首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purpose: Past work has demonstrated that kainic acid (KA)–induced seizures could cause the enhancement of excitation and lead to neuronal death in rat hippocampus. To counteract such an imbalance between excitation and inhibition, we designed experiments by activating the inhibitory γ‐aminobutyric acid (GABA) receptor to investigate whether such activation suppresses the excitatory glutamate signaling induced by KA and to elucidate the underlying molecular mechanisms. Methods: Muscimol coapplied with baclofen was intraperitoneally administrated to the rats 40 min before KA injection by intracerebroventricular infusion. Subsequently we used a series of methods including immunoprecipitation, immunoblotting, histologic analysis, and immunohistochemistry to analyze the interaction, expression, and phosphorylation of relevant proteins as well as the survival of the CA1/CA3 pyramidal neurons. Results: Coadministration of muscimol and baclofen exerted neuroprotection against neuron death induced by KA; inhibited the increased assembly of the GluR6‐PSD‐95‐MLK3 module induced by KA; and suppressed the activation of MLK3, MKK7, and JNK3. Discussion: Taken together, we demonstrate that coactivation of the inhibitory GABA receptors can attenuate the excitatory JNK3 apoptotic signaling pathway via inhibiting the increased assembly of the GluR6‐PSD‐95‐MLK3 signaling module induced by KA. This provides a new insight into the therapeutic approach to epileptic seizure.  相似文献   

2.
Polysialylated neuronal cell adhesion molecule (PSA‐NCAM), a polysialylated protein constitutively expressed in the hippocampus, is involved in neuronal growth, synaptic plasticity and neurotrophin signaling. In particular, PSA‐NCAM mediates Ret‐independent glial‐derived neurotrophic factor (GDNF) signaling, leading to downstream FAK activation. GDNF has potent seizure‐suppressant action, whereas PSA‐NCAM is upregulated by seizure activity. However, the involvement of Ret‐independent GDNF signaling in temporal lobe epilepsy (TLE) is not established. We tested the effects of PSA‐NCAM inactivation on neurodegeneration and epileptogenesis in a mouse model of TLE. In this model, unilateral intrahippocampal kainic acid (KA) injection induced degeneration of CA1, CA3c and hilar neurons, followed by spontaneous recurrent focal seizures. In the contralateral, morphologically preserved hippocampus, a long‐lasting increase of PSA‐NCAM immunoreactivity was observed. Inactivation of PSA‐NCAM by endoneuraminidase (EndoN) administration into the contralateral ventricle of KA‐treated mice caused severe degeneration of CA3a,b neurons and dentate gyrus granule cells in the epileptic focus, and led to early onset of focal seizures. This striking trans‐hemispheric alteration suggested that PSA‐NCAM mediates GDNF signaling, leading to transport of neuroprotective signals into the lesioned hippocampus. This hypothesis was confirmed by injecting GDNF antibodies into the contralateral hippocampus of KA‐treated mice, thereby reproducing the enhanced neurodegeneration seen after PSA‐NCAM inactivation. Furthermore, contralateral EndoN and anti‐GDNF treatment decreased GDNF family receptor α1 immunoreactivity and FAK phosphorylation in the epileptic focus. Thus, Ret‐independent GDNF signaling across the commissural projection might protect CA3a,b neurons and delay seizure onset. These findings implicate GDNF in the control of epileptogenesis and offer a possible mechanism explaining lesion asymmetry in mesial TLE.  相似文献   

