首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and brainstem-spinal axons project into the transplant, their distribution is restricted to within 200 μm of the host/transplant border. The aim of this study was to determine if the administration of neurotrophic factors could increase the capacity of mature CNS neurons for regrowth after injury. Spinal cord hemisection lesions were made at cervical or thoracic levels in adult rats. Transplants of E14 fetal spinal cord tissue were placed into the lesion site. The following neurotrophic factors were administered at the site of injury and transplantation: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), ciliary-derived neurotrophic factor (CNTF), or vehicle alone. After 1–2 months survival, neuroanatomical tracing and immunocytochemical methods were used to examine the growth of host axons within the transplants. The neurotrophin administration led to increases in the extent of serotonergic, noradrenergic, and corticospinal axonal ingrowth within the transplants. The influence of the administration of the neurotrophins on the growth of injured CNS axons was not a generalized effect of growth factors per se, since the administration of CNTF had no effect on the growth of any of the descending CNS axons tested. These results indicate that in addition to influencing the survival of developing CNS and PNS neurons, neurotrophic factors are able to exert aneurotropicinfluence on injured mature CNS neurons by increasing their axonal growth within a transplant.  相似文献   

2.
Stem cell transplantation, especially treatment with bone marrow mesenchymal stem cells (BMSCs), has been considered a promising therapy for the locomotor and neurological recovery of spinal cord injury (SCI) patients. However, the clinical benefits of BMSCs transplantation remain limited because of the considerably low viability and inhibitory microenvironment. In our research, low‐intensity pulsed ultrasound (LIPUS), which has been widely applied to clinical applications and fundamental research, was employed to improve the properties of BMSCs. The most suitable intensity of LIPUS stimulation was determined. Furthermore, the optimized BMSCs were transplanted into the epicenter of injured spinal cord in rats, which were randomized into four groups: (a) Sham group (n = 10), rats received laminectomy only and the spinal cord remained intact. (b) Injury group (n = 10), rats with contused spinal cord subjected to the microinjection of PBS solution. (c) BMSCs transplantation group (n = 10), rats with contused spinal cord were injected with BMSCs without any priming. (d) LIPUS‐BMSCs transplantation group (n = 10), BMSCs stimulated with LIPUS were injected at the injured epicenter after contusion. Rats were then subjected to behavioral tests, immunohistochemistry, and histological observation. It was found that BMSCs stimulated with LIPUS obtained higher cell viability, migration, and neurotrophic factors expression in vitro. The rate of apoptosis remained constant. After transplantation of BMSCs and LIPUS‐BMSCs postinjury, locomotor function was significantly improved in LIPUS‐BMSCs transplantation group with higher level of brain‐derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the epicenter, and the expression of neurotrophic receptor was also enhanced. Histological observation demonstrated reduced cavity formation in LIPUS‐BMSCs transplantation group when comparing with other groups. The results suggested LIPUS can improve BMSCs viability and neurotrophic factors expression in vitro, and transplantation of LIPUS‐BMSCs could promote better functional recovery, indicating possible clinical application for the treatment of SCI.  相似文献   

3.
In contrast to mammals, adult zebrafish recover locomotor functions after spinal cord injury (SCI), in part due to axonal regrowth and regeneration permissivity of the central nervous system. Upregulation of major vault protein (MVP) expression after spinal cord injury in the brainstem of the adult zebrafish prompted us to probe for its contribution to recovery after SCI. MVP is a multifunctional protein expressed not only in many types of tumours but also in the nervous system, where its importance for regeneration is, however, unclear. Using an established zebrafish SCI model, we found that MVP mRNA and protein expression levels were increased in ependymal cells in the spinal cord caudal to the lesion site at 6 and 11 days after SCI. Double immunolabelling showed that MVP was co‐localised with Islet‐1 or tyrosine hydroxylase around the central canal of the spinal cord in sham‐injured control fish and injured fish 11 days after surgery. MVP co‐localised with the neural stem cell marker nestin in ependymal cells after injury. By using an in vivo morpholino‐based knock‐down approach, we found that the distance moved by MVP morpholino‐treated fish was reduced at 4, 5 and 6 weeks after SCI when compared to fish treated with standard control morpholino. Knock‐down of MVP resulted in reduced regrowth of axons from brainstem neurons into the spinal cord caudal to the lesion site. These results indicate that MVP supports locomotor recovery and axonal regrowth after SCI in adult zebrafish.  相似文献   

