共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, non-invasive dermal sampling technique was developed and tested on 22 human volunteers under laboratory conditions to estimate acute dermal exposure to jet fuel (JP-8). Two sites on the ventral surface of each forearm were exposed to 25 micro l of JP-8 and the non-viable epidermis (stratum corneum) was sequentially tape-stripped using an adhesive tape. Samples were extracted with acetone and analyzed by gas chromatography/mass spectrometry. Analysis of the first tape strips indicated that JP-8 was rapidly removed from the stratum corneum over the 20 min study period. On average, after 5 min of exposure the first two tape strips removed 69.8% of the applied dose. The amount recovered with two tape strips decreased over time to a recovery of 0.9% 20 min after exposure. By fitting a mixed-effects linear regression model to the tape strip data, we were able to estimate accurately the amount of JP-8 initially applied. This study indicates that naphthalene has a short retention time in the human stratum corneum and that the tape stripping method, if used within 20 min of the initial exposure, can be used to measure reliably the amount of naphthalene initially in the stratum corneum due to a single exposure to jet fuel. We are currently investigating the applicability of the developed mixed-effects linear regression model to estimate acute JP-8 exposure levels based upon naphthalene measurements from tape strips collected from occupationally exposed workers. 相似文献
2.
JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective equipment that optimize risk reduction without undue impact on a mission. 相似文献
3.
PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene 总被引:1,自引:0,他引:1
Kim D Andersen ME Chao YC Egeghy PP Rappaport SM Nylander-French LA 《Environmental health perspectives》2007,115(6):894-901
BACKGROUND: Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. OBJECTIVE: Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. METHODS: The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. RESULTS: The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 x 10(-5) cm/hr, b) permeability coefficient for the viable epidermis 3.0 x 10(-3) cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers' exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). CONCLUSIONS: PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures. 相似文献
4.
Serdar B Egeghy PP Waidyanatha S Gibson R Rappaport SM 《Environmental health perspectives》2003,111(14):1760-1764
Benzene, naphthalene, and 1- and 2-naphthol were measured in urine samples obtained from 322 U.S. Air Force personnel categorized a priori as likely to have low, moderate, or high exposure to jet fuel [jet propulsion fuel-8 (JP-8)]. In postexposure samples, levels of these analytes in the high-exposure group were 3- to 29-fold greater than in the low-exposure group and 2- to 12-fold greater than in the moderate-exposure group. Heavy exposure to JP-8 contributed roughly the same amount of benzene and more than three times the amount of naphthalene compared with cigarette smoking. Strong correlations were observed among postexposure levels of naphthalene-based biomarkers in urine and naphthalene in air and breath. We conclude that urinary naphthalene and the naphthols can serve as biomarkers of exposure to jet fuel. Of these, the naphthols are probably more useful because of their greater abundance and slower elimination kinetics. 相似文献
5.
6.
Kaufman LR LeMasters GK Olsen DM Succop P 《Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine》2005,47(3):212-218
We sought to examine the effects of occupational exposure to jet fuel on hearing in military workers. METHODS: Noise-exposed subjects, with or without jet fuel exposure, underwent hearing tests. Work histories, recreational exposures, protective equipment, medical histories, alcohol, smoking, and demographics were collected by questionnaire. Jet fuel, solvent, and noise exposure data were collected from records. Fuel exposure estimates were less than 34% of the OSHA Threshold Limit Values. RESULTS: Subjects with 3 years of jet fuel exposure had a 70% increase in adjusted odds of hearing loss (OR = 1.7; 95% CI = 1.14-2.53) and the odds increased to 2.41 (95% CI = 1.04-5.57) for 12 years of noise and fuel exposure. CONCLUSIONS: These findings suggest that jet fuel has a toxic affect on the auditory system. 相似文献
7.