3.
Recent studies have shown that kainate (KA) receptors are involved in neuronal cell death induced by seizure, which is mediated by the GluR6·PSD‐95·MLK3 signaling module and subsequent JNK activation. In our previous studies, we demonstrated the neuroprotective role of a GluR6 c‐terminus containing peptide against KA or cerebral ischemia‐induced excitotoxicity in vitro and in vivo. Here, we first report that overexpression of the PDZ1 domain of PSD‐95 protein exerts a protective role against neuronal death induced by cerebral ischemia‐reperfusion in vivo and can prevent neuronal cell death induced by oxygen‐glucose deprivation. Further studies show that overexpression of PDZ1 can perturb the interaction of GluR6 with PSD‐95 and suppress the assembly of the GluR6·PSD‐95·MLK3 signaling module and therefore inhibit JNK activation. Thus, it not only inhibits phosphorylation of c‐Jun and down‐regulates Fas ligand expression but also inhibits phosphorylation of 14‐3‐3 and decreases Bax translocation to mitochondria, decreases the release of cytochrome c, and decreases caspase‐3 activation. Overall, the essential role of the PDZ1 domain of PSD‐95 in apoptotic cell death in neurons provides an experimental foundation for gene therapy of neurodegenerative diseases with overexpression of the PDZ1 domain. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Wei XW  Yan H  Xu B  Wu YP  Li C  Zhang GY 《Brain research bulletin》2012,88(6):617-623
Previous studies have demonstrated that kainic acid (KA)-induced seizures can cause the enhancement of excitation and lead to neuronal death in rat hippocampus. Co-activation of the inhibitory GABA receptors can attenuate the excitatory JNK3 apoptotic signaling pathway via inhibiting the increased assembly of the GluR6-PSD-95-MLK3 signaling module induced by KA in epileptic rat hippocampal CA1 and CA3 regions. Caspase-3 is a cysteine protease located in both the cytoplasm and mitochondrial intermembrane space that is a central effector of many apoptotic pathways. We designed experiments to elucidate the underlying molecular mechanisms of procaspase-3 activation and neuroprotection of co-activation of GABA receptors against neuronal death induced by KA. In this study, we show that co-activation of GABA receptors can attenuate the Fas/FasL apoptotic signaling pathway and inhibit the increased of thioredoxin reductase activity induced by KA, subsequently inhibit the activation of procaspase-3 by diminishing the denitrosylation of its active-site thiol and decreasing the cleavage of the caspase-3 zymogen to its active subunits. These results indicate that co-activation of GABA receptors results in neuroprotection by preventing caspase-3 denitrosylation in KA-induced seizure of rats.  相似文献   

5.
In the present study, we examined the effect of cycloheximide on various pharmacological responses induced by kainic acid (KA) administered intracerebroventricularly (i.c.v.) in mice. In a passive avoidance test, a 20-min cycloheximide (200mg/kg, i.p.) pretreatment prevented the memory impairment induced by KA. The morphological damage induced by KA (0.1microg) in the hippocampus was markedly concentrated in the CA3 pyramidal neurons and cycloheximide effectively prevented the KA-induced pyramidal cell death in CA3 hippocampal region. In immunohistochemical study, KA dramatically increased the phosphorylation of extracellular signal-regulated protein kinase (p-ERK), c-Jun N-terminal kinase 1 (p-JNK1), and calcium/calmodulin-dependent protein kinase II (p-CaMK II). Cycloheximide attenuated the increased p-ERK, p-JNK1, and p-CaMK II levels induced by KA. Furthermore, cycloheximide inhibited the increased c-Fos and c-Jun protein expression levels induced by KA in the hippocampus. The activation of microglia was detected in KA-induced CA3 cell death region by immunostaining with a monoclonal antibody against the OX-42. Cycloheximide inhibited KA-induced increase of OX-42 immunoreactivity. Our results suggest that the increased expression of the c-Fos, c-Jun, and phosphorylation of ERK, JNK1, and CaMK II proteins may play important roles in the memory impairment and the cell death in CA3 region of the hippocampus induced by i.c.v. KA administration in mice. Furthermore, the activated microglia may be related to phagocytosis of degenerated neuronal elements induced by KA.  相似文献   

6.
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen‐activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen‐activated protein kinases, extracellular‐regulated kinase is involved in the in vitro induction of long‐term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor‐dependent long‐term depression (LTD) in vitro. Although c‐Jun N‐terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c‐Jun N‐terminal protein kinase‐inhibiting peptide (D‐JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D‐JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c‐Jun, a significant enhancement of LTD and a facilitation of short‐term depression into LTD. Both LTP and short‐term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK‐dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation.  相似文献   

