the expression of the cough reflex, we examined neuron firing rates during fictive cough in cats. Decerebrated, thoracotomized, paralyzed, cycle-triggered ventilated adult cats were used. Extracellular activity of many single neurons and phrenic and lumbar neurograms were monitored during fictive cough produced by mechanical stimulation of the intrathoracic trachea. Neurons were tested during control periods for respiratory modulation of firing rate by cycle-triggered histograms and statistical tests. Most respiratory modulated cells were continuously active with various superimposed respiratory patterns; major categories included inspiratory decrementing (I-Dec), expiratory decrementing (E-Dec) and expiratory augmenting (E-Aug). There were alterations in the discharge patterns of respiratory, as well as, non-respiratory modulated neurons during cough. The results suggest an involvement of the PRG in the configuration of the cough motor pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号