首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition temperature, T(t), of polymorphs is estimated from both their heats of solution and solubilities (or intrinsic dissolution rates) determined at any one temperature (e.g., ambient). At a given temperature, T, the enthalpy difference, DeltaH, between polymorphs, I and II, is equal to the difference between their heats of solution, whereas the free energy difference, DeltaG, can be estimated by the equation, DeltaG = -RTln (c(I)/c(II)) or DeltaG = -RTln (J(I)/J(II)), where c is the solubility and J is the intrinsic dissolution rate. The entropy difference, DeltaS, is evaluated as (DeltaH - DeltaG)/T. Because the heat capacity difference,DeltaC(p) between polymorphs is small enough to be neglected, the transition temperature may be estimated by the equation, T(t) = DeltaH/DeltaS. The thermodynamic stability relationships of the polymorphs (i.e., whether they are enantiotropes or monotropes) are predicted from the value of T(t) and the melting temperature. The T(t) values for auranofin, carbamazepine, chloramphenicol palmitate, cyclopenthiazide, gepirone hydrochloride, lamivudine, MK571, premafloxacin, sulfamerazine, sulfamethoxazole, sulfathiazole, and urapidil, were calculated from reported values of the heats of solution and solubilities (or dissolution rates). The stability relationships deduced from the calculated values of T(t) are in good agreement with those reported using other methods, such as differential scanning calorimetry and interpretation of melting data.  相似文献   

2.
The polymorphic and solubility behaviour of the active pharmaceutical ingredient Venlafaxine free base, which is used as an antidepressant, is studied. Using differential scanning calorimetry and slurry experiments, an enantiotropic relation between the three forms was found. Transition temperatures were determined using solubility data and compared with calculated transition temperatures based on the melting enthalpies and temperatures of the different forms. The solubility of Venlafaxine in heptane, toluene and methanol shows a large deviation from ideal behaviour. The deviations are to a large extent determined by the temperature dependence of the difference in fusion enthalpy of the undercooled melt and the solid.  相似文献   

3.
4.
THE solubilities of the formate to valerate esters of testosterone in non-polar solvents at 25° were determined by James & Roberts (1968) who also compared them with ideal mole fraction solubilities (X2), calculated from the equation, (Hildebrand & Scott 1962). ΔHF is the heat of fusion of the solute and TM the melting point. Changes in solubility as the homologous series is ascended were predicted by equation (1), but the individual experimental results did not agree with the calculated values. ΔHF was calculated from the heat of fusion at the melting point, ΔHFM, by correcting for the differences in heat capacity of the solid and the supercooled liquid between TM and T. The correction was estimated with a differential scanning calorimeter by extrapolating the liquid enthalpy line back to 25° and measuring the area between the extrapolation and the enthalpy line of the solid. The method was considered questionable, however, because it assumed that the enthalpy line of the supercooled liquid decreased linearly over the whole range of temperature. This theory is tested below by comparing the measured and calculated solubilities of testosterone propionate at a temperature just below its melting point, where the heat capacity correction is small and ΔHFM can be used for ΔHF. The solvents examined by James & Roberts (1968) had smaller molar volumes than the testosterone esters, and it was suggested that the difference in molar volume between solute and solvent could prevent the random distribution assumed by regular solution theory. Prediction of solubility would thus improve as the molar volume of the solvent approached that of the solute. The test is applied below by determining the solubility of testosterone propionate in a range of solvents.  相似文献   

5.
The ALOGPS 2.1 was developed to predict 1-octanol/water partition coefficients, logP, and aqueous solubility of neutral compounds. An exclusive feature of this program is its ability to incorporate new user-provided data by means of self-learning properties of Associative Neural Networks. Using this feature, it calculated a similar performance, RMSE = 0.7 and mean average error 0.5, for 2569 neutral logP, and 8122 pH-dependent logD(7.4), distribution coefficients from the AstraZeneca "in-house" database. The high performance of the program for the logD(7.4) prediction looks surprising, because this property also depends on ionization constants pKa. Therefore, logD(7.4) is considered to be more difficult to predict than its neutral analog. We explain and illustrate this result and, moreover, discuss a possible application of the approach to calculate other pharmacokinetic and biological activities of chemicals important for drug development.  相似文献   