Limited research has been conducted on dermal exposure and risk assessment, owing to the lack of reliable measurement techniques and data for quantitative risk assessment. We investigated the magnitude of dermal exposure to jet propulsion fuel 8 (JP-8), using naphthalene as a surrogate, on the US Air Force fuel-cell maintenance workers. Dermal exposure of 124 workers routinely working with JP-8 was measured using a non-invasive tape-strip technique coupled with gas chromatography-mass spectrometry analysis. The contribution of job-related factors to dermal exposure was determined using multiple linear regression analyses. Average whole body dermal exposure to naphthalene (as a marker for JP-8) was 7.61 +/- 2.27 ln(ng m(-2)). Significant difference (P < 0.0001) between the high-exposure group [8.34 +/- 2.23 ln(ng m(-2))] and medium- and low-exposure groups [6.18 +/- 1.35 ln(ng m(-2)) and 5.84 +/- 1.34 ln(ng m(-2)), respectively] was observed reflecting the actual exposure scenarios. Skin irritation, use of booties, working inside the fuel tank and the duration of JP-8 exposure were significant factors explaining the whole body dermal exposure. This study clearly demonstrates the efficiency and suitability of the tape-strip technique for the assessment of dermal exposure to JP-8 and that naphthalene can serve as a useful marker of exposure and uptake of JP-8 and its components. It also showed that the skin provides a significant route for JP-8 exposure and that actions to reduce exposure are required. Studies to investigate the relative contribution of dermal uptake of JP-8 on total body dose and the toxicokinetics of dermal exposure to JP-8 are underway. 相似文献
8.
Smith KW Proctor SP Ozonoff AL McClean MD 《Journal of exposure science & environmental epidemiology》2012,22(1):35-45
There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8. 相似文献
9.
Harris DT Sakiestewa D Robledo RF Young RS Witten M 《Toxicology and industrial health》2000,16(2):78-84
The U.S. Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Exposure to environmental toxicants such as JP-8 may have significant effects on host physiology. Jet fuel exposure has been shown to cause human liver dysfunction, abnormal electroencephalograms, shortened attention spans, and decreased sensorimotor speed. Previous studies have shown that short-term, low-concentration JP-8 exposure had significant effects on the immune system; e.g., decreased viable immune cell numbers, decreased immune organ weights, and loss of immune function that persisted for extended periods of time (i.e., up to 4 weeks post-exposure). In the current study, an in-depth analysis of the effects of JP-8 exposure on cellular immunity was performed. Short-term (7 days, 1 h/day), low-concentration (1000 mg/m3) exposures were conducted in mice, and T cell and natural killer (NK) cell functions were analyzed 24 h after the last exposure. The exposure regimen was found to almost completely ablate NK cell function, as well as significantly suppress the generation of lymphokine-activated killer (LAK) cell activity. Furthermore, JP-8 exposure suppressed the generation of cytotoxic T lymphocyte (CTL) cells from precursor T cells, and inhibited helper T cell activity. These findings demonstrate that JP-8 jet fuel exposure has significant detrimental effects on immune functions of exposed individuals. JP-8 jet fuel should be considered a potential and significant immunotoxicant. Chronic exposure to JP-8 may have serious implications to the long-term health of exposed individuals. 相似文献
10.
11.
Schnatter AR 《Epidemiology (Cambridge, Mass.)》2004,15(4):509; author reply 510-509; author reply 511
12.
Exposures to benzene vapour were measured in a group of coal tar distillation workers and the concentration of benzene in the air that they exhaled was determined at the beginning of the following work period. Time-weighted average benzene concentrations were principally in the range 0.02-0.9 ppm. Benzene vapour was detectable in the breath of all subjects 16 h after exposure, and a progressive build-up over the working week was found. Nevertheless the relationship between exposure and concentration in exhaled breath was found to be poor. This suggests that at concentrations below about 1 ppm, the analysis of exhaled breath is not a reliable method of measuring previous exposure to benzene. 相似文献
13.
14.
S Holm D Norb?ck B Frenning C J G?the 《Scandinavian journal of work, environment & health》1987,13(5):438-444
The exposure to vapors from jet fuel under different work conditions was examined in three aircraft squadrons. Exposure measurements were made by charcoal sampling in the breathing zones of 23 randomly selected employees belonging to three different personnel groups. Each person was followed during two consecutive days by long-time sampling and, furthermore, by 15-minute sampling during work operations with possible high exposure. The charcoal tubes were eluted with carbon disulfide, and the hydrocarbons were analyzed with gas chromatography. The geometric mean of both the long- and the short-time exposure was only 1-2% of the corresponding occupational exposure limits. The highest long-time exposure observed was about 25% of the occupational exposure limit, while the highest short-time exposure was about 130% of the corresponding limit. Thus the present long-term exposure to solvent vapor in Swedish aircraft units is low, but infrequent short-time exposure above the present limit may occur in some work operations. 相似文献
15.
