首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol consisting of a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (anti-CD40 ligand mAb) induces permanent islet allograft survival in chemically diabetic mice, but its efficacy in mice with autoimmune diabetes is unknown. Confirming a previous report, we first observed that treatment of young female NOD mice with anti-CD154 mAb reduced the frequency of diabetes through 1 year of age to 43%, compared with 73% in untreated controls. We also confirmed that spontaneously diabetic NOD mice transplanted with syngeneic (NOD-Prkdc(scid)/Prkdc(scid)) or allogeneic (BALB/c) islets rapidly reject their grafts. Graft survival was not prolonged, however, by pretreatment with either anti-CD154 mAb alone or anti-CD154 mAb plus DST. In addition, allograft rejection in NOD mice was not restricted to islet grafts. Anti-CD154 mAb plus DST treatment failed to prolong skin allograft survival in nondiabetic male NOD mice. The inability to induce transplantation tolerance in NOD (H2g7) mice was associated with non-major histocompatibility complex (MHC) genes. Treatment with DST and anti-CD154 mAb prolonged skin allograft survival in both C57BL/6 (H2b) and C57BL/6.NOD-H2g7 mice, but it was ineffective in NOD, NOD.SWR-H2q, and NOR (H2g7) mice. Mitogen-stimulated interleukin-1beta production by antigen-presenting cells was greater in strains susceptible to tolerance induction than in the strains resistant to tolerance induction. The results suggest the existence of a general defect in tolerance mechanisms in NOD mice. This genetic defect involves defective antigen-presenting cell maturation, leads to spontaneous autoimmune diabetes in the presence of the H2g7 MHC, and precludes the induction of transplantation tolerance irrespective of MHC haplotype. Promising islet transplantation methods based on overcoming the alloimmune response by interference with costimulation may require modification or amplification for use in the setting of autoimmune diabetes.  相似文献   

2.
Allorejection and recurrence of autoimmunity are the major barriers to transplantation of islets of Langerhans for the cure of type 1 diabetes in humans. CD40-CD154 (CD40 ligand) interaction blockade by the use of anti-CD154 monoclonal antibody (mAb) has shown efficacy in preventing allorejection in several models of organ and cell transplantation. Here we report the beneficial effect of the chronic administration of a hamster anti-murine CD154 mAb, MR1, in prolonging islet graft survival in NOD mice. We explored the transplantation of C57BL/6 islets into spontaneously diabetic NOD mice, a combination in which both allogeneic and autoimmune components are implicated in graft loss. Recipients were treated either with an irrelevant control antibody or with MR1. MR1 administration was effective in prolonging allograft survival, but did not provide permanent protection from diabetes recurrence. The autoimmune component of graft loss was studied in spontaneously diabetic NOD mice that received syngeneic islets from young male NOD mice. In this combination, a less dramatic yet substantial delay in diabetes recurrence was observed in the MR1-treated recipients when compared with the control group. Finally, the allogeneic component was explored by transplanting C57BL/6 islets into chemically induced diabetic male NOD mice. In this setting, long-term graft survival (>100 days) was achieved in MR1-treated mice, whereas control recipients rejected their grafts within 25 days. In conclusion, chronic blockade of CD154 results in permanent protection from allorejection and significantly delays recurrence of diabetes in NOD mice.  相似文献   

3.
Costimulation blockade induces prolonged rat islet and skin xenograft survival in C57BL/6 mice. Nonobese diabetic (NOD) mice, which are used to model human autoimmune diabetes, are resistant to costimulation blockade-induced allograft tolerance. We tested the hypothesis that NOD mice would also be resistant to costimulation blockade-induced rat xenograft tolerance. We report that rat islet xenograft survival is short in spontaneously diabetic NOD mice treated with a tolerizing regimen of donor-specific transfusion and anti-CD154 antibody. Rat islet xenograft survival is only marginally longer in chemically diabetic NOD mice treated with costimulation blockade but is prolonged further in NOD Idd congenic mice bearing C57-derived chromosome 3 loci. Reciprocally, the presence of NOD-derived chromosome 3 loci shortens islet xenograft survival in tolerized C57BL/6 mice. Islet xenograft survival is longer in tolerized NOD.CD4a(-/-) and (NOD x C57BL/6)F1 mice than in NOD mice but still much shorter than in C57BL/6 mice. Skin xenograft survival in (NOD x C57BL/6)F1 mice treated with costimulation blockade is short, suggesting a strong genetic resistance to skin xenograft tolerance induction. We conclude that the resistance of NOD mice to xenograft tolerance induction involves some mechanisms that also participate in the expression of autoimmunity and other mechanisms that are distinct.  相似文献   

