首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of kindling and mossy fiber sprouting, and changes of gene expression were studied after 40 seizures produced during about 3 h by electrical stimulation every 5 min in the ventral hippocampus. As assessed by 5 test stimulations, enhanced responsiveness was present already after 6–24 h but from 1 week post-seizure increased gradually up to 4 weeks without additional stimuli. Sprouting of mossy fibers in the dentate gyrus was demonstrated only at 4 weeks with Timm's staining. In situ hybridization showed a transient increase (maximum at 2 h) of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), TrkB and TrkC mRNA levels and reduction (maximum at 12–24 h) of neurotrophin-3 (NT-3) mRNA expression in dentate granule cells after the seizures. In addition, BDNF mRNA levels were elevated in CAI and CA3 regions, amygdala and piriform cortex. Marked increases of mRNA for growth-associated protein (GAP-43), with maximum expression at 12–24 h, were observed in dentate granule cells and in amygdala-piri-form cortex. Dynorphin mRNA levels showed biphasic changes in dentate granule cells with an increase at 2 h followed by a decrease at 24 h. No long-term alterations of gene expression were observed. These findings indicate that increased responsiveness develops rapidly after recurring seizures but that the kindled state is reached gradually in about 4 weeks. Mossy fiber sprouting occurs in parallel to epileptogenesis and may play a causative role. Short-term changes of neurotrophin and Trk, GAP-43 and dynorphin mRNA levels and the assumed alterations of the corresponding proteins could trigger structural rearrangements underlying kindling but might also contribute to the initial increase of seizure susceptibility.  相似文献   

2.
Kindling is an animal model of epilepsy in which repeated electrical stimulations lead to progressive and permanent amplification of seizure activity, culminating in generalized convulsions. Each brief period of seizure activity during kindling epileptogenesis causes a marked, transient increase of the synthesis of brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons. We find that the development of kindling is markedly suppressed in mice heterozygous for a deletion of the BDNF gene. In contrast, the maintenance of kindling is unaffected. The mutant mice show lower levels of BDNF mRNA in cortical and hippocampal neurons after seizures than do wild-type mice. Hippocampal mossy fiber sprouting is augmented in BDNF mutants but there are no other morphological abnormalities. These results show that BDNF plays an important role in establishing hyperexcitability during epileptogenesis, probably by increasing efficacy in stimulated synapses.  相似文献   

3.
Locus Coeruleus and Neuronal Plasticity in a Model of Focal Limbic Epilepsy   总被引:1,自引:0,他引:1  
Summary:  Purpose: A lesion of the noradrenergic nucleus Locus Coeruleus (LC) converts sporadic seizures evoked by microinfusion of bicuculline into the anterior piriform cortex (APC) of rats into limbic status epilepticus (SE). The purpose of this study was to evaluate the chronic effects of this new model of SE on the onset of secondary epileptogenesis. We further related the loss of noradrenaline (NE) with hippocampal mossy fiber sprouting.
Methods: Male Sprague Dawley rats were treated with systemic saline or DSP-4 (a neurotoxin selective for noradrenergic terminals originating from the LC), microinfused with bicuculline into the APC three days later, and sacrificed after 45 days. Naïve and DSP-4 pretreated sham-operated rats served as respective controls. The following evaluations were performed: (a) monitoring of acute seizures and delayed occurrence of spontaneous recurrent seizures (SRS); (b) NE levels in the hippocampus, frontal and olfactory cortex; (c) occurrence of mossy fiber sprouting into the inner molecular layer of the dentate gyrus of the dorsal hippocampus.
Results: In 30% of rats lacking noradrenergic terminals, SE evoked from the APC was followed by SRS. Conversely, seizures evoked in intact rats did not result in chronic epileptogenesis. Seizures/SE did not modify NE levels as compared with baseline levels both in naïve and DSP-4-pretreated rats. Rats undergoing SE following DSP-4 + bicuculline developed SRS which were accompanied by hippocampal mossy fiber sprouting.
Conclusions: Noradrenergic loss converts focally induced sporadic seizures into an epileptogenic SE, which is accompanied by mossy fiber sprouting within the dentate gyrus.  相似文献   

