首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marfan Syndrome (MFS) is an autosomal dominant connective tissue disorder with a wide range of severities. Ninety‐five percent of MFS probands have a mutation in the fibrillin‐1 gene (FBN1); however, there are a high number of unique mutations complicating attempts at establishing any phenotype–genotype correlations for this disease (Tiecke et al., European Journal of Human Genetics, 2001, 9, 13–21). One of the few extant genotype–phenotype correlations is in exon 24–32 which have been associated with a severe pediatric presentation of neonatal MFS with predominately cardiovascular symptoms. We present a 24‐year‐old male patient with a heterozygous de novo variant NM_000138.4: c.3037G>A (p.G1013R) located in exon 25 of the FBN1 gene. The patient was found to have dysplastic mitral and tricuspid valves with dilated aortic root at 9 months of age. This is a notable case in that the location of this patient's mutation and his age of symptom onset would indicate a guarded prognosis. Further, this mutation, FBN1 G1013R, has been reported in the literature in four other unrelated patients all of whom presented at a young age with cardiac involvement and all of whom had relative longevity when compared to other patients with mutations in this exon 24–32 hot spot. These findings may represent a more specific genotype–phenotype correlation within this mutational hot spot.  相似文献   

2.
Mutations in the FBN1 gene cause Marfan syndrome (MFS) and a wide range of overlapping phenotypes. The severe end of the spectrum is represented by neonatal MFS, the vast majority of probands carrying a mutation within exons 24–32. We previously showed that a mutation in exons 24–32 is predictive of a severe cardiovascular phenotype even in non-neonatal cases, and that mutations leading to premature truncation codons are under-represented in this region. To describe patients carrying a mutation in this so-called ‘neonatal'' region, we studied the clinical and molecular characteristics of 198 probands with a mutation in exons 24–32 from a series of 1013 probands with a FBN1 mutation (20%). When comparing patients with mutations leading to a premature termination codon (PTC) within exons 24–32 to patients with an in-frame mutation within the same region, a significantly higher probability of developing ectopia lentis and mitral insufficiency were found in the second group. Patients with a PTC within exons 24–32 rarely displayed a neonatal or severe MFS presentation. We also found a higher probability of neonatal presentations associated with exon 25 mutations, as well as a higher probability of cardiovascular manifestations. A high phenotypic heterogeneity could be described for recurrent mutations, ranging from neonatal to classical MFS phenotype. In conclusion, even if the exons 24–32 location appears as a major cause of the severity of the phenotype in patients with a mutation in this region, other factors such as the type of mutation or modifier genes might also be relevant.  相似文献   

3.
Marfan syndrome (MFS) is caused by mutations in the FBN1 (fibrillin‐1) gene, but approximately 10% of MFS cases remain genetically unsolved. Here, we report a new FBN1 mutation in an MFS family that had remained negative after extensive molecular genomic DNA FBN1 testing, including denaturing high‐performance liquid chromatography, Sanger sequencing, and multiplex ligation‐dependent probe amplification. Linkage analysis in the family and cDNA sequencing of the proband revealed a deep intronic point mutation in intron 56 generating a new splice donor site. This mutation results in the integration of a 90‐bp pseudo‐exon between exons 56 and 57 containing a stop codon, causing nonsense‐mediated mRNA decay. Although more than 90% of FBN1 mutations can be identified with regular molecular testing at the genomic level, deep intronic mutations will be missed and require cDNA sequencing or whole‐genome sequencing.  相似文献   

4.
Marfan syndrome (MFS; MIM #154700) is a connective tissue disorder characterized by cardiovascular, skeletal, and ocular abnormalities. The fibrillin-1 gene (FBN1; MIM no. 134797) on chromosome 15 was revealed to be the cause of Marfan syndrome. To date over 137 types of FBN1 mutations have been reported. In this study, two novel mutations and a recurrent de-novo mutation were identified in patients with MFS by means of single-strand conformational polymorphism (SSCP) analysis. The two novel mutations are a 4-bp deletion at nucleotide 2820-2823 and a G-to-T transversion at nucleotide 1421 (C474F), located on exon 23 and exon 11, respectively. A previously reported mutation at the splicing donor site of intron 2 (IVS2 G + 1A), which is predicted to cause exon skipping, was identified in a sporadic patient with classical MFS. Received: November 1, 1999 / Accepted: November 9, 1999  相似文献   