4.
Adult neural progenitor cells (NPC) are an attractive source for cell transplantation and neural tissue replacement after central nervous system (CNS) injury. Following transplantation of NPC cell suspensions into the acutely injured rat spinal cord, NPC survive; however, they migrate away from the lesion site and are unable to replace the injury-induced lesion cavity. In the present study we examined (i) whether NPC can be retained within the lesion site after co-transplantation with primary fibroblasts, and (ii) whether NPC promote axonal regeneration following spinal cord injury. Co-cultivation of NPC with fibroblasts demonstrated that NPC adhere to fibroblasts and the extracellular matrix produced by fibroblasts. In the presence of fibroblasts, the differentiation pattern of co-cultivated NPC was shifted towards glial differentiation. Three weeks after transplantation of adult spinal-cord-derived NPC with primary fibroblasts as mixed cell suspensions into the acutely injured cervical spinal cord in adult rats, the lesion cavity was completely replaced. NPC survived throughout the graft and differentiated exclusively into glial cells. Quantification of neurofilament-labeled axons and anterogradely labeled corticospinal axons indicated that NPC co-grafted with fibroblasts significantly enhanced axonal regeneration. Both neurofilament-labeled axons and corticospinal axons aligned longitudinally along GFAP-expressing NPC-derived cells, which displayed a bipolar morphology reminiscent of immature astroglia. Thus, grafted astroglial differentiated NPC promote axon regrowth following spinal cord injury by means of cellular guidance.  相似文献   

5.
Exogenous neurotrophic factors provided at a spinal cord injury site promote regeneration of chronically injured rubrospinal tract (RST) neurons into a peripheral nerve graft. The present study tested whether the response to neurotrophins is associated with changes in the expression of two regeneration-associated genes, betaII-tubulin and growth-associated protein (GAP)-43. Adult female rats were subjected to a right full hemisection lesion via aspiration of the C3 spinal cord. A second aspiration lesion was made 4 weeks later and gel foam saturated in brain-derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF), or phosphate-buffered saline (PBS) was applied to the lesion site for 60 min. Using in situ hybridization, RST neurons were examined for changes in mRNA levels of betaII-tubulin and GAP-43 at 1, 3, and 7 days after treatment. Based on analysis of gene expression in single cells, there was no effect of BDNF treatment on either betaII-tubulin or GAP-43 mRNA expression at any time point. betaII-Tubulin mRNA levels were enhanced significantly at 1 and 3 days in animals treated with GDNF relative to levels in animals treated with PBS. Treatment with GDNF did not affect GAP-43 mRNA levels at 1 and 3 days, but at 7 days there was a significant increase in mRNA expression. Interestingly, 7 days after GDNF treatment, the mean cell size of chronically injured RST neurons was increased significantly. Although GDNF and BDNF both promote axonal regeneration by chronically injured neurons, only GDNF treatment is associated with upregulation of betaII-tubulin or GAP-43 mRNA. It is not clear from the present study how exogenous BDNF stimulates regrowth of injured axons.  相似文献   

6.
《中国神经再生研究》2016,(9):1385-1388
Transplantation of bone marrow stromal cells(BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury(SCI).BMSCs did not survive long-term,disappearing from the spinal cord within 2–3 weeks after transplantation.Astrocyte-devoid areas,in which no astrocytes or oligodendrocytes were found,formed at the epicenter of the lesion.It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas.Regenerating axons were associated with Schwann cells embedded in extracellular matrices.Transplantation of choroid plexus epithelial cells(CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI.Although CPECs disappeared from the spinal cord shortly after transplantation,an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas,as in the case of BMSC transplantation.These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord,including axonal regeneration and reduced cavity formation.This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate.The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI.It should be emphasized that the generally anticipated long-term survival,proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.  相似文献   