7.
The ketogenic diet (KD) is effective in the treatment of refractory epilepsy, yet the molecular mechanisms underlying its antiepileptic effects have not been determined. There is increasing evidence that neuronal cell death induced by seizures via mitochondrial pathway and seizures can lead to mitochondrial release of cytochrome c, and we have shown previously that translocation of Smac/DIABLO into the cytosol play a role in the brain damage in a model of limbic seizure. In the present study, we explored the neuroprotective effect of KD in C57BL/6 mice with seizures induced by kainic acid (KA). Status epilepticus triggered by intra-amygdaloid microinjection of KA lead to neuronal death in the selective ipsilateral CA3 subfield of the hippocampus and mitochondrial release of Smac/DIABLO and cytochrome c. We found that KD significantly decreased neuronal death in the ipsilateral CA3 at 24h after KA-induced seizures. Furthermore, KD reduced Smac/DIABLO and cytochrome c release from mitochondria, attenuated activation of casepase-9 and caspase-3 following seizures. These results demonstrate that the neuroprotective effect of KD against brain injury induced by limbic seizures, at least partially, is associated with inhibition of mitochondrial release of Smac/DIABLO and cytochrome c.  相似文献   

8.
Kainic acid (KA) is a well-known excitatory, neurotoxic substance. In mice, morphological damage of hippocampus induced by KA administered intracerebroventricularly (i.c.v.) was markedly concentrated on the CA3 pyramidal neurons. In the present study, the possible role of nicotinic acetylcholine receptors (nAchRs) in hippocampal cell death induced by KA (0.1 microg) administered i.c.v. was examined. Methyllycaconitine (MC; nAchRs antagonist, 20 microg) attenuated KA-induced CA3 pyramidal cell death. KA increased immunoreactivities (IRs) of phorylated extracellular signal-regulated kinase (p-ERK; at 30 min), p-CaMK II (at 30 min), c-Fos (at 2 h), c-Jun (at 2 h), glial fibrillary acidic protein (GFAP at 1 day), and the complement receptor type 3 (OX-42; at 1 day) in hippocampal area. MC attenuated selectively KA-induced p-CaMK II, GFAP and OX-42 IR in the hippocampal CA3 region. Our results suggest that p-CaMK II may play as an important regulator responsible for the hippocampal cell death induced by KA administered i.c.v. in mice. Reactive astrocytes, which was meant by GFAP IR, and activated microglia, which was meant by OX-42 IR, may be a good indicator for measuring the cell death in hippocampal regions by KA-induced excitotoxicity. Furthermore, it is implicated that niconitic receptors appear to be involved in hippocampal CA3 pyramidal cell death induced by KA administered i.c.v. in mice.  相似文献   