4.
Costimulatory signals regulate T-cell activation. To investigate the role of costimulation in autoimmunity and transplantation, we studied the BB rat model of type 1 diabetes. Diabetes-prone BB (BBDP) rats spontaneously develop disease when 55–120 days of age. We observed that two anti-CD28 monoclonal antibodies (mAb) with different functional activities completely prevented diabetes in BBDP rats. Anti-CD154 mAb delayed diabetes, whereas treatment with CTLA4-Ig or anti-CD80 mAb accelerated disease. Anti-CD86 or anti-CD134L mAbs had no effect. Diabetes resistant BB (BBDR) rats are disease-free, but >95% of them develop diabetes after treatment with polyinosinic-polycytidylic acid and an mAb that depletes Treg cells. In the induced BBDR model, anti-CD154 mAb delayed onset of diabetes, whereas CTLA4-Ig, anti-CD134L or either of the anti-CD28 mAbs had little or no effect. In contrast, blockade of the CD134-CD134L pathway was highly effective for preventing autoimmune recurrence against syngeneic islet grafts in diabetic BBDR hosts. Blockade of the CD40-CD154 pathway was also effective, but less so. These data suggest that the effectiveness of costimulation blockade in the treatment of type 1 diabetes is dependent on both the costimulatory pathway targeted and the mechanism of induction, stage, intensity and duration of the pathogenic process.  相似文献   

5.
BACKGROUND: Hyperglycemia has been shown to influence primary function of islet isografts. In this study, we investigated the influence of hyperglycemia on primary function of allogeneic islets transplanted into spontaneously diabetic recipients (NOD) or streptozotocin-induced diabetic mice (BALB/c). METHODS: Mice with moderate, severe, or very severe hyperglycemia underwent transplantation with a marginal number of islets (350 into BALB/c mice and 700 into NOD mice). To prevent the alloimmune response, we used blockade of CD28:B7 and CD40L:CD40 costimulatory signaling pathways to determine the effect of hyperglycemia alone. Blood glucose levels of the mice were monitored after transplantation, and the grafts were assessed morphologically. RESULTS: Transplantation of allogeneic islets into moderately hyperglycemic BALB/c mice or severely diabetic NOD mice normalized the blood glucose levels in all mice within 3 days after transplantation, demonstrating the primary function of the graft. However, primary nonfunction was observed in all animals when islet transplantation was performed into severely diabetic BALB/c mice or very severely diabetic NOD mice. When mice were treated with costimulation blockade, reversal of diabetes was observed in severely diabetic BALB/c mice 15 days after transplantation, showing that the islets could adapt to the environment and function. However, transplantation of islets into NOD mice with very severe diabetes treated with costimulation blockade did not reverse diabetes, showing that even in the absence of alloimmune responses and given an adaptation period, the islets could not function. CONCLUSIONS: This study demonstrates that severe hyperglycemia impairs islet allograft function in BALB/c and NOD mice and that successful islet allotransplantation depends on the degree of hyperglycemia in the recipient.  相似文献   

