首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Accumulation of intracellular sodium through voltage-gated sodium channels (VGSCs) is an important event in the cascade leading to anatomic degeneration of spinal cord axons and poor functional outcome following traumatic spinal cord injury (SCI). In this study, we hypothesized that phenytoin, a sodium channel blocker, would result in protection of axons with concomitant improvement of functional recovery after SCI. Adult male Sprague-Dawley rats underwent T9 contusion SCI after being fed normal chow or chow containing phenytoin; serum levels of phenytoin were within therapeutic range at the time of injury. At various timepoints after injury, quantitative assessment of lesion volumes, axonal degeneration, axonal conduction, and functional locomotor recovery were performed. When compared to controls, phenytoin-treated animals demonstrated reductions in the degree of destruction of gray and white matter surrounding the lesion epicenter, sparing of axons within the dorsal corticospinal tract (dCST) and dorsal column (DC) system rostral to the lesion site, and within the dorsolateral funiculus (DLF) caudal to the lesion site, and enhanced axonal conduction across the lesion site. Improved performance in measures of skilled locomotor function was observed in phenytoin-treated animals. Based on these results, we conclude that phenytoin provides neuroprotection and improves functional outcome after experimental SCI, and that it merits further examination as a potential treatment strategy in human SCI.  相似文献   

2.
C‐J. Xu, L. Xu, L‐D. Huang, Y. Li, P‐P. Yu, Q. Hang, X‐M. Xu and P‐H. Lu (2011) Neuropathology and Applied Neurobiology 37, 135–155
Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats Aims: After spinal cord injury (SCI), there are many adverse factors at the lesion site such as glial scar, myelin‐derived inhibitors, cell loss and deficiency of neurotrophins that impair axonal regeneration. Therefore, combination therapeutic strategies might be more effective than a single strategy for promoting functional recovery after SCI. In the present study, we investigated whether a Nogo66 receptor (NgR) vaccine, combined with neural stem cell (NSC) transplantation, could promote better functional recovery than when NgR vaccine or NSCs were used alone. Methods: Adult rats were immunized with NgR vaccine at 1 week after a contusive SCI at the thoracic level, and the NSCs, obtained from green fluorescent protein transgenic rats, were transplanted into the injury site at 8 weeks post injury. The functional recovery of the animals under various treatments was evaluated by three independent behavioural tests, that is, Basso, Beattie and Bresnahan locomotor rating scale, footprint analysis and grid walking. Results: The combined therapy with NgR vaccination and NSC transplantation protected more ventral horn motor neurones in the injured spinal cord and greater functional recovery than when they were used alone. Furthermore, NgR vaccination promoted migration of engrafted NSCs along the rostral‐caudal axis of the injured spinal cords, and induced their differentiation into neurones and oligodendrocytes in vivo. Conclusions: The combination therapy of NgR vaccine and NSC transplantation exhibited significant advantages over any single therapy alone in this study. It may represent a potential new therapy for SCI.  相似文献   

3.
Myelin-associated inhibitors of neurite growth play an important role in the regenerative failure after injury in the adult mammalian CNS. The application of the mAb IN-1, which efficiently neutralizes the NI-250/35 inhibitory proteins, alone or in combination with neurotrophin-3 (NT-3), has been shown to promote axonal regeneration when applied in acute injury models. To test whether IN-1 application can induce axonal growth also in a chronic injury model, we treated rats with IN-1 and NT-3 starting 2 or 8 weeks after injury. Rats underwent bilateral dorsal hemisection of the spinal cord at the age of 5–6 weeks. Regeneration of corticospinal (CST) fibers into the caudal spinal cord was observed in three of eight of those animals with a 2-week delay between lesion and treatment. CST fibers regenerated for 2–11.4 mm. In the control group sprouting occurred rostral to the lesion but no long-distance regeneration occurred. In animals where treatment started at 8 weeks after injury the longest fibers observed grew up to 2 mm into the caudal spinal cord. The results show that transected corticospinal axons retain the ability to regenerate at least for a few weeks after injury. Functional analysis of these animals showed a slight improvement of functional recovery.  相似文献   