7.
BACKGROUND: According to previous studies, the neuroprotective effect of the pedicled greater omentum may be attributed to the secretion of neurotrophic factors and stimulation of angiogenesis. The neurotrophic factors released from the pedicled greater omentum, such as brain-derived neurotrophic factor and neurotrophin 3/4/5 could exert a neuroprotective effect on the damaged host neural and glial cells, and also could induce the transdifferentiation of transplanted bone marrow mesenchymal stem cells (BMSCs) into neural cells. OBJECTIVE: Based on the functions of the omentum of neuro-protection and vascularization, we hypothesize that the transplantation of BMSCs and pedicled greater omentum into injured rat spinal cord might improve the survival rate and neural differentiation of transplanted BMSCs and consequently gain a better functional outcome. DESIGN, TIME AND SETFING: A randomized, controlled animal experiment. The experiments were carried out at the Department of Anatomy, the Secondary Military Medical University of Chinese PLA between June 2005 and June 2007. MATERIALS: Fifteen male inbred Wistar rats, weighing (200±20) g, provided by the Experimental Animal Center of the Secondary Military Medical University of Chinese PLA were used and met the animal ethical standards. Mouse anti-BrdU and mouse anti-NF200 monoclonal antibody were purchased from Boster, China. METHODS: Cell culture: We used inbred Sprague-Dawley rats to harvest bone marrow for culture of BMSCs and transplantation to avoid possible immune rejection. BMSCs were cultured via total bone marrow adherence. Experimental grouping and intervention: The rats were randomly divided into a control group, cell group and combined group, five rats per group. Rats in the control group underwent spinal cord injury (SCI) only, during which an artery clamp with pressure force of 30 g was employed to compress the spinal cord at the Tl0 level for 30 seconds to produce the SCI model. 5 μ L PBS containing 10^5 BMSCs was injected in  相似文献   

8.
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astrocytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, double-immunofluorescent histochemistry revealed that combined transplantation inhibited the early inflammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was secreted by transplanted cells, protected injured axons. The combined transplantation promoted axonal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte proliferation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.  相似文献   

9.
Transplantations of olfactory ensheathing cells (OECs) have been reported to promote axonal regeneration and functional recovery after spinal cord injury, but have demonstrated limited growth promotion of rat rubrospinal axons after a cervical dorsolateral funiculus crush. Rubrospinal neurons undergo massive atrophy after cervical axotomy and show only transient expression of regeneration-associated genes. Cell body treatment with brain-derived neurotrophic factor (BDNF) prevents this atrophy, stimulates regeneration-associated gene expression and promotes regeneration of rubrospinal axons into peripheral nerve transplants. Here, we hypothesized that the failure of rubrospinal axons to regenerate through a bridge of OEC transplants was due to this weak intrinsic cell body response. Hence, we combined BDNF treatment of rubrospinal neurons with transplantation of highly enriched OECs derived from the nasal mucosa and assessed axonal regeneration as well as behavioral changes after a cervical dorsolateral funiculus crush. Each treatment alone as well as their combination prevented the dieback of the rubrospinal axons, but none of them promoted rubrospinal regeneration beyond the lesion/transplantation site. Motor performance in a food-pellet reaching test and forelimb usage during vertical exploration (cylinder test) were more impaired after combining transplantation of OECs with BDNF treatment. This impaired motor performance correlated with lowered sensory thresholds in animals receiving the combinatorial therapy - which were not seen with each treatment alone. Only this combinatorial treatment group showed enhanced sprouting of calcitonin gene-related peptide-positive axons rostral to the lesion site. Hence, some combinatorial treatments, such as OECs with BDNF, may have undesired effects in the injured spinal cord.  相似文献   