6.
BACKGROUND: T-cell activation and the subsequent induction of effector functions require not only the recognition of antigen peptides bound to MHC molecules by T-cell receptor (TCR) for antigen but also a costimulatory signal provided by antigen presenting cells. CD4 T-cell activation and function require the CD4 molecule as a coreceptor of TCR. The CD28/B7 pathway is a major costimulatory signal for T-cell activation and differentiation. METHODS: The effect of targeting CD4 by nondepleting anti-CD4 monoclonal antibodies (mAbs) versus blocking CD28/B7 by CTLA4Ig, anti-CD80 mAbs, and anti-CD86 mAbs on the prevention of recurrence of autoimmune diabetes after MHC-matched nonobese diabetes-resistant (NOR) islet transplantation in nonobese diabetic (NOD) mice were compared. Whether nondepleting anti-CD4 mAbs prolong allogeneic islet graft survival and xenogeneic pig islet graft survival in diabetic NOD mice were studied. Furthermore, the effect of nondepleting anti-CD4 mAbs combined with CTLA4Ig on allogeneic islet graft survival in NOD mice was investigated. RESULTS: Recurrence of autoimmune diabetes can be prevented by nondepleting anti-CD4 mAbs. Blocking the CD28/B7 costimulatory pathway by CTLA4Ig or by anti-CD80 mAbs and anti-CD86 mAbs cannot prevent recurrence of autoimmune diabetes after islet transplantation. Short-term treatment with nondepleting anti-CD4 mAbs significantly prolongs allogeneic islet graft survival and xenogeneic pig islet graft survival in diabetic NOD mice. But nondepleting anti-CD4 mAbs combined with CTLA4Ig decreased allogeneic islet graft survival. CONCLUSIONS: Nondepleting anti-CD4 mAbs but not CD28 antagonists protect islet grafts in diabetic NOD mice from autoimmune destruction and allogeneic and xenogeneic graft rejection. The efficacy of nondepleting anti-CD4 mAbs is compromised when it combines with CTLA4Ig.  相似文献   

7.
BACKGROUND: The rate of success in clinical transplantation of islets of Langerhans has dramatically improved with perspectives of wide-scale applicability for patients with type 1 diabetes. One drawback is the need for lifelong immunosuppression, which is associated with significant side effects. Immunomodulatory strategies devoid of side effects and with tolerogenic potential, such as co-stimulatory blockade, would be a great improvement if successful. In this study, the authors have explored the effect of simultaneous blockade of CD40/CD154 and intercellular adhesion molecule (ICAM)/lymphocyte function-associated antigen (LFA)-1 interactions. METHODS: Spontaneously diabetic nonobese diabetic (NOD) mice underwent transplantation with allogeneic (C57BL/6) islets and were treated with anti-CD154 monoclonal antibody (mAb) (500 microg, three doses), anti-LFA-1 mAb (100 microg, three doses), or a combination of both in the early peritransplant period. In another set of experiments, LFA-1 engagement was impaired by transplanting islets isolated from ICAM-1-knockout (KO) mice. RESULTS: Untreated animals rejected their grafts within 10 days. LFA-1 blockade alone did not result in improved islet graft survival, whereas CD154 blockade alone increased graft survival to 18 days. Simultaneous blockade of both pathways led to significantly improved islet graft survival to 30 days (ICAM-1-KO islets plus anti-CD154), 35 days (anti-LFA-1 plus anti-CD154), and 44 days (ICAM-1-KO islets plus anti-LFA-1 plus anti-CD154). CONCLUSIONS: These data suggest that a synergistic effect for prolonged graft survival can be obtained by simultaneously targeting CD154 and LFA-1 in the challenging model of islet allotransplantation in NOD mice. The observation of similar results with anti-LFA-1 mAb and with ICAM-1-KO grafts suggests a key role of direct antigen presentation for the activation of LFA-1-driven signaling.  相似文献   

8.
Costimulation blockade is a promising strategy for preventing allograft rejection and inducing tolerance. Using a fully allogeneic mouse model, we tested the effectiveness of the combined blockade of the CD40 ligand and the inducible costimulator (ICOS) on islet allograft survival and in the prevention of autoimmune diabetes in the NOD mouse. Recipients treated with blocking monoclonal antibodies (mAbs) to ICOS and the CD40 ligand had significant prolongation of graft survival, with 26 of 28 functioning for >200 days. Long-term engrafted mice maintained antidonor proliferative and cytotoxic responses, but donor-specific immunization did not induce graft rejection, and challenge with second, same donor but not third-party grafts resulted in long-term acceptance. The immunohistology of tolerant grafts demonstrated the presence of CD4(+)CD25(+) T-cells expressing Foxp3, and islet/kidney composite grafts from tolerant mice, but not from mice lacking lymphocytes, were accepted indefinitely when transplanted into na?ve B6 mice, suggesting that recipient T-cells were necessary to generate dominant tolerance. Combined anti-ICOS and anti-CD40 ligand mAb therapy also prevented diabetes in NOD mice, with only 11% of treated recipients developing diabetes compared with 75% of controls. These data demonstrate that the blockade of CD40 ligand and ICOS signaling induces islet allograft tolerance involving a dominant mechanism associated with intragraft regulatory cells and prevents autoimmune diabetes in NOD mice.  相似文献   