4.
Knowledge of which tracts are essential for the recovery of locomotor function in rats after repair is unknown. To assess the mechanism of recovery, we examined the correlation between functional recovery and axonal regeneration. All rats underwent complete cord transection and repair with peripheral nerves, fibroblast growth factor 1, fibrin glue, and spinal fixation. Repaired rats recovered both motor-evoked potentials recorded at the lumbar level and locomotor function. Cord retransection rostral to the repair abolished the recovery, indicating improvement was due to long tract regeneration. To determine which long tracts correlated with recovery, a novel technique of simultaneous bidirectional axonal tracing and immunohistochemical examination of axonal type was used to quantitate the regeneration of corticospinal, rubrospinal, reticulospinal, vestibulospinal, raphespinal, propriospinal, serotonergic, and calcitonin gene-related peptide containing axons. Multiple linear regression analysis revealed recovery of function correlated only with regeneration of corticospinal axons into the gray matter of the lumbar spinal cord (R = 0.977, p < 0.02). For the first time, we show that regeneration of the corticospinal tract into the lumbar gray matter is a mechanism of functional locomotor recovery after complete cord transection and repair.  相似文献   

5.
López-Vales R  Forés J  Navarro X  Verdú E 《Glia》2007,55(3):303-311
The goal of this study was to ascertain whether olfactory ensheathing cells (OECs) were able to promote axonal regeneration and functional recovery when transplanted 45 days after complete transection of the thoracic spinal cord in adult rats. OECs promoted partial restitution of supraspinal pathways evaluated by motor evoked potentials and modest recovery of hindlimb movements. In addition, OEC grafts reduced lumbar reflex hyperexcitability from the first month after transplantation. Histological results revealed that OECs facilitated corticospinal and raphespinal axons regrowth through the injury site and into the caudal spinal cord segments. Interestingly, raphespinal but not corticospinal fibers regenerated long distances through the gray matter and reached the lower lumbar segments (L5) of the spinal cord. However, delayed OEC grafts failed to reduce posttraumatic astrogliosis. In conclusion, the beneficial effects found in the present study further support the use of OECs for treating chronic spinal cord injuries.  相似文献   

6.
Previous experiments from our laboratory have shown that application of brain-derived neurotrophic factor (BDNF) to the red nucleus or the motor cortex stimulates an increase in the expression of regeneration-associated genes in rubrospinal and corticospinal neurons. Furthermore, we have previously shown that BDNF application stimulates regeneration of rubrospinal axons into a peripheral graft after a thoracic injury. The current study investigates whether application of BDNF to the motor cortex will facilitate regeneration of corticospinal neurons into a peripheral nerve graft placed into the thoracic spinal cord. In adult Sprague Dawley rats, the dorsal columns and the corticospinal tract between T9 and T10 were ablated by suction, and a 5-mm-long segment of predegenerated tibial nerve was autograft implanted into the lesion. With an osmotic pump, BDNF was infused directly into the parenchyma of the motor cortex for 14 days. Growth of the corticospinal tract into the nerve graft was then evaluated by transport of an anterograde tracer. Anterogradely labeled corticospinal fibers were not observed in the peripheral nerve graft in animals treated with saline or BDNF. Serotinergic and noradrenergic fibers, as well as peripheral sensory afferents, were observed to penetrate the graft, indicating the viability of the peripheral nerve graft as a permissive growth substrate for these specific fiber types. Although treatment of the corticospinal fibers with BDNF failed to produce regeneration into the graft, there was a distinct increase in the number of axonal sprouts rostral to the injury site. This indicates that treatment of corticospinal neurons with neurotrophins, e.g., BDNF, can be used to enhance sprouting of corticospinal axons within the spinal cord. Whether such sprouting leads to functional recovery after spinal cord injury is currently under investigation.  相似文献   