10.
Sasaki M  Hains BC  Lankford KL  Waxman SG  Kocsis JD 《Glia》2006,53(4):352-359
Transplantation of olfactory ensheathing cells (OECs) into the damaged rat spinal cord leads to directed elongative axonal regeneration and improved functional outcome. OECs are known to produce a number of neurotrophic molecules. To explore the possibility that OECs are neuroprotective for injured corticospinal tract (CST) neurons, we transplanted OECs into the dorsal transected spinal cord (T9) and examined primary motor cortex (M1) to assess apoptosis and neuronal loss at 1 and 4 weeks post-transplantation. The number of apoptotic cortical neurons was reduced at 1 week, and the extent of neuronal loss was reduced at 4 weeks. Biochemical analysis indicated an increase in BDNF levels in the spinal cord injury zone after OEC transplantation at 1 week. The transplanted OECs associated longitudinally with axons at 4 weeks. Thus, OEC transplantation into the injured spinal cord has distant neuroprotective effects on descending cortical projection neurons.  相似文献   

11.
Spinal cord injury (SCI) is a devastating condition characterized by disruption of axonal connections, failure of axonal regeneration, and loss of motor and sensory function. The therapeutic promise of neural stem cells has been focused on cell replacement, but many obstacles remain in obtaining neuronal integration following transplantation into the injured CNS. This study investigated the neurotransmitter identity and axonal growth potential of neural progenitors following grafting into adult rats with a dorsal column lesion. We found that using a combination of neuronal and glial restricted progenitors (NRP and GRP) produced graft‐derived glutamatergic and GABAergic neurons within the injury site, with minimal axonal extension. Administration of brain‐derived neurotrophic factor (BDNF) with the graft promoted modest axonal growth from grafted cells. In contrast, injecting a lentiviral vector expressing BDNF rostral into the injured area generated a neurotrophin gradient and promoted directional growth of axons for up to 9 mm. Animals injected with BDNF lentivirus (at 2.5 and 5.0 mm) showed significantly more axons and significantly longer axons than control animals injected with GFP lentivirus. However, only the 5.0‐mm‐BDNF group showed a preference for extension in the rostral direction. We concluded that NRP/GRP grafts can be used to produce excitatory and inhibitory neurons, and neurotrophin gradients can guide axonal growth from graft‐derived neurons toward putative targets. Together they can serve as a building block for neuronal cell replacement of local circuits and formation of neuronal relays. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
In contrast to mammals, adult zebrafish recover locomotor function after spinal cord injury, in part due to the capacity of the central nervous system to repair severed connections. To identify molecular cues that underlie regeneration, we conducted mRNA expression profiling and found that syntenin‐a expression is upregulated in the adult zebrafish spinal cord caudal to the lesion site after injury. Syntenin is a scaffolding protein involved in mammalian cell adhesion and movement, axonal outgrowth, establishment of cell polarity, and protein trafficking. It could thus be expected to be involved in supporting regeneration in fish. Syntenin‐a mRNA and protein are expressed in neurons, glia and newly generated neural cells, and upregulated caudal to the lesion site on days 6 and 11 following spinal cord injury. Treatment of spinal cord‐injured fish with two different antisense morpholinos to knock down syntenin‐a expression resulted in significant inhibition of locomotor recovery at 5 and 6 weeks after injury, when compared to control morpholino‐treated fish. Knock‐down of syntenin‐a reduced regrowth of descending axons from brainstem neurons into the spinal cord caudal to the lesion site. These observations indicate that syntenin‐a is involved in regeneration after traumatic insult to the central nervous system of adult zebrafish, potentially leading to novel insights into the cellular and molecular mechanisms that require activation in the regeneration‐deficient mammalian central nervous system.  相似文献   