6.
The solubility of butamben has been measured gravimetrically in pure methanol, 1-propanol, 2-propanol, 1-butanol, and toluene over the temperature range 268-298 K. Polymorph transition and melting temperatures, associated enthalpy changes, and the heat capacity of the solid forms and the supercooled melt have been measured by differential scanning calorimetry. Based on extrapolated calorimetric data, the Gibbs energy, enthalpy and entropy of fusion, and the activity of solid butamben (the ideal solubility) have been calculated from below ambient temperature up to the melting point. Activity coefficients of butamben at equilibrium in the different solvents have been estimated from solubility data and the activity of the solid, revealing that all investigated systems exhibit positive deviation from Raoult's law. Solubility data are well correlated by a semiempirical regression model. On a mass basis, the solubility is clearly higher in methanol than in the other solvents, but mole fraction solubilities are very similar across all 5 solvents. The 2 known polymorphs are enantiotropically related, and the transition point is located at 283 K. Polymorph interconversions occur within 0.3 K of the transition point even in the solid state, and the 2 forms exhibit strong similarities in investigated properties.  相似文献   

7.
The solubilities of salicylic acid in, and the fluxes through, hairless mouse skin from isopropyl myristate, 1-octanol, 1-propanol, propylene glycol, and formamide have been determined experimentally. Values for permeability coefficients (Kp) corresponding to the respective fluxes were determined from: flux/solubility = Kp. These values were then compared with values for the respective partition coefficients (P) which were calculated from the known solubility parameters for the vehicles (delta v), salicylic acid (delta i), and skin (delta s). Two different delta i values were used to calculate theoretical P values, one based on the peak solubility method and the other based on calculation from group contributions (11 and 14.4 (cal/cm3)1/2, respectively). There was good correlation between the values for theoretical log P - 1.42 and experimental log Kp for the delivery of salicylic acid from vehicles exhibiting solubility parameters in the range of delta v = 10-18 (cal/cm3)1/2, when delta i was assumed to be 14.4 (cal/cm3)1/2. There was also a good correlation between the values for theoretical log P - 2.09 and experimental log Kp for vehicles exhibiting solubility parameters in the range of delta v = 7.6-10 (cal/cm3)1/2, when delta i was assumed to be 11 (cal/cm3)1/2. Two different delta i values were used because salicylic acid apparently behaves like a polar molecule in polar vehicles and a nonpolar molecule in nonpolar vehicles. Qualitatively, fluxes and permeability coefficients were found to be inversely dependent on drug solubility in the vehicles, with a minimum that corresponded approximately to the point where delta v = delta i, and the minimum within the theoretical P curve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study investigates the influence of the solid-state properties melting point (T(m)), enthalpy of melting (DeltaH(m)) and entropy of melting (DeltaS(m)) of a drug on its intrinsic solubility (S(0)). For this purpose, 26 chemically and structurally diverse drugs covering the oral drug space were selected and the S(0), T(m), DeltaH(m) and DeltaS(m) were determined experimentally. The influence of T(m), DeltaH(m) and DeltaS(m) on S(0) was studied using regression analysis. The overall improvement of the predictions were 0.3 log units, however, five compounds (astemizole, glyburide, fenbufen, gliclazide and griseofulvin) were improved by more than one log unit. T(m) and DeltaH(m) had a larger effect than DeltaS(m) on the solubility predictions. The well-known general solubility equation (GSE) and the Dannenfelser semi-empirical equation for the calculation of DeltaS(m) were evaluated using our data set. While predictions of drug solubility obtained using the GSE were acceptable, the use of the experimental DeltaS(m) values instead of the constant 56.5 J mol(-1)K(-1) improved the accuracy of the prediction. The Dannenfelser equation underestimated the DeltaS(m) for most compounds with on average 15 J mol(-1)K(-1). Our results show that solid-state properties should be considered for improved performance of future models for prediction of drug solubility. In addition our study provides accurate experimental data on intrinsic solubility for 26 compounds, supplying a useful external data set for validation of drug solubility models.  相似文献   