7.
Schwann cell (SC) implantation after spinal cord injury (SCI) promotes axonal regeneration, remyelination repair, and functional recovery. Reparative efficacy, however, may be limited because of the inability of SCs to migrate outward from the lesion-implant site. Altering SC cell surface properties by overexpressing polysialic acid (PSA) has been shown to promote SC migration. In this study, a SCI contusion model was used to evaluate the migration, supraspinal axon growth support, and functional recovery associated with polysialyltransferase (PST)-overexpressing SCs [PST-green fluorescent protein (GFP) SCs] or controls (GFP SCs). Compared with GFP SCs, which remained confined to the injection site at the injury center, PST-GFP SCs migrated across the lesion:host cord interface for distances of up to 4.4 mm within adjacent host tissue. In addition, with PST-GFP SCs, there was extensive serotonergic and corticospinal axon in-growth within the implants that was limited in the GFP SC controls. The enhanced migration of PST-GFP SCs was accompanied by significant growth of these axons caudal to lesion. Animals receiving PST-GFP SCs exhibited improved functional outcome, both in the open-field and on the gridwalk test, beyond the modest improvements provided by GFP SC controls. This study for the first time demonstrates that a lack of migration by SCs may hinder their reparative benefits and that cell surface overexpression of PSA enhances the ability of implanted SCs to associate with and support the growth of corticospinal axons. These results provide further promise that PSA-modified SCs will be a potent reparative approach for SCI. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Chronic tactile allodynia and hyperalgesia are frequent complications of spinal cord injury (SCI) with poorly understood mechanisms. Possible causes are plastic changes in the central arbors of nociceptive and nonnociceptive primary sensory neurons and changes in descending modulatory serotonergic pathways. A clinically relevant clip-compression model of SCI in the rat was used to investigate putative mechanisms of chronic pain. Behavioral testing (n = 18 rats) demonstrated that moderate (35 g) or severe (50 g) SCI at the 12th thoracic spinal segment (T-12) reliably produces chronic tactile allodynia and hyperalgesia that can be evoked from the hindpaws and back. Quantitative morphometry (n = 37) revealed no changes after SCI in the density or distribution of Abeta-, Adelta-, and C-fiber central arbors of primary sensory neurons within the thoracolumbar segments T-6 to L-4. This observation rules out a mandatory relationship between pain-related behaviors and changes in the distribution or density of central afferent arbors. The area of serotonin immunoreactivity in the dorsal horn (n = 12) decreased caudal to the injury site (L1-4) and increased threefold rostral to it (T9-11). The decreased serotonin and presence of tactile allodynia and hyperalgesia caudal to the injury are consistent with disruption of descending antinociceptive serotonergic tracts that modulate pain transmission. The functional significance of the increased serotonin in rostral segments may relate to the development of tactile allodynia as serotonin also has known pronociceptive actions. Changes in the descending serotonergic pathway require further investigation, as a disruption of the balance of serotonergic input rostral and caudal to the injury site may contribute to the etiology of chronic pain after SCI.  相似文献   

9.
Axonal regeneration in the central nervous system is blocked by many different growth inhibitory factors. Some of these inhibitors act on neurons by activating RhoA and Rho-kinase, an effector of RhoA. Several studies have shown that Rho-kinase inhibition immediately after spinal cord injury enhances axonal sprouting and functional recovery. In this study, we ask whether delayed treatment with Rho-kinase inhibitor is effective in promoting regeneration and functional recovery. We administered Fasudil, a Rho-kinase inhibitor, locally to the injury site 4 weeks or immediately after contusion of the thoracic spinal cord in rats. Although the immediate treatment significantly stimulated axonal sprouting and recovery of hindlimb function, treatment started 4 weeks after surgery had no effect on fiber sprouting or locomotor recovery. Our findings suggest that RhoA/Rho-kinase alone may not account for the irreversible arrest of axon outgrowth in the chronic stage of injury in the central nervous system.  相似文献   

10.
Yu P  Huang L  Zou J  Yu Z  Wang Y  Wang X  Xu L  Liu X  Xu XM  Lu PH 《Neurobiology of disease》2008,32(3):535-542
Nogo-66 receptor (NgR), a common receptor for the three known myelin-associated inhibitors, i.e., Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp), plays a key role in the failure of axonal regeneration in the adult mammalian central nervous system (CNS). Here we report a novel vaccine approach that stimulates the production of anti-NgR antibody to overcome NgR-mediated growth inhibition after spinal cord injury (SCI). We showed that adult rats immunized with recombinant NgR produced high titers of the anti-NgR antibody and that antisera obtained from the immunized rats promoted neurite outgrowth of rat cerebellar neurons on the inhibitory MAG substrate in vitro. In a spinal cord dorsal hemisection model, NgR immunization promoted regeneration of lesioned corticospinal tract (CST) axons, anterogradely labeled with biotin dextran amine (BDA), beyond the lesion site. In a contusive SCI model, NgR immunization markedly reduced the total lesion volume and improved Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and grid walking performance. Thus, the NgR vaccine approach may represent a promising repair strategy to promote structural and functional recovery following SCI.  相似文献   