5.
In six index cases/families referred for Marfan syndrome (MFS) molecular diagnosis, we identified six novel mutations in the FBN1 gene: c.1753G>C (p.Gly585Arg), c.2456G>A (p.Gly819Glu), c.4981G>A (p.Gly1661Arg), c.5339G>A (p.Gly1780Glu), c.6418G>A (p.Gly2140Arg) and c.6419G>A (p.Gly2140Glu). These variants, predicted to result in Glycine substitutions are located at the third position of a 4 amino acids loop‐region of calcium‐binding Epidermal Growth Factor‐like (cb‐EGF) fibrillin‐1 domains 5, 9, 24, 25 and 32. Familial segregation studies showing cosegregation with MFS manifestations or de novo inheritance in addition to in silico analyses (conservation, 3D modeling) suggest evidence for a crucial role of the respective Glycine positions. Extending these analyses to all Glycine residue at position 3 of this 4 residues loop in fibrillin‐1 cb‐EGF with the UMD predictor tool and alignment of 2038 available related sequences strongly support a steric strain that only allows Glycine or even Alanine residues for domain structure maintenance and for the fibrillin functions. Our data compared with those of the literature strongly suggest the existence of a cb‐EGF domain subtype with implications for related diseases. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Marfan Syndrome is an autosomal dominant connective tissue disorder caused by mutations in the FBN1 gene. Early Onset Marfan Syndrome is at the severe end of the Marfan syndrome spectrum and is frequently associated with variants in exons 24–32 of the FBN1 gene.To the best of our knowledge, this is the first molecularly confirmed patient from Sub-Saharan Africa with Early Onset Marfan Syndrome who presented with tall stature, arachnodactyly, multivalvular insufficiency and ectopia lentis. Sequencing analysis of FBN1 gene revealed a pathogenic (class 5) heterozygous recurrent variant in exon 61 (c.7606G > A p.0NM_000138.3), which was up to now not associated with rapidly progressive Marfan syndrome with multivalvular insufficiency and congestive cardiac failure. This further supports the notion that the interplay of the given FBN1 mutation, one or more genetic modifiers and epigenetic and environmental factors defines the disease phenotype.  相似文献   

7.
Marfan syndrome (MFS; OMIM#154700) is a connective tissue disorder characterized by manifestations in the ocular, skeletal and cardiovascular systems. MFS is caused by mutation in the fibrillin-1 gene (FBN1; OMIM#134797) and more than 550 mutations have been identified so far. FBN1 is approximately 230 kb in size and contains three evolutionarily conserved alternatively spliced exons B, A and C at the 5'end. In a first systematic attempt to associate sequence variations in the FBN1 5' alternatively spliced exons with MFS, we investigated 41 individuals fulfilling the diagnostic criteria of Ghent nosology or with features of MFS including at least one major criterion or involvement of two organ systems but not fulfilling a strict interpretation of the Ghent nosology, and known to be negative for mutations in the FBN1 exons 1-65 as well as the TGFBR2 and TGFBR1 coding regions. We identified five novel and one previously reported variants in the six unrelated probands and provide preliminary evidence for their role in pathogenesis.  相似文献   

8.
It is now well established that defects in fibrillin-1 (FBN1) cause the variable and pleiotropic features of Marfan syndrome (MFS) and, at the most severe end of its clinical spectrum, neonatal Marfan syndrome (nMFS). Patients with nMFS have mitral and tricuspid valve involvement and aortic root dilatation, and die of congestive heart failure, often in the first year of life. Although mutations in classical MFS have been observed along the entire length of the FBN1 mRNA, mutations in nMFS appear to cluster in a relatively small region of FBN1, approximately between exons 24 and 34. Here we describe the appearance of two FBN1 mutations in a single allele of an infant with nMFS. The changes were within six bases of each other in exon 26. One was a T3212G transversion resulting in an I1071S amino acid substitution and the second was an A3219T transversion resulting in an E1073D amino acid substitution. This is the first reported double mutant allele in FBN1.  相似文献   