13.
The main rationale for cell-based therapies following spinal cord injury are: (i) replacement of degenerated spinal cord parenchyma by an axon growth supporting scaffold; (ii) remyelination of regenerating axons; and (iii), local delivery of growth promoting molecules. A potential source to meet these requirements is adult neural progenitor cells, which were examined in the present study. Fibroblast growth factor 2-responsive adult spinal cord-derived syngenic neural progenitor cells were either genetically modified in vitro to express green fluorescent protein (GFP) using retroviral vectors or prelabelled with bromodeoxyuridine (BrdU). Neural progenitor cells revealed antigenic properties of neurons and glial cells in vitro confirming their multipotency. This differentiation pattern was unaffected by retroviral transduction. GFP-expressing or BrdU-prelabelled neural progenitor cells were grafted as neurospheres directly into the acutely injured rat cervical spinal cord. Animals with lesions only served as controls. Three weeks postoperatively, grafted neural progenitor cells integrated along axonal profiles surrounding the lesion site. In contrast to observations in culture, grafted neural progenitor cells differentiated only into astro- and oligodendroglial lineages, supporting the notion that the adult spinal cord provides molecular cues for glial, but not for neuronal, differentiation. This study demonstrates that adult neural progenitor cells will survive after transplantation into the acutely injured spinal cord. The observed oligodendroglial and astroglial differentiation and integration along axonal pathways represent important prerequisites for potential remyelination and support of axonal regrowth.  相似文献   

14.
We previously demonstrated that coadministration of glial cell line‐derived neurotrophic factor (GDNF) with grafts of Schwann cells (SCs) enhanced axonal regeneration and remyelination following spinal cord injury (SCI). However, the cellular target through which GDNF mediates such actions was unclear. Here, we report that GDNF enhanced both the number and caliber of regenerated axons in vivo and increased neurite outgrowth of dorsal root ganglion neurons (DRGN) in vitro, suggesting that GDNF has a direct effect on neurons. In SC‐DRGN coculture, GDNF significantly increased the number of myelin sheaths produced by SCs. GDNF treatment had no effect on the proliferation of isolated SCs but enhanced the proliferation of SCs already in contact with axons. GDNF increased the expression of the 140 kDa neural cell adhesion molecule (NCAM) in isolated SCs but not their expression of the adhesion molecule L1 or the secretion of the neurotrophins NGF, NT3, or BDNF. Overall, these results support the hypothesis that GDNF‐enhanced axonal regeneration and SC myelination is mediated mainly through a direct effect of GDNF on neurons. They also suggest that the combination of GDNF administration and SC transplantation may represent an effective strategy to promote axonal regeneration and myelin formation after injury in the spinal cord. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
It is likely that the environment within the injured spinal cord influences the capacity of fetal spinal cord transplants to support axonal growth. We have recently demonstrated that fetal spinal cord transplants and neurotrophin administration support axonal regeneration after spinal cord transection, and that the distance and amount of axonal growth is greater when these treatments are delayed by several weeks after injury. In this study, we sought to determine whether differences in inflammatory mediators exist between the acutely injured spinal cord and the spinal cord after a second injury and re-section, which could provide a more favorable environment for the axonal re-growth. The results of this study show a more rapid induction of transforming growth factor (TGF) beta1 mRNA expression in the re-injured spinal cord than the acutely injured spinal cord and an attenuation of proinflammatory cytokine mRNA expression. Furthermore, there was a rapid recruitment of activated microglia/macrophages in the degenerating white matter rostral and caudal to the injury but fewer within the lesion site itself. These findings suggest that the augmentation of TGFbeta-1 gene expression and the attenuation of pro-inflammatory cytokine gene expression combined with an altered distribution of activated microglia/macrophages in the re-injured spinal cord might create a more favorable milieu for transplants and axonal regrowth as compared to the acutely injured spinal cord.  相似文献   

16.
Regeneration by chronically injured supraspinal neurons is enhanced by treatment of a spinal cord lesion site with a variety of neurotrophic and growth factors. The removal of scar tissue, with subsequent reinjury of the spinal cord, is necessary for injured axons to access tissue transplants placed into the lesion to support axon regrowth. The present study examined chronically injured and reinjured rubrospinal tract (RST) neurons to determine if changes in gene expression could explain the failure of these neurons to regenerate without exogenous trophic factor support. Adult female rats were subjected to a right full hemisection lesion via aspiration of the cervical level 3 spinal cord. Using radioactive cDNA probes and in situ hybridization, RST neurons in the contralateral red nucleus were examined for changes in mRNA levels of betaII-tubulin and GAP 43 in an acute injury period (6 h-3 days), a chronic injury period (28 days after spinal cord injury (SCI)) and following a second lesion of the chronic injury site (6 h-7 days). Based upon the analysis of gene expression in single cells, GAP-43 mRNA levels were increased as early as 1 day following the initial SCI, but were no different than uninjured control levels at 28 days postoperative (dpo). The response to relesion was more rapid and higher than that detected after the initial injury with a significant increase in GAP 43 mRNA at 6 h that was maintained for at least 7 days. betaII-tubulin mRNA levels remained unchanged until 3 days after an acute injury followed by a decrease in expression to 30% below uninjured control values at 28 dpo. The expression of betaII-tubulin mRNA was significantly higher within 6 h after a second injury, where it remained stable for 5 days before a second increase occurred at 7 days after reinjury of the spinal cord. Thus, neurons in a chronic injury state retain the ability to respond to a traumatic injury and, in fact, neurons subjected to a second injury exhibit a significantly heightened expression of regeneration-associated genes.  相似文献   