11.
To date, relatively little progress has been made in the treatment of spinal cord injury (SCI)-related neurological impairments. Until now, methylprednisolone (MP) is the only agent with clinically proven beneficial effect on functional outcome after SCI. Although the mechanism of action is not completely clear, experimental data point to protection against membrane peroxidation and edema reduction. The melanocortin melanotropin is known to improve axonal regeneration following sciatic nerve injury, and to stimulate corticospinal outgrowth after partial spinal cord transection. Recently, we showed that intrathecally administered alphaMSH had beneficial effects on functional recovery after experimental SCI. Since both drugs have shown their value in intervention studies after (experimental) spinal cord injury (ESCI), we decided to study the effects of combined treatment. Our results again showed that alphaMSH enhances functional recovery after ESCI in the rat and that MP, although not affecting functional recovery adversely by itself, abolished the effects observed with alphaMSH when combined. Our data, thus, suggest that the mechanism of action of MP interferes with that of alphaMSH.  相似文献   

12.
Methylprednisolone (MP) is a synthetic glucocorticoid used for the treatment of spinal cord injury (SCI). Soluble Nogo-66 receptor (NgR) ectodomain is a novel experimental therapy for SCI that promotes axonal regeneration by blocking the growth inhibitory effects of myelin constituents in the adult central nervous system. To evaluate the potential complementarity of these mechanistically distinct pharmacological reagents we compared their effects alone and in combination after thoracic (T7) dorsal hemisection in the rat. Treatment with an ecto-domain of the rat NgR (27-310) fused to a rat IgG [NgR(310)ecto-Fc] (50 microm intrathecal, 0.25 microL/h for 28 days) or MP alone (30 mg/kg i.v., 0, 4 and 8 h postinjury) improved the rate and extent of functional recovery measured using Basso, Beattie, Bresnahan (BBB) scoring and footprint analysis. The effect of MP treatment on BBB score was apparent the day after SCI whereas the effect of NgR(310)ecto-Fc was not apparent until 2 weeks after SCI. NgR(310)ecto-Fc or MP treatment resulted in increased axonal sprouting and/or regeneration, quantified by counting biotin dextran amine-labeled corticospinal tract axons, and increased the number of axons contacting motor neurons in the ventral horn gray matter caudal to the lesion. Combined treatment with NgR(310)ecto-Fc and MP had a more pronounced effect on recovery of function and axonal growth compared with either treatment alone. The data demonstrate that NgR(310)ecto-Fc and MP act in a temporally and mechanistically distinct manner and suggest that they may have complementary effects.  相似文献   

13.
目的 观察脊髓损伤(SCI)后轴突变化及其与胶质瘢痕的关系.方法 应用Allen's法建立大鼠脊髓损伤模型,通过行为学评分、免疫荧光及神经束路示踪等观察SCI后轴突的病理变化,及其与胶质瘢痕的关系,并测量胶质瘢痕的厚度.结果 SCI后损伤处的轴突呈断裂、扭曲状,SCI后1 周损伤轴突呈再生趋势,2周时再生明显,与此相应动物运动功能逐渐恢复,4周时胶质瘢痕形成,再生的轴突被瘢痕阻挡.头尾侧胶质瘢痕厚度(107.00±20.12)μm大于两侧边厚度(69.92±24.37)μm.结论 SCI后轴突仍具有再生能力,但被胶质瘢痕所阻挡,瘢痕厚度的测量为将来去除胶质瘢痕提供了实验依据.  相似文献   

14.
Growth-associated protein 43 (GAP43) is one compound used to indicate growth of axonal endings during development and regeneration, particularly of peripheral neurons. Using immunohistochemistry, we have studied the expression of GAP43 in the spinal cord of rats subjected to mild, moderate or severe compression injury and used neurofilament immunostaining to demonstrate axonal injuries. Samples removed from the compressed T8–9, the cranial T7 and the caudal T10 segments were studied at 4 h, 24 h, 4 days and 9 days after injury. Control rats showed a moderate immunostaining of neurons in dorsal root ganglia, weak staining of ventral motor neurons and, with the exception of the corticospinal tracts, a weak staining in some axons of the longitudinal tracts of the cord. Injury in the compressed region led to increased GAP43 immunoreactivity in axons of normal and expanded size. This occurred particularly 1–4 days after injury and normalized 9 days thereafter. More marked immunostaining was present in the cranial and caudal segments. The corticospinal tracts never showed such staining. The increase of GAP43 immunostaining is presumably caused by disturbed axonal transport from neurons with the capacity to synthesize and transport the GAP43 antigen. Transported material may thus be available for regeneration of axons, but this source of material may vary between different classes of axons within the cord. Received: 11 December 1995 / Revised, accepted: 19 January 1996  相似文献   