9.
Irie J  Wu Y  Kachapati K  Mittler RS  Ridgway WM 《Diabetes》2007,56(1):186-196
CD137 (TNFRSF9) is an activation-inducible T-cell costimulatory molecule and a member of the tumor necrosis factor (TNF) receptor superfamily. Cd137 is also a candidate gene (in the Idd9.3 interval) for autoimmune diabetes in NOD mice. Here, we demonstrate that anti-CD137 treatment protects NOD mice from diabetes. Anti-CD137-treated mice are not protected from insulitis and still harbor pathogenic T-cells, as demonstrated by transfer studies. Transfer of CD4(+), but not CD8(+), cells from anti-CD137-treated pre-diabetic NOD mice into NOD-scid mice delayed diabetes onset. Anti-CD137 treatment significantly increased the number of CD4(+)CD25(+) cells, which demonstrated intracellular Foxp3 expression and in vitro suppressive activity. The CD4(+)CD25(+) cell subset from anti-CD137-treated mice transferred complete protection from diabetes, whereas the CD4(+)CD25(-) cell subset offered no significant protection. Anti-CD137 treatment of NOD-scid recipients of diabetic spleen cells, however, hastened the onset of disease, showing that the effect of anti-CD137 treatment depends on the balance of pathogenic and protective cells. These results support a critical role for CD137 acting in the early phase of autoimmune diabetes to enhance regulatory cell production. Disease-associated CD137 alleles are likely ineffectual at stimulating a regulatory T-cell population sufficient to prevent disease.  相似文献   

10.
Although it has often been assumed that transplanted allogeneic islets can be destroyed by recurrent autoimmunity in recipients with type 1 diabetes, definitive evidence is lacking and the settings in which this may occur have not been defined. To address these issues, we compared the survival of islet transplants (subject to tissue-specific autoimmunity) with cardiac transplants (not subject to tissue-specific autoimmunity) from various major histocompatibility complex (MHC)-matched and -mismatched donors transplanted into autoimmune NOD recipients. We found that when recipients were treated with combined B7 and CD154 T-cell costimulatory blockade, hearts survived best with better MHC matching, whereas islets survived worst when the donor and recipient shared MHC class II antigens. In the absence of full or MHC class II matching, there was no difference in the survival of islet and cardiac allografts. We also found that the tendency of NOD mice to resist tolerance induction by costimulation blockade is mediated by both CD4+ and CD8+ T-cells, not directly linked to the presence of autoimmunity, and conferred by non-MHC background genes. These findings have clinical importance because they suggest that under some circumstances, avoiding MHC class II sharing may provide better islet allograft survival in recipients with autoimmune diabetes, since mismatched allogeneic islets may be resistant to recurrent autoimmunity. Our results may have implications for the design of future clinical trials in islet transplantation.  相似文献   

11.
BACKGROUND: Transplantation of human islets has been successful clinically. Since human islets are scarce, we are studying microencapsulated porcine islet xenografts in nonobese diabetic (NOD) mice. We have evaluated the cellular immune response in NOD mice with and without dual costimulatory blockade. METHODS: Alginate-poly-L-lysine-encapsulated adult porcine islets were transplanted i.p. in untreated diabetic NODs and NODs treated with CTLA4-Ig to block CD28/B7 and with anti-CD154 mAb to inhibit CD40/CD40-ligand interactions. Groups of mice were sacrificed on subsequent days; microcapsules were evaluated by histology; peritoneal cells were analyzed by FACS; and peritoneal cytokines were quantified by ELISA. Controls included immunoincompetent NOD-Scids and diabetic NODs given sham surgery or empty microcapsules. RESULTS: Within 20 days, encapsulated porcine islets induced accumulation of large numbers of macrophages, eosinophils, and significant numbers of CD4 and CD8 T cells at the graft site, and all grafts were rejected. During rejection, IFNgamma, IL-12 and IL-5 were significantly elevated over sham-operated controls, whereas IL-2, TNFalpha, IL-4, IL-6, IL-10, IL-1beta and TGFbeta were unchanged. Treatment with CTLA4-Ig and anti-CD154 prevented graft destruction in all animals during the 26 days of the experiment, dramatically inhibited recruitment of host inflammatory cells, and inhibited peritoneal IFNgamma and IL-5 concentrations while delaying IL-12 production. CONCLUSIONS: When two different pathways of T cell costimulation were blocked, T cell-dependent inflammatory responses were inhibited, and survival of encapsulated islet xenografts was significantly prolonged. These findings suggest synergy between encapsulation of donor islets and simultaneous blockade of two host costimulatory pathways in prolonging xenoislet transplant survival.  相似文献   