4.
Various clinical and experimental studies of epilepsy have described synaptic reorganization in the dentate gyrus of hippocampus, in the form of collateral sprouting of the mossy fibers. These reports have led to the hypothesis that reorganized mossy fibers form a functional excitatory feedback circuit that contributes to local circuit hyperexcitability and chronic seizures. Much of the evidence supporting the sprouting hypothesis has been derived from kindling. We recently reported that transection of the fimbria/fornix (FF), which produces chronic epileptiform activity in the hippocampus, also induces mossy fiber sprouting in the inner molecular layer of the dentate gyrus. In the present study, we attempted to determine whether mossy fiber sprouting contributes to epileptiform activity, by examining the effects FF transections on perforant path (PP) kindling and associated mossy fiber sprouting. We found that FF transections and PP kindling produced moderate levels of sprouting, whereas the combination of the two treatments produced significantly denser sprouting. FF transections had mixed effects on kindling: afterdischarge thresholds were decreased and clonus and afterdischarge durations were increased, suggesting increased local excitation, whereas the kindling of behavioral seizures was delayed, suggesting decreased epileptogenesis.  相似文献   

5.
Genetic deficits have been discovered in human epilepsy, which lead to alteration of the balance between excitation and inhibition, and ultimately result in seizures. Rodents show similar genetic determinants of seizure induction. To test whether seizure‐prone phenotypes exhibit increased seizure‐related morphological changes, we compared two standard rat strains (Long–Evans hooded and Wistar) and two specially bred strains following status epilepticus. The special strains, namely the kindling‐prone (FAST) and kindling‐resistant (SLOW) strains, were selectively bred based on their amygdala kindling rate. Although the Wistar and Long–Evans hooded strains experienced similar amounts of seizure activity, Wistar rats showed greater mossy fiber sprouting and hilar neuronal loss than Long–Evans hooded rats. The mossy fiber system was affected differently in FAST and SLOW rats. FAST animals showed more mossy fiber granules in the naïve state, but were more resistant to seizure‐induced mossy fiber sprouting than SLOW rats. These properties of the FAST strain are consistent with those observed in juvenile animals, further supporting the hypothesis that the FAST strain shares circuit properties similar to those seen in immature animals. Furthermore, the extent of mossy fiber sprouting was not well correlated with sensitivity to status epilepticus, but was positively correlated with the frequency of spontaneous recurrent seizures in the FAST rats only, suggesting a possible role for axonal sprouting in the development of spontaneous seizures in these animals. We conclude that genetic factors clearly affect seizure development and related morphological changes in both standard laboratory strains and the selectively bred seizure‐prone and seizure‐resistant strains.  相似文献   

6.
Controversy surrounds whether aberrant mossy fiber sprouting in the hippocampus is necessary for the establishment of seizure states. We investigated the association between mossy fiber sprouting and kindling in guinea-pigs, using either single-site or alternate-site stimulation. Kindling with single-site amygdaloid stimulation did not induce significant sprouting, despite the development of partial seizures. In contrast, single-site septal and alternating amygdaloid-septal stimulation produced moderate but significant sprouting in about 60% of animals that failed to develop stage 5 generalized seizures. Since the magnitude of sprouting was similar despite striking differences in the intensity of seizures that developed, we conclude that mossy sprouting is not causally associated with seizure development.  相似文献   