17.
背景:研究认为骨髓基质细胞在损伤、缺血的脑脊髓组织中定向神经分化与损伤局部的微环境变化有关,特别是神经营养因子的诱导作用。课题组前期实验已证实,针刺可以通过增加各种细胞因子及营养因子的表达,促进神经的再生及修复。 目的:观察电针联合骨髓基质细胞移植对脊髓损伤大鼠神经功能恢复的影响。 设计、时间及地点:随机对照动物实验,于2005-03/2006-07在哈尔滨医科大学细胞生物实验室完成。 材料:健康纯系SD大鼠80只,取8只用于骨髓基质细胞的分离培养,剩余72只随机分为4组:空白对照组、细胞移植组、电针组、联合组,18只/组。KWD-808II型脉冲电针仪由江苏武进第三无线电厂生产。 方法:取体外分离培养的第3代骨髓基质细胞,移植前72 h行BrdU标记,调整细胞浓度为1×1011 L-1备用。4组大鼠均建立脊髓损伤模型,造模后细胞移植组将骨髓基质细胞悬液缓慢注入到脊髓损伤临近区域的灰白质交界处,总细胞数6×105个;空白对照组同法注射等量磷酸盐缓冲液;电针组于造模成功后24 h采用脉冲电针仪进行夹脊电针治疗,在距损伤处上下端两个椎体的棘突间隙旁开距中线3.0~4.0 mm处取穴,针刺20 min,1次/d;联合组行骨髓基质细胞移植+夹脊电针治疗。 主要观察指标:移植后 3,7,14 d,应用联合行为评分评估大鼠脊髓损伤后神经功能的改善状况;免疫双标法检测BrdU标记的骨髓基质细胞胶质纤维酸性蛋白、神经元烯醇化酶的表达。 结果:损伤后3,7,14 d与空白对照组比较,细胞移植组、电针组、联合组联合行为评分均有显著性差异(P < 0.05,0.05,0.01);联合组神经功能恢复情况明显优于细胞移植组、电针组(P < 0.05);而细胞移植组、电针组之间比较无明显差异(P > 0.05)。与空白对照组相比,细胞移植组、电针组损伤区脊髓结构相对较完整,联合组脊髓结构更加完整,骨髓基质细胞移植的组织内可见 BrdU标记细胞在损伤区及其周边区明显聚集并存活;移植后14 d细胞移植组神经元烯醇化酶和胶质纤维酸性蛋白阳性细胞率分别分7.2%和1.5%,联合组阳性细胞率分别为7.9%和2.1%。 结论:骨髓基质细胞移植后可在宿主体内存活,电针可以促进骨髓基质细胞向神经细胞的分化,电针与骨髓基质细胞移植联合应用可以明显改善脊髓损伤大鼠的运动及感觉功能。  相似文献   