12.
Bone marrow transplantation from diabetes-resistant strains with complete replacement of the recipient immune system by the allogeneic donor has led to tolerance to donor islets and cure of diabetes in a mouse model of type 1 diabetes. However, the ability to tolerize host T-cells of diabetic NOD mice is unknown. We demonstrate that nonmyeloablative conditioning achieves mixed hematopoietic chimerism across major histocompatibility complex (MHC) barriers in spontaneously diabetic NOD mice. This conditioning preserves alloreactive and autoreactive diabetogenic host NOD T-cells, but when mixed chimerism was established, diabetic NOD mice accepted donor-type allogeneic islet grafts and were cured of diabetes, despite a significant recipient T-cell contribution. Furthermore, induction of mixed chimerism permitted acceptance of NOD islet grafts, demonstrating reversal of autoimmunity. Allogeneic bone marrow transplantation was critical for tolerization of diabetogenic and alloreactive host T-cells. Thus, mixed hematopoietic chimerism induces tolerance to donor islets and reverses established autoimmunity in diabetic NOD mice.  相似文献   

13.
Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1β. We postulated that blockade of IL-1β would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F(ab')(2) fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti-IL-1β mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than mice treated with anti-CD3 mAb or IL-1RA alone. Combination-treated mice had increased IL-5, IL-4, and interferon (IFN)-γ levels in circulation. There were reduced pathogenic NOD-relevant V7 peptide-V7(+) T cells in the pancreatic lymph nodes. Their splenocytes secreted more IL-10, had increased arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-γ, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies indicate that the combination of anti-CD3 mAb with IL-1RA is synergistic in reversal of diabetes through a combination of mechanisms. The combination causes persistent remission from islet inflammation.  相似文献   

14.
BACKGROUND: Combined treatment with a single donor-specific transfusion (DST) and a brief course of anti-mouse CD154 monoclonal antibody (mAb) to induce co-stimulation blockade leads to long-term murine islet allograft survival. The authors hypothesized that this protocol could also induce long-term survival of neonatal porcine islet cell clusters (NPCC) in chemically diabetic immunocompetent mice and allow their differentiation into functional insulin-producing cells. METHODS: Pancreata from 1- to 3-day-old pigs were collagenase digested and cultured for 8 days. NPCC were recovered and transplanted into the renal subcapsular space. Recipients included chemically diabetic nonobese diabetic (NOD)-scid and C57BL/6 mice that were otherwise untreated, treated with anti-CD154 mAb alone, or treated with DST plus anti-CD154 mAb. Plasma glucose concentration and body weight were measured, and xenografts were examined histologically. RESULTS: NPCC fully differentiated and restored normoglycemia in four of five diabetic NOD-scid recipients but were uniformly rejected by diabetic C57BL/6 recipients. Anti-CD154 mAb monotherapy restored normoglycemia in 4 of 10 (40%) NPCC-engrafted, chemically diabetic C57BL/6 mice, but combined treatment with DST and anti-CD154 mAb restored normoglycemia in 12 of 13 (92%) recipients. Reversal of diabetes required 5 to 12 weeks. Surviving grafts were essentially free of inflammatory infiltrates 15 weeks after transplantation. CONCLUSIONS: Combination therapy with a single DST and a brief course of anti-mouse CD154 mAb without maintenance immunosuppression permits survival and differentiation of NPCC in diabetic C57BL/6 mice. Successful grafts were associated with durable restoration of normoglycemia and the absence of graft inflammation.  相似文献   