7.
Kainic acid induction of mossy fiber sprouting: dependence on mouse strain   总被引:1,自引:0,他引:1  
After seizures caused by kindling or kainic acid (KA), hippocampal granule-cell axons, the mossy fibers, sprout into the supragranular layer of the rat. The mechanisms underlying this phenomenon remain elusive, but excitotoxic loss of hilar cells, which project to this supragranular layer, is suspected to be a critical determinant. Consistent with this hypothesis, we previously reported that while rats show mossy fiber sprouting after kainate, ICR mice do not. This may be associated with the observation that ICR mice, unlike rats, do not appear to show hilar cell death after KA (McNamara et al., Mol Brain Res 1996;40:177-187). Other strains of mice, however, such as 129/SvEMS, do show hilar cell death after KA (Schauwecker and Steward, Proc Natl Acad Sci USA 1997;94:4103-4108). We examined the possibility that the 129/SvEMS mouse strain would show granule-cell sprouting, in contrast to ICR mice. After administration of KA, mossy fiber sprouting was indeed observed in strain 129/SvEMS, but only in animals displaying evident hilar cell death. In contrast, neither hilar cell death nor mossy fiber sprouting was observed in ICR mice, confirming previous results. Both mouse strains demonstrated comparable behavioral seizures. These results strengthen the view that hilar cell death, together with epileptogenesis, triggers reactive synaptogenesis and mossy fiber sprouting.  相似文献   

8.
The development and spread of afterdischarges in the ipsilateral limbic system during amygdala kindling, a model of complex partial seizures, was studied in male and female rats. Kindling stimulation was performed in the basolateral amygdala, and afterdischarges were recorded from the stimulation electrode and electrodes in the nucleus accumbens, the posterior piriform cortex and the ventral hippocampus, all implanted on the right side of the brain. All structures showed primary afterdischarges already after the first stimulation, indicating a close anatomical and physiological connection to the epileptogenic focus. The development of robust secondary afterdischarges, which occurred after the end of the primary afterdischarges in the amygdala and which always originated in the hippocampus but also spread to one or more of the other recording sites, is described. The secondary afterdischarges initially occurred after about nine kindling stimulations in both male and female rats, and were associated with an increase in primary afterdischarge duration and a progression from focal to motor seizures. In order to test the effect of common antiepileptic drugs on the secondary afterdischarges, a group of female rats were treated with valproate, carbamazepine or phenytoin. All drugs suppressed the secondary afterdischarges, although they had a different anticonvulsant efficacy on motor seizures and afterdischarge duration after amygdala stimulation. While valproate and carbamazepine dose-dependently reduced all parameters of the kindled seizure, including the secondary afterdischarges in the hippocampus, phenytoin suppressed the secondary afterdischarges also in the absence of any anticonvulsant effect, suggesting that recurrent hippocampal activation is not crucial for the kindled state. Recording of secondary afterdischarges in the hippocampus may offer the possibility of studying the conditions for development and pharmacological suppression of recurrent hippocampal activation in amygdala-kindled rats.  相似文献   

9.
Kindling, an experimental model of epileptogenesis, and activation-induced synaptic reorganization are modulated by nerve growth factor (NGF), but whether NGF acts via its high-affinity receptor TrkA and/or the common neurotrophin receptor p75NTR is unknown. We previously demonstrated, and confirmed in this study, that inhibition of NGF binding to both TrkA and p75NTR inhibited kindling and decreased kindling-induced mossy fiber sprouting. We now report specific inhibition of TrkA.NGF binding, but not p75NTR.NGF binding, retarded perforant path kindling progression. However, mossy fiber sprouting was inhibited by either selective TrkA.NGF or p75NTR.NGF antagonists. Our results suggest that TrkA, but not p75NTR, plays a role in kindling, while both receptors modulate kindling-induced mossy fiber sprouting. This implicates different mechanisms of neurotrophin action on kindling (mediated by TrkA) and neuronal sprouting (mediated by both TrkA and p75NTR) and suggests that sprouting involves kindling-independent neurotrophin action via p75NTR.  相似文献   