15.
Induction of Eph B3 after spinal cord injury   总被引:8,自引:0,他引:8  
Spinal cord injury (SCI) in adult rats initiates a cascade of events producing a nonpermissive environment for axonal regeneration. This nonfavorable environment could be due to the expression of repulsive factors. The Eph receptor protein tyrosine kinases and their respective ligands (ephrins) are families of molecules that play a major role in axonal pathfinding and target recognition during central nervous system (CNS) development. Their mechanism of action is mediated by repellent forces between receptor and ligand. The possible role that these molecules play after CNS trauma is unknown. We hypothesized that an increase in the expression of Eph proteins and/or ephrins may be one of the molecular cues that restrict axonal regeneration after SCI. Rats received a contusive SCI at T10 and in situ hybridization studies 7 days posttrauma demonstrated: (i) a marked up-regulation of Eph B3 mRNA in cells located in the white matter at the lesion epicenter, but not rostral or caudal to the injury site, and (ii) an increase in Eph B3 mRNA in neurons in the ventral horn and intermediate zone of the gray matter, rostral and caudal to the lesion. Immunohistochemical analyses localizing Eph B3 protein were consistent with the mRNA results. Colocalization studies performed in injured animals demonstrated increased Eph B3 expression in white matter astrocytes and motor neurons of the gray matter. These results suggest that Eph B3 may contribute to the unfavorable environment for axonal regeneration after SCI.  相似文献   

16.
We analyzed pathway choices of regenerating, mostly supraspinal, descending axons in the spinal cord of adult zebrafish and the cellular changes in the spinal cord caudal to a lesion site after complete spinal transection. Anterograde tracing (by application of the tracer rostral to the spinal lesion site) showed that significantly more descending axons (74%) regenerated in the spinal gray matter of the caudal spinal cord than would be expected from random growth. Retrograde tracing (by application of the tracer caudal to the spinal lesion site) showed that, rostral to the lesion, most of these axons (80%) extended into the major white matter tracts. Thus, ventral descending tracts often were devoid of labeled axons caudal to a spinal lesion but contained many axons rostral to the lesion in the same animals, indicating a pathway switch of descending axons from the white matter to the gray matter. Ascending axons of spinal neurons were not observed regrowing to the rostral tracer application site; therefore, they most likely did not contribute to the axonal populations analyzed. A macrophage/microglia response within 2 days of spinal cord transection, along with phagocytosis of myelin, was observed caudal to the transection by immunohistochemistry and electron microscopy. Nevertheless, caudal to the lesion, descending tracts in the white matter were filled with myelin debris during the time of axonal regrowth, at least up to 6 weeks postlesion. We suggest that the spontaneous regeneration of axons of supraspinal origin after spinal cord transection in adult zebrafish may be due in part to the axons' ability to negotiate novel pathways in the spinal cord gray matter.  相似文献   

17.
脑脊液内细胞移植治疗脊髓损伤   总被引:1,自引:0,他引:1  
经脑脊液进行细胞移植治疗脊髓损伤具有较大的临床应用前景.有关研究显示,经脑脊液进行的细胞移植方法安全、方便,对病人的损伤小,适用于治疗中枢神经系统多发疾病.但是经脑脊液移植的细胞能否促进中枢神经系统轴突再生和脊髓神经功能修复仍存在争议,其作用机制、移植时间以及移植细胞种类方面还需要进一步研究.本文对经脑脊液细胞移植方法用于治疗脊髓损伤进行综述,探讨此方法对脊髓损伤后中枢神经系统内轴突再生及功能修复的促进作用.  相似文献   

18.
In contrast to mammals, adult zebrafish recover locomotor functions after spinal cord injury (SCI), in part due to axonal regrowth and regeneration permissivity of the central nervous system. Upregulation of major vault protein (MVP) expression after spinal cord injury in the brainstem of the adult zebrafish prompted us to probe for its contribution to recovery after SCI. MVP is a multifunctional protein expressed not only in many types of tumours but also in the nervous system, where its importance for regeneration is, however, unclear. Using an established zebrafish SCI model, we found that MVP mRNA and protein expression levels were increased in ependymal cells in the spinal cord caudal to the lesion site at 6 and 11 days after SCI. Double immunolabelling showed that MVP was co‐localised with Islet‐1 or tyrosine hydroxylase around the central canal of the spinal cord in sham‐injured control fish and injured fish 11 days after surgery. MVP co‐localised with the neural stem cell marker nestin in ependymal cells after injury. By using an in vivo morpholino‐based knock‐down approach, we found that the distance moved by MVP morpholino‐treated fish was reduced at 4, 5 and 6 weeks after SCI when compared to fish treated with standard control morpholino. Knock‐down of MVP resulted in reduced regrowth of axons from brainstem neurons into the spinal cord caudal to the lesion site. These results indicate that MVP supports locomotor recovery and axonal regrowth after SCI in adult zebrafish.  相似文献   