18.
The effects of bone marrow stromal cells (BMSCs) on the repair of injured spinal cord and on the behavioral improvement were studied in the rat. The spinal cord was injured by contusion using a weight-drop at the level of T8-9, and the BMSCs from the bone marrow of the same strain were infused into the cerebrospinal fluid (CSF) through the 4th ventricle. BMSCs were conveyed through the CSF to the spinal cord, where most BMSCs attached to the spinal surface although a few invaded the lesion. The BBB score was higher, and the cavity volume was smaller in the rats with transplantation than in the control rats. Transplanted cells gradually decreased in number and disappeared from the spinal cord 3 weeks after injection. The medium supplemented by CSF (250 microl in 3 ml medium) harvested from the rats in which BMSCs had been injected 2 days previously promoted the neurosphere cells to adhere to the culture dish and to spread into the periphery. These results suggest that BMSCs can exert effects by producing some trophic factors into the CSF or by contacting with host spinal tissues on the reduction of cavities and on the improvement of behavioral function in the rat. Considering that BMSCs can be used for autologous transplantation, and that the CSF infusion of transplants imposes a minimal burden on patients, the results of the present study are important and promising for the clinical use of BMSCs in spinal cord injury treatment.  相似文献   

19.
Many therapeutic interventions using neurotrophic factors or pharmacological agents have focused on secondary degeneration after spinal cord injury (SCI) to reduce damaged areas and promote axonal regeneration and functional recovery. Hepatocyte growth factor (HGF), which was identified as a potent mitogen for mature hepatocytes and a mediator of inflammatory responses to tissue injury, has recently been highlighted as a potent neurotrophic and angiogenic factor in the central nervous system (CNS). In the present study, we revealed that the extent of endogenous HGF up-regulation was less than that of c-Met, an HGF receptor, during the acute phase of SCI and administered exogenous HGF into injured spinal cord using a replication-incompetent herpes simplex virous-1 (HSV-1) vector to determine whether HGF exerts beneficial effects and promotes functional recovery after SCI. This treatment resulted in the significant promotion of neuron and oligodendrocyte survival, angiogenesis, axonal regrowth, and functional recovery after SCI. These results suggest that HGF gene delivery to the injured spinal cord exerts multiple beneficial effects and enhances endogenous repair after SCI. This is the first study to demonstrate the efficacy of HGF for SCI.  相似文献   

20.
BACKGROUND:Because bone marrow mesenchymal stem cells (BMSCs) do not secrete sufficient brain-derived neurotrophic factor (BDNF), the use of exogenous BDNF could improve microenvironments in injured regions for BMSCs differentiation. OBJECTIVE:To analyze recovery of the injured spinal cord following BMSCs venous transplantation in combination with consecutive injections of BDNF. DESIGN, TIME AND SETTING:A randomized, controlled animal experiment was performed at the Central Laboratory of First Hospital and Anatomical Laboratory, Fujian Medical University from October 2004 to May 2006.MATERIALS:Human BDNF was purchased from Sigma, USA. METHODS:A total of 44 New Zealand rabbits were randomly assigned to model (n = 8), BDNF (n = 12), BMSC (n = 12), and BMSC+BDNF (n = 12) groups. Spinal cord (L2) injury was established with the dropping method. The model group rabbits were injected with 1 mL normal saline via the ear margin vein; the BDNF group was subdurally injected with 100 μg/d human BDNF for 1 week; the BMSC group was injected with 1 mL BMSCs suspension (2 × 106/mL) via the ear margin vein; and the BMSC+BDNF group rabbits were subdurally injected with 100 μg/d BDNF for 1 week, in addition to BMSCs suspension via the ear margin vein. MAIN OUTCOME MEASURES:BMSCs surface markers were detected by flow cytometry. BMSCs differentiation in the injured spinal cord was detected by immunofluorescence histochemistry. Functional and structural recovery, as well as morphological changes, in the injured spinal cord were respectively detected by Tarlov score, horseradish peroxidase retrograde tracing, and hematoxylin & eosin staining methods at 1, 3, and 5 weeks following transplantation. RESULTS:Transplanted BMSCs differentiated into neuronal-like cells in the injured spinal cord at 3 and 5 weeks following transplantation. Neurological function and pathological damage improved following BMSC + BDNF treatment compared with BDNF or BMSC alone (P < 0.01 or P < 0.05). CONCLUSION:BMSCs venous transplantation in combination with BDNF subdural injection benefits neuronal-like cell differentiation and significantly improves structural and function of injured spinal cord compared with BMSCs or BDNF alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号