10.
Repeated electrical stimulation of limbic structures has been reported to produce the kindling effect together with morphological changes in the hippocampus such as mossy fiber sprouting and/or neuronal loss. However, to argue against a causal role of these neuropathological changes in the development of kindling-associated seizures, we examined mossy fiber sprouting in amygdala (AM)-kindled rats using Timm histochemical staining, and evaluated the hippocampal neuronal degeneration in AM-kindled rats by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labelling (TUNEL). Amygdala kindling was established by 10.3 +/- 0.7 electrical stimulations, and no increase in Timm granules (neuronal sprouting) was observed up to the time of acquisition of a fully kindled state. However, the density and distribution of Timm granules increased significantly in the dentate gyrus compared with unkindled rats after 29 after-discharges or more than 10 kindled convulsions. In addition, no significant increase in TUNEL-positive cells was found in the hilar polymorphic neurons or in CA3 pyramidal neurons of the kindled rats that had fewer than 29 after-discharges. However, a significant increase of TUNEL-positive cells was found in the granule cell layer in the dentate gyrus of the stimulated side after 18 after-discharges or 10 kindled convulsions. Our result show that AM kindling develops without evidence of mossy fiber sprouting, and that mossy fiber sprouting may appear after repeated kindled convulsions, following death of the granule cells in the dentate gyrus.  相似文献   

11.
One of the most common types of epilepsy in adults is temporal lobe epilepsy. Temporal lobe epilepsy is often resistant to pharmacological treatment, requiring urgent understanding of its molecular and cellular mechanisms. It is generally accepted that an imbalance between excitatory and inhibitory inputs is related to epileptogenesis. We have recently identified that fibroblast growth factor (FGF) 7 is critical for inhibitory synapse formation in the developing hippocampus. Remarkably, FGF7 knockout mice are prone to epileptic seizures induced by chemical kindling (Terauchi et al., 2010). Here we show that FGF7 knockout mice exhibit epileptogenesis-related changes in the hippocampus even without kindling induction. FGF7 knockout mice show mossy fiber sprouting and enhanced dentate neurogenesis by 2months of age, without apparent spontaneous seizures. These results suggest that FGF7-deficiency impairs inhibitory synapse formation, which results in mossy fiber sprouting and enhanced neurogenesis during development, making FGF7 knockout mice vulnerable to epilepsy.  相似文献   

12.
目的利用戊四氮(pentylenetetrazol,PTZ)慢性点燃Sprague Dawley大鼠(SD大鼠)模型观察在点燃初期腹腔注射雷帕霉素(rapamycin,RAPA)能否抑制癫痫发生以及雷帕霉素在治疗中的安全性。方法将6~8周龄SD雄性大鼠随机分为雷帕霉素干预组PTZ+RAPA及其对照组PTZ+NS(normal saline)及NS组,观察1周(w)、2周(w)、4周(w)、6周(w)共4个时间点,每亚组12只,观察实验动物体质量的变化、死亡率及癫痫发作情况。结果各组实验大鼠的死亡率:PTZ+RAPA组为22.9%,PTZ+NS组为10.4%,NS组为0%。PTZ+RAPA组与PTZ+NS组各个相对应的时间点(1 w,2 w,4 w,6 w)体质量差均有统计学差异(P0.001)。6周时PTZ+RAPA组的点燃率为66.7%,PTZ+NS组的点燃率为58.3%,二者无统计学差异(P0.05)。PTZ+RAPA组与PTZ+NS组相对应时间点(1 w,2 w,4 w,6 w)发作分值的两两比较差异无统计学意义(P0.05)。结论雷帕霉素未能减少或抑制未成年大鼠的癫痫发作,但能明显降低未成年SD大鼠的体质量,可能有一定的毒副作用。  相似文献   