E. de Rosa G. B. Bartolucci M. Sigon R. Callegaro L. Perbellini F. Brugnone 《American journal of industrial medicine》1987,11(5):529-537
Industrial exposure to toluene was studied in a group of 18 subjects working in a printing plant, exposed only to this solvent. Environmental monitoring was carried out using personal samplers for the whole work-shift. Urine samples were collected for the determination of hippuric acid and ortho(o)-cresol before toluene exposure, at the end of the work-shift, and 5, 9, and 17 h after the end of the work-shift. The values of two metabolites in all the urinary samples were corrected for g creatinine and specific gravity (1.024). Toluene time weighted average (TWA) concentrations ranged from 51 to 221 mg/m3 (7-h samples; two samplings lasting 3.5 h each). Urinary hippuric acid and o-cresol values at the end of the work-shift were significantly higher than the prework-shift values. Both hippuricuria and o-cresoluria end-of-work-shift values, corrected for creatinine and specific gravity, were significantly related to the mean daily environmental concentration of toluene, the correlation being weaker for o-cresol. Correlation coefficients were 0.88 and 0.84 for hippuric acid and 0.63 and 0.62 for o-cresol after correction for creatinine and specific gravity, respectively. No significant relationship was observed between environmental exposure and the values of the two urinary metabolites 5, 9, and 17 h after the end of the work-shift. Extrapolated values from the linear regression analysis at 375 mg/m3 were in good agreement with the biological exposure index (BEI) suggested by ACGIH for hippuric acid. We conclude that determination of hippuric acid in urine samples collected at the end of the work-shift can be used for routine biological monitoring of exposure to toluene, even at low levels. O-cresol seems to be a less reliable indicator of toluene exposure. 相似文献
16.
Urinary hydroxy-metabolites of naphthalene,phenanthrene and pyrene as markers of exposure to diesel exhaust 总被引:1,自引:0,他引:1
Kuusimäki L Peltonen Y Mutanen P Peltonen K Savela K 《International archives of occupational and environmental health》2004,77(1):23-30
Objective The objective of this study was to assess the exposure of bus-garage and waste-collection workers to polycyclic aromatic hydrocarbons (PAHs) derived from diesel exhaust by the measurement of levels of seven urinary PAH metabolites: 2-naphthol, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 1+9-hydroxyphenanthrene, 4-hydroxyphenanthrene and 1-hydroxypyrene.Subjects and methods One urine sample from each of 46 control persons, and one pre-shift and two post-shift spot urine samples from 32 exposed workers were obtained in winter and in summer. The metabolites were analysed after enzymatic hydrolysis by high performance liquid chromatography (HPLC) with fluorescence detection.Results The sum of seven PAH metabolites (mean 3.94±3.40 and 5.60±6.37 mol/mol creatinine in winter and summer, respectively) was higher [P=0.01, degrees of freedom (df) =61.2 and P=0.01, df=67.6 in winter and summer, respectively] in the exposed group than in the control group (mean 3.18±3.99 and 3.03±2.01 mol/mol creatinine in winter and summer, respectively). The mean concentrations of 2-naphthol among exposed and controls ranged between 3.34 and 4.85 mol/mol creatinine and 2.51 and 2.58 mol/mol creatinine, respectively (P<0.01 in winter, P<0.03 in summer). The mean level of the hydroxyphenanthrenes in the samples of exposed workers was between 0.40 and 0.70 mol/mol creatinine and in the control samples 0.40–0.60 mol/mol creatinine. The concentration of 1-hydroxypyrene was higher among exposed workers in both pre-shift and post-shift samples (mean 0.10–0.15 mol/mol creatinine) than in control group (mean 0.05–0.06 mol/mol creatinine) in winter (P=0.002, df=78) and in summer (P<0.001, df=68).Conclusions The urinary hydroxy-metabolites of naphthalene, phenanthrene and pyrene showed low exposure to diesel-derived PAHs; however, it was higher in exposed workers than in control group. Urinary PAH monohydroxy-metabolites measured in this study did not correlate with the PAHs in the air samples, reported earlier, in 2002 and 2003. 相似文献
17.