9.
Purpose: Dysfunction of the blood–brain barrier (BBB) is a common finding during seizures or following epileptogenic brain injuries, and experimentally induced BBB opening promotes seizures both in naive and epileptic animals. Brain albumin extravasation was reported to promote hyperexcitability by inducing astrocytes dysfunction. To provide in vivo evidence for a direct role of extravasated serum albumin in seizures independently on the pathologic context, we did the following: (1) quantified the amount of serum albumin extravasated in the rat brain parenchyma during status epilepticus (SE); (2) reproduced a similar concentration in the hippocampus by intracerebroventricular (i.c.v.) albumin injection in naive rats; (3) measured electroencephalography (EEG) activity in these rats, their susceptibility to kainic acid (KA)–induced seizures, and their hippocampal afterdischarge threshold (ADT). Methods: Brain albumin concentration was measured in the rat hippocampus and other forebrain regions 2 and 24 h after SE by western blot analysis. Brain distribution of serum albumin or fluorescein isothiocyanate (FITC)‐albumin was studied by immunohistochemistry and immunofluorescence, respectively. Naive rats were injected with rat albumin or FITC‐albumin, i.c.v., to mimic the brain concentration attained after SE, or with dextran used as control. Inflammation was evaluated by immunohistochemistry by measuring glial induction of interleukin (IL)‐1β. Western blot analysis was used to measure inward rectifying potassium channel subunit Kir4.1 protein levels in the hippocampus. Seizures were induced in rats by intrahippocampal injection of 80 ng KA and quantified by EEG analysis, 2 or 24 h after rat albumin or dextran administration. ADT was measured by electrical stimulation of the hippocampus 3 months after albumin injection. In these rats, EEG was continuously monitored for 2 weeks to search for spontaneous seizures. Key Findings: The hippocampal serum albumin concentration 24 h post‐SE was 0.76 ± 0.21 μm . Similar concentrations were measured in other forebrain regions, whereas no changes were found in cerebellum. The hippocampal albumin concentration was similarly reproduced in naive rats by i.c.v. administration of 500 μg/4 μl rat albumin: albumin was predominantly detected extracellularly 2 h after injection, whereas at 24 h it was visible inside pyramidal neurons and in only a few scattered chondroitin sulphate proteoglycan (NG2)‐positive cells, but not in glial fibrillary acidic protein (GFAP)‐positive astrocytes or CR‐3 complement receptor (OX‐42)‐positive microglia. The presence of albumin in naive rat hippocampus was associated with induced IL‐1β in GFAP‐positive astrocytes and a concomitant tissue down‐regulation of Kir4.1. Spiking activity was evoked by albumin in the hippocampus lasting for 2 h. When KA was intrahippocampally applied either 2 or 24 h after albumin injection, the number of total interictal spikes in 3 h EEG recording was significantly increased by twofold on average. Three months after albumin injection, neither albumin nor inflammation was detected in brain tissue; at this time, the ADT was reduced by 50% but no spontaneous seizures were observed. Significance: Transient hippocampal exposure to albumin levels similar to those attained after prominent BBB breakdown resulted in increased seizure susceptibility and long‐term reduction in seizure threshold, but it did not evoke spontaneous seizures. These effects may be mediated by albumin‐induced astrocytes dysfunction and the associated induction of proinflammatory molecules.  相似文献   

10.
11.
12.
The protective effect of topiramate (TPM) on seizure-induced neuronal injury is well known; however, its molecular basis has yet to be elucidated. We investigated the effect and signaling mediators of TPM on seizure-induced hippocampal cell death in kainic acid (KA)-treated ICR mice. KA-induced hippocampal cell death was identified by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling. Immunoreactivity (IR) of p-Erk, p-Jnk, p-P38, and caspase-3, and caspase-3 activity were observed in the hippocampal region 3 h after KA (0.1 μg/5 μL, i.c.v.) administration, and/or TPM (100 mg/kg, i.p.) pretreatment. TPM attenuated seizure-induced neuronal cell death and reduced KA-induced p-Erk IR in the CA3 region of the hippocampus, but did not affect p-Jnk and p-P38. In addition, TPM reduced caspase-3 IR and activation by KA. KA-induced seizures were also suppressed by TPM pretreatment. TPM inhibits seizures, and decreases Erk phosphorylation and caspase-3 activation by KA, thereby contributing to protection from neuronal injury.  相似文献   

13.
It is becoming evident that chronic exposure to glucocorticoids might not only result in insulin resistance or cognitive deficits, but also is considered as a risk factor for pathologies such as depression or Alzheimer's disease. In the present study, in vivo experiments using a non‐invasive method of chronic administration of corticosterone in drinking water demonstrated that chronic corticosterone administration led to cognitive impairment in the novel object recognition test and insulin resistance, as shown by significant increases in plasma insulin levels and the homeostatic model assessment index, and decreased insulin receptor phosphorylation. Corticosterone treatment induced an increased expression of stress‐activated c‐Jun N‐terminal kinase (JNK) in the hippocampus, accompanied by decreases in glycogen synthase kinase 3β, increases in pTau levels and increased neuronal cell death (caspase‐3 activity). All these effects were reversed by the administration of a JNK1 inhibitor or by the mineralocorticoid receptor antagonist spironolactone. It is suggested that the mineralocorticoid receptors and JNK‐mediated pathways are involved in the interaction of glucocorticoid‐insulin resistance and the development of relevant cellular processes for Alzheimer′s disease  相似文献   