13.
Recent studies have revealed that mossy fiber axons of granule cells in the dentate gyrus undergo reorganization of their terminal projections in both animal models of epilepsy and human epilepsy. This synaptic reorganization has been demonstrated by the Timm method, a histochemical technique that selectively labels synaptic terminals of mossy fibers because of their high zinc content. It has been generally presumed that the reorganization of the terminal projections of the mossy fiber pathway is a consequence of axonal sprouting and synaptogenesis by mossy fibers. To evaluate this possibility further, the time course for development of Timm granules, which correspond ultrastructurally to mossy fiber synaptic terminals, was examined in the supragranular layer of the dentate gyrus at the initiation of kindling stimulation with an improved scoring method for assessment of alterations in Timm histochemistry. The progression and permanence of this histological alteration were similarly evaluated during the behavioral and electrographic evolution of kindling evoked by perforant path, amygdala, or olfactory bulb stimulation. Mossy fiber synaptic terminals developed in the supragranular region of the dentate gyrus by 4 d after initiation of kindling stimulation in a time course compatible with axon sprouting. The induced alterations in the terminal projections of the mossy fiber pathway progressed with the evolution of behavioral kindled seizures, became permanent in parallel with the development of longlasting susceptibility to evoked seizures, and were observed as long as 8 months after the last evoked kindled seizure. The results demonstrated a strong correlation between mossy fiber synaptic reorganization and the development, progression, and permanence of the kindling phenomenon.  相似文献   

14.
Massed electrical stimulation of the anterior piriform cortex (PC) in rats using short (5 min) interstimulus intervals has previously been reported to induce severe chronic epilepsy with spontaneous seizures and has thus proposed to represent a novel model of temporal lobe epilepsy. In the present study, we used this stimulation protocol to evaluate the frequency and severity of recurrent spontaneous seizures produced in this way. In addition to the locus in the anterior PC previously used for massed stimulation (MS), we also stimulated rats via a locus in the transition zone between anterior and posterior PC ("central PC"), which previously was found to be more sensitive to electrical stimulation than various other loci in the anterior or posterior PC. During MS (71 stimulations for 1 s each at twice afterdischarge threshold), focal and infrequent secondary generalized seizures occurred in both groups, but there was no consistent progressive increase in seizure severity with increasing number of seizures, possibly as a result of postictal inhibitory processes. Following MS, rats were restimulated after 1, 2, 4, and 7 weeks, using five stimuli at 5-min interstimulus periods at each retest period. In both PC-implanted groups, seizure severity and seizure duration progressively increased over the period of the retests, indicating a delayed development of kindling. Spontaneous seizures were only observed rarely, so that MS of the PC is certainly no effective means of producing recurrent spontaneous seizures.  相似文献   

15.
PURPOSE: Nogo-A, one of the axon regeneration inhibitors, has been shown to be up-regulated in both the experimental and human temporal lobe epilepsy. However, the role of Nogo-A in mossy fiber sprouting (MFS) relative to epileptogenesis is unknown. This work was designed to examine the relationship of the hippocampal Nogo-A protein expression with MFS during the development of amygdala kindling. METHODS: Using immunohistochemistry and neo-Timm's histological procedures, we evaluated the distribution and density of Nogo-A and Nogo-66 receptor (Ng-R) expression and MFS in the bilateral hippocampus of amygdala kindling rats. RESULTS: Nogo-A expression in the ipsilateral hippocampus gradually increased with the development of kindling in the sector CA2-3. In contrast, no increased Nogo-A expression was observed in the contralateral hippocampus as the rats advanced to stage 5 kindled seizures. Furthermore, poorer Nogo-A and Nogo-66 receptor (Ng-R) expression were observed in the dentate granule cells as aberrant MFS occurred. CONCLUSIONS: In amygdala kindling rats, generalized stage 5 seizures were not associated with increased Nogo-A expression in the contralateral hippocampus supporting the concept that seizures by themselves do not induce Nogo-A expression. Furthermore, in the ipsilateral hippocampus, the expression of Nogo-A relative to MSF suggests that this protein may partially control aberrant synaptic reorganization during epileptogenesis.  相似文献   