15.
BACKGROUND: Costimulatory blockade has been shown to allow long-term survival of xenogeneic islets. The aim of the present study was to evaluate the role of recipient CD40 and CD154 in the rejection process of concordant and discordant islet xenotransplantation (Tx). METHODS: Diabetic C57BL/6 mice, CD40- or CD154 knockout (KO) mice were transplanted with either concordant rat or discordant human islets. Experimental design: group 1, control (ie, C57BL/6 mice received islet Tx without therapy); group 2, C57BL/6 mice received islet Tx with anti-CD154 monoclonal Ab (mAb) therapy; group 3, CD40 KO mice; and group 4, CD154 KO mice were used as recipients without therapy. Mouse anti-rat mixed lymphocyte reactions (MLR) were performed using mouse splenocytes obtained from animals transplanted with rat islets in groups 1 to 4. RESULTS: In group 2, short-term anti-CD154 mAb therapy significantly prolonged rat-to-mouse and human-to-mouse xenograft survival, compared to controls. In CD40-KO and CD154-KO recipients, survival of concordant or discordant islets was not prolonged significantly compared to control groups. Mouse anti-donor rat cellular responses were reduced approximately 50% in group 2 but remained unmodified in groups 3 and 4, when compared to group 1. CONCLUSIONS: Improved graft survival and reduced MLR responses against donor cells in vitro among the anti-CD154 mAb-treated mice could be explained by specific targeting of activated T cells with subsequent inactivation by anergy and/or elimination by apoptosis, or complement- or cellular-mediated mechanisms. Rejection of xenografts and strong MLR responses against donor cells in vitro in CD40 or CD154 KO animals is possible through efficient activation of alternate pathways of costimulation.  相似文献   

16.
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune destruction of pancreatic islet beta-cells, which are required for the production of insulin. Islet transplantation has been shown to be an effective treatment option for TIDM; however, the current shortage of human islet donors limits the application of this treatment to patients with brittle T1DM. Xenotransplantation of pig islets is a potential solution to the shortage of human donor islets provided xenograft rejection is prevented. We demonstrated that a short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) was highly effective in preventing rejection of neonatal porcine islet (NPI) xenografts in non-autoimmune-prone B6 mice. However, the efficacy of this therapy in preventing rejection of NPI xenografts in autoimmune-prone nonobese diabetic (NOD) mice is not known. Given that the current application of islet transplantation is for the treatment of T1DM, we set out to determine whether a combination of anti-LFA-1 and anti-CD154 mAbs could promote long-term survival of NPI xenografts in NOD mice. Short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs, which we found highly effective in preventing rejection of NPI xenografts in B6 mice, failed to promote long-term survival of NPI xenografts in NOD mice. However, addition of anti-CD4 mAb to short-term treatment of a combination of anti-LFA-1 and anti-CD154 mAbs resulted in xenograft function in 9/12 animals and long-term graft (>100 days) survival in 2/12 mice. Immunohistochemical analysis of islet grafts from these mice identified numerous insulin-producing beta-cells. Moreover, the anti-porcine antibody as well as autoreactive antibody responses in these mice was reduced similar to those observed in naive nontransplanted mice. These data demonstrate that simultaneous targeting of LFA-1, CD154, and CD4 molecules can be effective in inducing long-term islet xenograft survival and function in autoimmune-prone NOD mice.  相似文献   

17.
The injury of transplanted islets may occur by both autoimmune and alloimmune processes directed against MHC targets. To examine the role of MHC class I in islet graft injury, we transplanted syngeneic and allogeneic beta2-microglobulin-deficient islets into diabetic nonobese diabetic (NOD) mice. Loss of graft function was observed within 14 days using allogeneic C57BL/6 and BALB/c MHC class I deficient as well as wild-type MHC class I-bearing NOD donor islets. However, islets isolated from MHC class I-deficient NOD mice (NOD-B2 m-/-) survived indefinitely when transplanted under the kidney capsule of diabetic NOD recipients. Transplanted NOD-B2 m-/- islets were surrounded by a nondestructive periinsular infiltrate that expressed interleukin-4 in addition to interferon-gamma. These studies demonstrate the primary role of MHC class I molecules in causing autoimmune destruction or recurrent diabetes in transplanted islets.  相似文献   