14.
Research into the molecular mechanisms of epileptic brain injury is hampered by the resistance of key mouse strains to seizure-induced neuronal death evoked by systemically administered excitotoxins such as kainic acid. Because C57BL/6 mice are extensively employed as the genetic background for transgenic/knockout modeling in cell death research but are seizure resistant, we sought to develop a seizure model in this strain characterized by injury to the hippocampal CA subfields. Adult male C57BL/6 mice underwent focally evoked seizures induced by intraamygdala microinjection of kainic acid. Kainic acid (KA) effectively elicited ipsilateral CA3 pyramidal neuronal death within a narrow dose range of 0.1-0.3 microg, with mortality < 10%. With employment of the most consistent (0.3 microg) dose, seizures were terminated 15, 30, 60, or 90 min after KA by diazepam. Damage was largely restricted to the ipsilateral CA3 subfield of the hippocampus, but injury was also consistent within CA1, suggesting that this mouse model better reflects the hippocampal neuropathology of human temporal lobe epilepsy than does the rat, in which CA1 is typically spared. Confirming this CA1 injury as seizure specific and not a consequence of ischemia, we used laser-Doppler flowmetry to determine that cerebral perfusion did not significantly change (97% to 118%) over control. Degenerating cells were > 95% neuronal as determined by neuron-specific nuclear protein (NeuN) counterstaining of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeled (TUNEL) brain sections. Furthermore, TUNEL-positive cells often exhibited the morphological features of apoptosis, and small numbers were positive for cleaved caspase-3. These data establish a mouse model of focally evoked seizures in the C57BL/6 strain associated with a restricted pattern of apoptotic neurodegeneration within the hippocampal subfields that may be applied to research into the molecular basis of neuronal death after seizures.  相似文献   

15.
Kainic acid (KA)-induced experimental epilepsy, a model of excitotoxicity, leads to selective neuronal death and synaptic restructuring. We used this model to investigate the effects of neuronal hyperactivation on palmitoyl-protein thioesterase 1 (PPT1), the deficiency of which causes drastic neurodegeneration. Immunological stainings showed that epileptic seizures in adult rats led to a progressive and remarkable increase of PPT1 in limbic areas of the brain. Within 1 week, the maximal expression was observed in CA3 and CA1 pyramidal neurons of the hippocampus. In the surviving pyramidal neurons, PPT1 localized in vesicular structures in cell soma and neuritic extensions. After seizures, colocalization of PPT1 with synaptic membrane marker (NMDAR2B) was enhanced. Further, synaptic fractionation revealed that after seizures PPT1 was readily observed on the presynaptic side of synaptic junction. These data suggest that PPT1 may protect neurons from excitotoxicity and have a role in synaptic plasticity.  相似文献   

16.
17.
Dopamine (DA), through D1/D2 receptor-mediated signaling, plays a major role in the control of epileptic seizures arising in the limbic system. Excitotoxicity leading to neuronal cell death in the affected areas is a major consequence of seizures at the cellular level. In this respect, little is known about the role of DA receptors in the occurrence of epilepsy-induced neuronal cell death. Here we analyze the occurrence of seizures and neurotoxicity in D2R -/- mice treated with the cholinergic agonist pilocarpine. We compared these results with those previously obtained with kainic acid (KA), a potent glutamate agonist. Importantly, D2R -/- mice develop seizures at doses of both drugs that are not epileptogenic for WT littermates and show greater neurotoxicity. However, pilocarpine-induced seizures result in a more widespread neuronal death in both WT and D2R -/- brains in comparison to KA. Thus, the absence of D2R lowers the threshold for seizures induced by both glutamate and acetylcholine. Moreover, the dopaminergic control of epilepsy-induced neurodegeneration seems to be mediated by distinct interactions of D2R signaling with these two neurotransmitters.  相似文献   