16.
The contribution of mossy fiber sprouting to the generation of spontaneous seizures in the epileptic brain is under dispute. The present study addressed this question by examining whether sprouting of mossy fibers is present at the time of appearance of the first spontaneous seizures in rats, and whether all animals with increased sprouting have spontaneous seizures. Epileptogenesis was induced in 16 rats by electrically stimulating the lateral nucleus of the amygdala for 20-30 min until the rats developed self-sustained status epilepticus (SSSE). During and after SSSE, rats were monitored in long-term by continuous video-electroencephalography until they developed a second spontaneous seizure (8-54 days). Thereafter, monitoring was continued for 11 days to follow seizure frequency. The density of mossy fiber sprouting was analyzed from Timm-stained preparations. The density of hilar neurons was assessed from thionin-stained sections. Of 16 rats, 14 developed epilepsy. In epileptic rats, the density of mossy fiber sprouting did not correlate with the severity or duration (115-620 min) of SSSE, delay from SSSE to occurrence of first (8-51 days) or second (8-54 days) spontaneous seizure, or time from SSSE to perfusion (20-63 days). In the temporal end of the hippocampus, the sprouting correlated with the severity of neuronal damage (ipsilateral: r = -0.852, P < 0.01 contralateral: r = -0.748, P < 0.01). The two animals without spontaneous seizures also had sprouting. Increased density of sprouting in animals without seizures, and its association with the severity of neuronal loss was confirmed in another series of 30 stimulated rats that were followed-up with video-EEG monitoring for 60 d. Our data indicate that although mossy fiber sprouting is present in all animals with spontaneous seizures, its presence is not necessarily associated with the occurrence of spontaneous seizures.  相似文献   

17.
Hippocampal mossy fibers, axons of dentate granule cells, converge in the dentate hilus and run through a narrow area called the stratum lucidum to synapse with hilar and CA3 neurons. In the hippocampal formation of temporal lobe epilepsy patients, however, this stereotyped pattern of projection is often collapsed; the mossy fibers branch out of the dentate hilus and abnormally innervate the dentate inner molecular layer, a phenomenon that is termed mossy fiber sprouting. Experimental studies have replicated this sprouting in animal models of temporal lobe epilepsy, including kindling and pharmacological treatment with convulsants. Because these axon collaterals form recurrent excitatory inputs into dendrites of granule cells, the circuit reorganization is assumed to cause epileptiform activity in the hippocampus, whereas some recent studies indicate that the sprouting is not necessarily associated with early-life seizures. Here we review the mechanisms of mossy fiber sprouting and consider its potential contribution to epileptogenesis. Based on recent findings, we propose that the sprouting can be regarded as a result of disruption of the molecular mechanisms underlying the axon guidance. We finally focus on the possibility that prevention of the abnormal sprouting might be a new strategy for medical treatment with temporal lobe epilepsy.  相似文献   

18.
The neuropeptide galanin is considered to be an endogenous antiepileptic agent, presumably acting via inhibition of glutamate release. Previously, we have demonstrated that in mice ectopically overexpressing galanin in cortical and hippocampal neurons, particularly in granule cells and their axons, the mossy fibers, hippocampal kindling epileptogenesis is suppressed and is associated with attenuated frequency facilitation in mossy fiber-CA3 cell synapses. We hypothesized that changes in synaptic transmission might occur also in other excitatory synapses of the galanin overexpressing (GalOE) mouse, contributing to seizure suppression. Lateral olfactory tract (LOT) synapses, formed by axons of olfactory bulb (OB) mitral cells and targeting piriform cortex (PC) pyramidal cells, ectopically express galanin in GalOE mice. Using whole-cell patch-clamp recordings, we found that excitatory synaptic responses recorded in PC pyramidal cells during high frequency stimulation of the LOT were attenuated in GalOE mice as compared to wild-type controls. This effect was mimicked by bath application of galanin or its agonist galnon to wild-type slices, supporting the notion of ectopic galanin action. Since the high frequency activation induced in vitro resembles epileptic seizures in vivo, we asked whether the observed synaptic inhibition would result in altered epileptogenesis when animals were kindled via the same synapses. In male GalOE mice, we found that the latency to convulsions was prolonged, and once animals had experienced the first stage 5 seizure, generalized seizures were less sustainable. These data indicate that the PC is a possible target for epilepsy treatment by ectopically overexpressing galanin to modulate seizure activity.  相似文献   