9.
Ectopia lentis (EL) is genetically heterogeneous with both autosomal‐dominant and ‐recessive forms. The dominant disorder can be caused by mutations in FBN1, at the milder end of the type‐1 fibrillinopathies spectrum. Recently in a consanguineous Jordanian family, recessive EL was mapped to locus 1q21 containing the ADAMTSL4 gene and a nonsense mutation was found in exon 11 (c.1785T>G, p.Y595X). In this study, 36 consecutive probands with EL who did not fulfill the Ghent criteria for MFS were screened for mutations in FBN1 and ADAMTSL4. Causative FBN1 mutations were identified in 23/36 (64%) of probands while homozygous or compound heterozygous ADAMTSL4 mutations were identified in 6/12 (50%) of the remaining probands. Where available, familial screening of these families confirmed the mutation co‐segregated with the EL phenotype. This study confirms that homozygous mutations in ADAMTSL4 are associated with autosomal‐recessive EL in British families. Furthermore; the first compound heterozygous mutation is described resulting in a PTC and a missense mutation in the PLAC (protease and lacunin) domain. The identification of a causative mutation in ADAMTSL4 may allow the exclusion of Marfan syndrome in these families and guide the clinical management, of particular relevance in young children affected by EL. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Marfan syndrome (MFS) is an autosomal dominant disorder of the extracellular matrix. Allelic variations in the gene for fibrillin-1 (FBN1) have been shown to cause MFS. To date, over 550 mutations have been identified in patients with MFS and related connective tissue diseases. However, about a half of MFS cases do not possess mutations in the FBN1 gene. These findings raise the possibility that variants located in other genes cause or modify MFS. To explore this possibility, firstly we analyzed FBN1 allelic variants in 12 Japanese patients with MFS, and secondly we analyzed fibrillin-3 gene (FBN3) in patients without FBN1 mutations using conformation sensitive gel electrophoresis (CSGE) and direct sequencing analysis. We identified three novel FBN1 mutations and ten FBN3 single nucleotide polymorphisms (SNPs). In this report, we could not detect a responsible mutation of the FBN3 gene for MFS. Although the number of the cases in this report is small, at least these results suggest that disease-causing mutations in exon regions of the FBN3 gene are very rare in MFS.Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers: AB177797, AB177798, AB177799, AB177800, AB177801, AB177802, AB177803  相似文献   

11.
Congenital contractural arachnodactyly (CCA) is an autosomal dominant condition phenotypically related to Marfan syndrome (MFS). CCA is caused by mutations in FBN2, whereas MFS results from mutations in FBN1. FBN2 mRNA extracted from 12 unrelated CCA patient cell strains was screened for mutations, and FBN2 mutations were identified in six of these samples. All of the identified FBN2 mutations cluster in a limited region of the gene, a region where mutations in FBN1 produce the severe, congenital form of MFS (so-called neonatal MFS). Furthermore, three of the identified mutations occur in the FBN2 locations exactly corresponding to FBN1 mutations that have been reported in cases of neonatal MFS. These mutations indicate that this central region of both of the fibrillins plays a critical role in human embryogenesis. The limited region of FBN2 that can be mutated to cause CCA may also help to explain the rarity of CCA compared to MFS. Am. J. Med. Genet. 78:350–355, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Congenital contractural arachnodactyly (CCA) is an autosomal dominant condition that shares skeletal features with Marfan syndrome (MFS), but does not have the ocular and cardiovascular complications that characterize MFS. CCA and MFS result from mutations in highly similar genes, FBN2 and FBN1, respectively. All the identified CCA mutations in FBN2 cluster in a limited region similar to where severe MFS mutations cluster in FBN1, specifically between exons 23 and 34. We screened exons 22 through 36 of FBN2 for mutations in 13 patients with classic CCA by single stranded conformational polymorphism analysis (SSCP) and then by direct sequencing. We successfully identified 10 novel mutations in this critical region of FBN2 in these patients, indicating a mutation detection rate of 75% in this limited region. Interestingly, none of these identified FBN2 mutations alter amino acids in the calcium binding consensus sequence in the EGF‐like domains, whereas many of the FBN1 mutations alter the consensus sequence. Furthermore, analysis of the clinical data of the CCA patients with characterized FBN2 mutation indicate that CCA patients have aortic root dilatation and the vast majority lack evidence of congenital heart disease. These studies have implications for our understanding of the molecular basis of CCA, along with the diagnosis and genetic counseling of CCA patients. Hum Mutat 19:39–48, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