18.
T Wang  B Singh  G L Warnock  R V Rajotte 《Diabetes》1992,41(1):114-117
Insulin-dependent diabetes mellitus (IDDM) involves the destruction of the insulin-producing cells in the islets of Langerhans. One possible cure is by transplanting the islet cells; however, transplanted islets, even between identical twins, are subject to autoimmune destruction by the disease process, resulting in diabetes recurrence. We recently reported that complete Freund's adjuvant (CFA), an immunomodulating agent, prevented development of autoimmune diabetes in the NOD mouse. In this study, we evaluated adjuvant therapy in prevention of autoimmune destruction and rejection of transplanted islets in diabetic NOD mice. After transplantation, untreated syngeneic islet recipients (n = 16) initially became normoglycemic and then hyperglycemic, with a median survival time (MST) of the graft of 17 days. When CFA was administered at the time of transplantation, 11 of 13 CFA-treated syngeneic islet recipients remained normoglycemic long term (greater than 100 days) with an MST greater than 107 days. Ten of 11 mice maintained indefinite normoglycemia until the conclusion of follow-up (101 to 172 days). When adjuvant therapy was used in conjunction with allogeneic islet transplantation, graft survival was not extended, with MST being similar to the untreated allogeneic islet recipients (12 [n = 5] and 13 [n = 5] days, respectively). The extended acceptance of second syngeneic islet grafts by CFA-treated mice indicates that the persistent autoimmunity against the transplanted islets can be reversed in the diabetic NOD mice after CFA treatment.  相似文献   

19.
The loss of self-tolerance leading to autoimmune type 1 diabetes in the NOD mouse model involves at least 19 genetic loci. In addition to their genetic defects in self-tolerance, NOD mice resist peripheral transplantation tolerance induced by costimulation blockade using donor-specific transfusion and anti-CD154 antibody. Hypothesizing that these two abnormalities might be related, we investigated whether they could be uncoupled through a genetic approach. Diabetes-resistant NOD and C57BL/6 stocks congenic for various reciprocally introduced Idd loci were assessed for their ability to be tolerized. Surprisingly, in NOD congenic mice that are almost completely protected from diabetes, costimulation blockade failed to prolong skin allograft survival. In reciprocal C57BL/6 congenic mice with NOD-derived Idd loci, skin allograft survival was readily prolonged by costimulation blockade. These data indicate that single or multiple combinations of evaluated Idd loci that dramatically reduce diabetes frequency do not correct resistance to peripheral transplantation tolerance induced by costimulation blockade. We suggest that mechanisms controlling autoimmunity and transplantation tolerance in NOD mice are not completely overlapping and are potentially distinct, or that the genetic threshold for normalizing the transplantation tolerance defect is higher than that for preventing autoimmune diabetes.  相似文献   

20.
BACKGROUND: The ability to block interferon signaling represents an important strategy in designing therapies to prevent beta-cell destruction during islet allograft rejection. METHODS: The SOCS proteins regulate cytokine signaling by blocking activation of JAK/STAT proteins. Using islets isolated from SOCS-1 transgenic mice (SOCS-1-Tg; these mice express SOCS-1 under the control of the human insulin promoter and are on the C57BL6/J background), we investigated whether SOCS proteins can prevent the destruction pancreatic islet cells transplanted beneath the kidney capsule of major histocompatibility complex mismatched normal BALB/c and spontaneously-diabetic NOD mouse recipients. RESULTS: Immunohistochemical staining for insulin confirmed the presence of donor SOCS-1-Tg islets in islet allografts harvested at 22 days posttransplant, whereas grafts of control non-Tg islets were destroyed by 14 days. In contrast, SOCS-1-Tg allogeneic islets were not protected from beta-cell destruction in clinically diabetic NOD mice. The islet allografts functioned for 1 week posttransplant; however, hyperglycemia returned after 2 weeks and the grafts were destroyed. Rejection of SOCS-1-Tg and non-Tg islets in autoimmune diabetic NOD mice was associated with an infiltrate of both CD4+ and CD8+ T cells and a T2-type cytokine response (IL-4) rather than the conventional T1-type cytokine response observed during islet allograft rejection. Self-antigen upregulation in response to IFN-gamma stimulation did not appear to be a factor in rejection of the islet allografts. CONCLUSIONS: These results demonstrate that expression of SOCS-1 in islets delays islet allograft rejection but cannot circumvent destruction of the islets by the recurrence of the tissue-specific autoimmune process of spontaneous diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号