19.
After injury, regrowth of axons in mammalian adult central nervous system is highly limited. However, in monkeys subjected to unilateral cervical lesion (C7-C8 level), neutralization of an important neurite outgrowth inhibitor, Nogo-A, stimulated axonal sprouting caudal to the lesion, accompanied by enhanced functional recovery of manual dexterity, compared with lesioned monkeys treated with a control antibody (Freund et al. [2006] Nat. Med. 12:790-792). The present study aimed at comparing the same two groups of monkeys for axonal sprouting rostral to the cervical lesion. The corticospinal tract was labeled by injecting the anterograde tracer biotinylated dextran amine into the contralesional motor cortex. The corticospinal axons were interrupted at the level of the lesion, accompanied by retrograde axonal degeneration (axon dieback), reflected by the presence of terminal retraction bulbs. The number of terminal retraction bulbs was lower in anti-Nogo-A antibody treated monkeys, and, when present, they were found closer to the lesion than in control-antibody treated monkeys. Compared with control antibody treated monkeys, the anti-Nogo-A antibody treated monkeys exhibited an increased cumulated axon arbor length and a higher number of axon arbors going in the medial direction from the white to the gray matter. Higher in the cervical cord (at C5 level), the anti-Nogo-A treatment enhanced the number of corticospinal fibers crossing the midline, suggesting axonal sprouting. Thus, the anti-Nogo-A antibody treatment enhanced axonal sprouting rostral to the cervical lesion; some of these fibers grew around the lesion and into the caudal spinal segments. These processes paralleled the observed improved functional recovery.  相似文献   

20.
目的研究移植人羊膜间充质干细胞(hAMSCs)是否促进脊髓损伤大鼠神经功能恢复,探索其可能作用机制。 方法60只雌性SD大鼠按照随机数字表法分为磷酸盐缓冲液(PBS)治疗组(30只)和hAMSCs治疗组(30只)。脊髓损伤采用脊髓撞击损伤模型,hAMSCs或PBS立刻移植到离脊髓损伤中心2 mm的头尾两端。免疫荧光检测细胞分化,血管再生和轴突再生。酶联免疫吸附剂测定试剂盒检测脑源性神经营养因子(BDNF)和血管内皮生长因子(VEGF)含量,BBB运动功能评分检测行为学。 结果在脊髓损伤后14 d、21 d和28 d,hAMSCs治疗组BBB评分分别为(8.75±0.701)、(10.375±0.532)和(12.125±0.350),高于PBS组(6.0±0.463)、(7.25±0.412)和(9.125±0.440),差异具有统计学意义(P<0.05)。在第7天和第14天,hAMSCs治疗组BDNF表达水平分别为(75.138±4.367)pg/mg和(66.483±4.099)pg/mg,高于PBS组(43.901±3.607)pg/mg和(41.108±3.848)pg/mg,差异具有统计学意义(P<0.05)。在第7天,第14天和第28天,hAMSCs治疗组VEGF表达水平分别为(23.328±2.463)pg/mg,(22.301±2.223)pg/mg和(14.855±1.282)pg/mg,高于PBS组(9.978±1.572)pg/mg,(9.271±1.496)pg/mg和(7.113±1.123)pg/mg,差异具有统计学意义(P<0.05)。hAMSCs治疗组血管数目(17.5±2.102)高于PBS组(6.25±1.750),差异具有统计学意义(P<0.05)。hAMSCs治疗组小鼠抗5羟色胺阳性神经纤维面积(3486±203.643)和GAP43阳性神经纤维面积(4568.25±253.881)高于PBS组(2070.25±156.344)和(2455.725±314.475),差异具有统计学意义(P<0.05)。 结论移植hAMSCs能促进脊髓损伤大鼠神经功能恢复,其作用机制可能是通过增加神经营养因子表达,促进血管再生和轴突再生。因此hAMSCs移植是治疗脊髓损伤的理想方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号