13.
马凡综合征两种新的原纤维蛋白-1基因突变   总被引:1,自引:1,他引:1  
目的对9例马凡综合征(Marfansyndrome,MFS)患者的原纤维蛋白-1(fibrillin-1,FBN1)基因进行突变筛查,以发现新的FBN1基因突变。方法应用变性高效液相色谱法对MFS患者FBN1基因65个外显子中的35个进行突变筛查,对变性高效液相色谱图形异常的PCR扩增片段用DNA测序鉴定突变位置及性质,并用等位基因特异性PCR以及限制性片段长度多态性分析等方法进一步证实突变。结果在两例MFS患者中发现两种新的FBN1基因突变。其中一种为第34外显子4307~4308位4个碱基TCGT的插入突变(4307insTCGT),另一种为第43外显子5309位的点突变5309G>A。结论FBN1基因移码突变(4307insTCGT)与点突变(5309G>A)分别是这两例MFS患者的发病原因。  相似文献   

14.
Marfan Syndrome (MFS) is a connective tissue disease caused by mutations in the fibrillin-1 FBN1) gene. Screening for mutations in all the 65 exons of the FBN1 gene in 34 unrelated patients were performed to compare the efficiency of SSCP versus Heteroduplex analysis and to verify if the spectrum of mutations in Brazilian patients is similar to the one previously reported. Fourteen different band shifts were detected by SSCP analysis; among these only 6 were also were also detected through Heteroduplex analysis, suggesting that SSCP analysis was a more efficient method. Except for one, the molecular alteration was confirmed in the remaining 13 cases by sequencing; five of them were neutral polymorphisms and the eight others are new pathogenic mutations, as follows: 5 missense, one nonsense and two deletions leading to a premature termination codon (PTC). All of them are located in EGF-like-calcium binding motifs (EGF-like-cb). Our findings reinforce that cysteine substitutions and PTC mutations in the region between exons 24-32 are more likely not to be associated with the neonatal phenotypes.  相似文献   

15.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24–32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23–32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25–27 of the FBN1 gene in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24–32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. © 1996 Wiley-Liss, Inc.  相似文献   

16.
A phenotype of an individual is resulted from an interaction among variants in several genes. Advanced molecular technologies allow us to identify more patients with mutations in more than one genes. Here, we studied a Thai woman with combined clinical features of Marfan (MFS) and Beals (BS) syndromes including frontal bossing, enophthalmos, myopia, the crumpled appearance to the top of the pinnae, midface hypoplasia, high arched palate, dermal stretch marks, aortic enlargement, mitral valve prolapse and regurgitation, aortic root dilatation, and progressive scoliosis. The aortic root enlargement was progressive to a diameter of 7.2 cm requiring an aortic root replacement at the age of 8 years. At her last visit when she was 19 years old, she had moderate aortic regurgitation. Exome sequencing revealed that she carried the c.3159C > G (p.Cys1053Trp) in exon 26 of FBN1 and c.2638G > A (p. Gly880Ser) in exon 20 of FBN2. The variant in FBN1 was de novo, while that in FBN2 was inherited from her unaffected mother. Both genes encode for fibrillins, which are essential for elastic fibers and can form the heterotypic microfibrils. Two defective fibrillins may synergistically worsen cardiovascular manifestations seen in our patient. In this study, we identified the fourth patient with both MFS and BS, carrying mutations in both FBN1 and FBN2.  相似文献   