18.
19.
目的 研究红藻氨酸(KA)致痫大鼠海马S100B、降钙素基因相关肽(CGRP)的表达及病理改变.方法 雄性SD大鼠按照完全随机数字表法分成对照组(8只)和模型组(40只),模型组再根据处死时间分为造模后6 h、12 h、24 h、72 h、1周5个亚组,每组8只.模型组采用KA建立颞叶癫痫动物模型,对照组用等体积生理盐水代替KA注射.模型组造模后6 h、12 h、24 h、72 h、1周,对照组注射后24 h取大鼠海马组织行Nissl染色、Timm染色和免疫组化染色,观察S100B、CGRP蛋白的表达情况以及海马神经元和胶质细胞的病理变化.结果 Nissl染色结果显示,模型组大鼠1周后CA3区出现大量固缩的坏死神经元,胞体萎缩,尼氏体消失.Timm染色结果显示,模型组大鼠1周后CA3区始层出现条带状分布的棕色颗粒,齿状回内分子层亦可见少量棕色颗粒.免疫组化染色结果显示,模型组大鼠海马CGRP蛋白大量表达,72 h时达到高峰,同时伴随大量神经元丧失及胶质细胞增生.结论 KA致痫大鼠出现S100B、CGRP蛋白高表达,尼氏体消失,苔藓纤维发芽等一系列病理学改变,推测S100B、CGRP蛋白参与了癫痫发生.
Abstract:
Objective To investigate the expressions of S100B and calcitonin gene related peptide (CGRP) and the pathologic alterations of the hippocampus in kainic acid (KA)-induced epileptic rats. Methods Male SD rats were randomly divided into control group (n=8) and model group (n=40).Animal models of temporal lobe epilepsy were established by intracerebroventricular injection of KA; the same volume of saline was injected into the rats in the control group. Hippocampal tissues within various phases after seizures (6, 12, 24 and 72 h, and 24 h after the success of model making) were performed Nissl staining, Timm staining and immunohistochemical staining. The expressions of S100B and CGRP were observed, and the pathologic alterations of the hippocampal neurons and glial cells were studied.Results All rat models were successfully induced with epileptic seizures. Nissl staining showed that pyknotic neuronal necrosis appeared in the CA3 area of the hippocampus in the model group with cell body atrophy and disappearance of Nissl bodies 1 week after the injection. Timm staining showed that brown particles showed stripped distribution in the CA3 area of the hippocampus and some brown particles in the molecular layer of fascia dentate. Immunohistochemical staining indicated that significant neurons lost and gliosis appeared after seizures with abundant expressions of S100B and CGRP.Conclusion KA-induced epileptic rats express abundant S100B and CGRP and appear such pathological changes as disappearance of Nissl bodies and mossy fiber sprouting, indicating that both S100B and CGRP participate in the onset of epilepsy.  相似文献   

20.
Li T  Lu C  Xia Z  Xiao B  Luo Y 《Brain research》2006,1098(1):204-211
There is increasing evidence that neuronal cell death induced by seizures occurs via extrinsic (death receptors) and intrinsic (mitochondria) pathways. Caspase-8 cleaves Bid, which releases cytochrome c, bridging the "extrinsic" and "intrinsic" pathways. Cleavage of Bid may amplify caspase-8-induced neuronal cell death following seizures. In the present study, we explored the effect of an inhibitor of caspase-8 (z-IETD-fmk) on the release of Smac/DIABLO and cytochrome c from mitochondria. Rats received intra-amygdaloid injection of kainic acid (KA) to induce seizures for 1 h. The seizures were then terminated by diazepam (30 mg/kg). The damaged and surviving neurons in hippocampus were observed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and cresyl violet staining, the expression of caspase-8, Bid, XIAP, caspase-9, cytochrome c and Smac/DIABLO were detected with immunofluorescence and Western blot. The cleavage of caspase-8 and Bid increased at 0 h, cytosolic fraction of cytochrome c and Smac/DIABLO increased by 2 h, cleavage of caspase-9 was detected by 4 h, TUNEL-positive neurons appeared at 8 h and reached a maximum at 24 h following administration of diazepam in the ipsilateral CA3 subfield of hippocampus. Inhibition of caspase-8 significantly decreased neuronal cell death, accompanied by reduction of t-Bid, cleaved caspase-9 and cytosol cytochrome c. Smac/DIABLO from mitochondria was not affected. These results suggest that seizures can lead the translocation of cytochrome c into the cytosol, and the activation of caspase-8 occurs upstream the mitochondria release of cytochrome c and Smac/DIABLO. Inhibition of caspase-8 attenuated neuronal cell death following seizures by decreasing mitochondria release of cytochrome c but not Smac/DIABLO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号