19.
There is considerable controversy whether aberrant fascia dentata (FD) mossy fiber sprouting is an epiphenomena related to neuronal loss or a pathologic abnormality responsible for spontaneous limbic seizures. If mossy fiber sprouting contributes to seizures, then reorganized axon circuits should alter postsynaptic glutamate receptor properties. In the pilocarpine-status rat model, this study determined if changes in alpha amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and n-methyl-D-aspartic acid (NMDA) receptor subunit mRNA levels correlated with mossy fiber sprouting. Sprague-Dawley rats were injected with pilocarpine (320 mg/kg; i.p.) and maintained in status epilepticus for 6 to 8 hours (pilocarpine-status). Rats were killed during the: (1) latent phase after neuronal loss but before spontaneous limbic seizures (day 11 poststatus; n = 7); (2) early seizure phase after their first seizures (day 25; n = 7); and (3) chronic seizure phase after many seizures (day 85; n = 9). Hippocampi were studied for neuron counts, inner molecular layer (IML) neo-Timm's staining, and GluR1–3 and NMDAR1–2b mRNA levels. Compared with controls, pilocarpine-status rats in the: (1) latent phase showed increased FD GluR3, NMDAR1, and NMDAR2b; greater CA4 and CA1 NMDAR1; and decreased subiculum GluR1 hybridization densities; (2) early seizure phase showed increased FD GluR3, increased CA1 NMDAR1, and decreased subiculum NMDAR2b densities; and (3) chronic seizure phase showed increased FD GluR2; increased FD and CA4 GluR3; decreased CA1 GluR2; and decreased subiculum GluR1, GluR2, NMDAR1, and NMDAR2b levels. In multivariate analyses, greater IML neo-Timm's staining: (1) positively correlated with FD GluR3 and NMDAR1 and (2) negatively correlated with CA1 and subiculum GluR1 and GluR2 mRNA levels. These results indicate that: (1) hippocampal AMPA and NMDA receptor subunit mRNA levels changed as rats progressed from the latent to chronic seizure phase and (2) certain subunit alterations correlated with mossy fiber sprouting. Our findings support the hypothesis that aberrant axon circuitry alters postsynaptic hippocampal glutamate receptor subunit stoichiometry; this may contribute to limbic epileptogenesis. J. Neurosci. Res. 54:734–753, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Similar to rats, systemic pilocarpine injection causes status epilepticus (SE) and the eventual development of spontaneous seizures and mossy fiber sprouting in C57BL/6 and CD1 mice, but the physiological correlates of these events have not been identified in mice. Population responses in granule cells of the dentate gyrus were examined in transverse slices of the ventral hippocampus from pilocarpine-treated and untreated mice. In Mg(2+)-free bathing medium containing bicuculline, conditions designed to increase excitability in the slices, electrical stimulation of the hilus resulted in a single population spike in granule cells from control mice and pilocarpine-treated mice that did not experience SE. In SE survivors, similar stimulation resulted in a population spike followed, at a variable latency, by negative DC shifts and repetitive afterdischarges of 3-60 s duration, which were blocked by ionotropic glutamate receptor antagonists. Focal glutamate photostimulation of the granule cell layer at sites distant from the recording pipette resulted in population responses of 1-30 s duration in slices from SE survivors but not other groups. These data support the hypothesis that SE-induced mossy fiber sprouting and synaptic reorganization are relevant characteristics of seizure development in these murine strains, resembling rat models of human temporal lobe epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号