17.
Mutations in the gene for fibrillin‐1 (FBN1) cause Marfan syndrome, a dominantly inherited disorder of connective tissue that primarily involves the cardiovascular, ocular, and skeletal systems. There is a remarkable degree of variability both within and between families with Marfan syndrome, and FBN1 mutations have also been found in a range of other related connective tissue disorders collectively termed type‐1 fibrillinopathies. FBN1 mutations have been found in almost all of the 65 exons of the FBN1 gene and for the most part have been unique to one affected patient or family. Aside from the “hot spots” for the neonatal Marfan syndrome in exons 24–27 and 31–32, genotype–phenotype correlations have been slow to emerge. Here we present the results of temperature‐gradient gel electrophoresis analysis of FBN1 exons 59–65. Six mutations were identified, only one of which had been previously reported. Two of the six mutations were found in patients with mild phenotypes. Taken together with other published reports, our results suggest that a sizable subset (ca. 40%) of mutations in this region is associated with mild phenotypes characterized by the lack of significant aortic pathology, compared with about 7% in the rest of the gene. In two cases, mutations affecting analogous positions within one of the 43 cbEGF modules of FBN1 are associated with mild phenotypes when found in one of the 6 C‐terminal modules (encoded by exons 59–63), but are associated with classic or severe phenotypes when found in cbEGF modules elsewhere in the gene. Am. J. Med. Genet. 91:212–221, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

18.
The Marfan (MFS) and Loeys‐Dietz (LDS) syndromes are caused by mutations in the fibrillin‐1 (FBN1) and Transforming Growth Factor Beta Receptor 1 and 2 (TGFBR1 and TGFBR2) genes, respectively. With the current conventional mutation screening technologies, analysis of this set of genes is time consuming and expensive. We have tailored a cost‐effective and reliable mutation discovery strategy using multiplex PCR followed by Next Generation Sequencing (NGS). In a first stage, genomic DNA from five MFS or LDS patient samples with previously identified mutations and/or polymorphisms in FBN1 and TGFBR1 and 2 were analyzed and revealed all expected variants. In a second stage, we validated the technique on 87 samples from MFS patients fulfilling the Ghent criteria. This resulted in the identification of 75 FBN1 mutations, of which 67 were unique. Subsequent Multiplex Ligation‐dependent Probe Amplification (MLPA) analysis of the remaining negative samples identified four large deletions/insertions. Finally, Sanger sequencing identified a missense mutation in FBN1 exon 1 that was not included in the NGS workflow. In total, there was an overall mutation identification rate of 92%, which is in agreement with data published previously. We conclude that multiplex PCR of all coding exons of FBN1 and TGFBR1/2 followed by NGS analysis and MLPA is a robust strategy for time‐ and cost‐effective identification of mutations. Hum Mutat 32:1–10, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
Marfan syndrome (MFS) is an autosomal dominant condition which may involve the cardiovascular, ocular, skeletal, and other systems. Mutations causing MFS are found in the FBN1 gene, encoding fibrillin-1, an extracellular matrix protein involved in microfibril formation. In the most severe cases, mutations are generally found in exons 24-32, and children with these mutations usually die in the first years of life, of cardiopulmonary failure. We present clinical, molecular and histopathological studies on a patient with severe early onset MFS. He has a mutation in exon 25 of FBN1, a G>A transition at nucleotide position 3131 that converts the codon TGC, coding for cysteine at position 1044, to TAC, coding for tyrosine (C1044Y). This has resulted in abnormalities of the extracellular matrix and a severe clinical phenotype, although he has survived to the age of 14 years.  相似文献   

20.
We report a 16-year-old girl with neonatal progeroid features and congenital lipodystrophy who was considered at birth as a possible variant of Wiedemann–Rautenstrauch syndrome. The emergence of additional clinical signs (marfanoid habitus, severe myopia and dilatation of the aortic bulb) lead to consider the diagnosis of the progeroid variant of Marfan syndrome. A de novo donor splice-site mutation (c.8226+1G>A) was identified in FBN1. We show that this mutation leads to exon 64 skipping and to the production of a stable mRNA that should allow synthesis of a truncated profibrillin-1, in which the C-terminal furin cleavage site is altered. FBN1 mutations associated with a similar phenotype have only been reported in four other patients. We confirm the correlation between marfanoid phenotype with congenital lipodystrophy and neonatal progeroid features (marfanoid–progeroid–lipodystrophy syndrome) and frameshift mutations at the 3′ end of FBN1. This syndrome should be considered in differential diagnosis of neonatal progeroid syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号