Harris DT Sakiestewa D Titone D He X Hyde J Witten M 《Toxicology and industrial health》2007,23(10):617-623
The US Air Force has implemented the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Previous work has reported that JP-8 exposure is immunosuppressive. Exposure of mice to JP-8 for 1 h/day resulted in immediate secretion of two immunosuppressive agents; namely, interleukin-10 (IL-10) and prostaglandin E2 (PGE2). Thus, it was of interest to determine if jet fuel exposure might promote tumor growth and metastasis. The syngeneic B16 tumor model was used for these studies. Animals were injected intravenously with tumor cells, and lung colonies were enumerated. Animals were also examined for metastatic spread of the tumor. Mice were either exposed to 1000 mg/m3 JP-8 (1 h/ day) for 7 days before tumor injection or were exposed to JP-8 at the time of tumor injection. All animals were killed 17 days after tumor injection. In the present study, JP8 exposure potentiated the growth and metastases of B16 tumors in an animal model. Exposure of mice to JP-8 for 1 h/day before tumor induction resulted in an approximately 8.7-fold increase in tumors, whereas those mice exposed to JP8 at the time of tumor induction had a 5.6-fold increase in tumor numbers. Thus, low concentration JP-8 jet fuel exposures have significant immune suppressive effects on the immune system that can result in increased tumor formation and metastases. We have now extended the observations to an experimental subcutaneous tumor model. JP8 exposure at the time of tumor induction in this model did not affect the growth of the tumor. However, JP8-exposed, tumor-bearing animals died at an accelerated rate as compared with air-exposed, tumor-bearing mice. 相似文献
18.
Chao YC Kupper LL Serdar B Egeghy PP Rappaport SM Nylander-French LA 《Environmental health perspectives》2006,114(2):182-185
Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure. 相似文献
19.
Berode M Sethre T Läubli T Savolainen H 《International archives of occupational and environmental health》2000,73(6):410-414
Objective: To evaluate the validity of methanol (MeOH) and formic acid (FA) in urine as biological indicators of methyl formate (MF)
exposure in experimental and field situations. Methods: The subjects were 28 foundrymen and two groups of volunteers (20 control and 20 exposed). Exposure assessment of the workers
was performed by personal air and biological monitoring. Methyl formate vapour collected on charcoal tube was analysed by
gas chromatography. The concentration of MF in the exposure chamber (volunteer-study) was monitored by two independent methods
[flame ionisation detection (FID) and Fourier transformation infra-red detection (FTIR)]. Urinary metabolites (MeOH and FA)
were analysed separately by head-space gas chromatography. Results: The volunteers exposed to 100 ppm MF vapour at rest for 8 h excreted 3.62 ± 1.13 mg MeOH/l (mean ± SD) at the end of the
exposure. This was statistically different (P < 0.001) from pre-exposure MeOH excretion (2.15 ± 0.80 mg/l), or from that of controls (1.69 ± 0.48 mg/l). The urinary FA
excretion was 32.2 ± 11.3 mg/g creatinine after the exposure, which was statistically different (P < 0.001) from pre-exposure excretion (18.0 ± 9.3 mg/g creatinine) or that of controls (13.8 ± 7.9 mg/g creatinine). In foundrymen,
the urinary FA excretion after the 8 h workshift exposure to a time weighted average (TWA) concentration of 2 to 156 ppm MF
showed a dose-dependent increase best modelled by a polynomial function. The highest urinary FA concentration was 129 mg/g
creatinine. The pre-shift urinary FA of the foundrymen (18.3 ± 5.6 mg/g creatinine) did not differ from that of controls (13.8 ± 7.9 mg/g
creatinine). The urinary MeOH excretion of the foundrymen after the shift, varied from <1 to 15.4 mg/l, while the correlation
with the preceding MF exposure was poor. The foundrymen excreted more (P=0.01) FA (2.12 ± 3.56 mg/g creatinine) after the workshift than experimentally, once-exposed volunteers (0.32 ± 0.11 mg/g
creatinine) at a similar inhaled MF level of 1 ppm). Conclusions: In spite of its high background level in non-exposed subjects, urinary FA seems to be a useful biomarker of methyl formate
exposure. The question remains as to what is the reason for the differences in chronic and acute exposure respectively.
Received: 27 September 1999 / Accepted: 25 March 2000 相似文献
20.