9.
Purpose. Calculation of the ideal solubility of a crystalline solute in a liquid solvent requires knowledge of the difference in the molar heat capacity at constant pressure of the solid and the supercooled liquid forms of the solute, Cp. Since this parameter is not usually known, two assumptions have been used to simplify the expression. The first is that Cp can be considered equal to zero; the alternate assumption is that the molar entropy of fusion, Sf, is an estimate of Cp. Reports claiming the superiority of one assumption over the other, on the basis of calculations done using experimentally determined parameters, have appeared in the literature. The validity of the assumptions in predicting the ideal solubility of five structurally unrelated compounds of pharmaceutical interest, with melting points in the range 420 to 470K, was evaluated in this study. Methods. Solid and liquid heat capacities of each compound near its melting point were determined using differential scanning calorimetry. Linear equations describing the heat capacities were extrapolated to the melting point to generate the differential molar heat capacity. Results. Linear data were obtained for both crystal and liquid heat capacities of sample and test compounds. For each sample, ideal solubility at 298K was calculated and compared to the two estimates generated using literature equations based on the differential molar heat capacity assumptions. Conclusions. For the compounds studied, Cp was not negligible and was closer to Sf than to zero. However, neither of the two assumptions was valid for accurately estimating the ideal solubility as given by the full equation.  相似文献   

10.
As in a previous paper [Int. J. Pharm. 258 (2003) 193–201], the Kirkwood–Buff theory of solutions was employed to calculate the solubility of a solid in mixed solvents. Whereas in the former paper the binary solvent was assumed ideal, in the present one it was considered nonideal. A rigorous expression for the activity coefficient of a solute at infinite dilution in a mixed solvent [Int. J. Pharm. 258 (2003) 193–201] was used to obtain an equation for the solubility of a poorly soluble solid in a nonideal mixed solvent in terms of the solubilities of the solute in the individual solvents, the molar volumes of those solvents, and the activity coefficients of the components of the mixed solvent.

The Flory–Huggins and Wilson equations for the activity coefficients of the components of the mixed solvent were employed to correlate 32 experimental data sets regarding the solubility of drugs in aqueous mixed solvents. The results were compared with the models available in literature. It was found that the suggested equation can be used for an accurate and reliable correlation of the solubilities of drugs in aqueous mixed binary solvents. It provided slightly better results than the best literature models but has also the advantage of a theoretical basis.  相似文献   


11.
In this study, simple bootstrap techniques are combined with the extended Hansen solubility approach to calculate biases, standard errors, and confidence limits of the partial solubility parameters and to obtain bias-corrected values for these solubility parameters. The bootstrap method is rather new in its application to problems in the pharmaceutical sciences and, therefore, is described here in some detail. This method provides measures of the statistical variation of ratios of regression coefficients without making unwarranted assumptions about data variability. The bootstrap can be used in many statistical packages such as MINITAB, SPSS, SAS, BMDP, or GLIM, all of which are widely available, and could be useful in other areas of the pharmaceutical sciences where regression analysis is employed.  相似文献   

12.
The reformulation of pressurized metered dose inhalers with HFAs from CFCs has given rise to many solubility challenges. Compounds and excipients previously used in CFCs were observed to have significantly different solubility values in HFA-134a. In this investigation, the solubility values of 36 solid organic solutes in HFA-134a were determined. The set of compounds display diverse physico-chemical properties and yielded solubility values that ranged over 4 orders of magnitude. The experimental solubilities were compared to calculated values obtained from ideal solubility theory as well as from regular solution theory. While the theoretical models did not offer absolute solubility estimations, a clear correlation with the ideal solubility (melting point) was noted. Further consideration utilizing multiple linear regression models afforded correlations based on molecular properties. Regression models, containing melting point and log P (or molar volume) resulted in promising correlations having average absolute errors of 0.43 log units, or a factor of 2.69.  相似文献   

13.
Guest-host interactions of sildenafil (Sild) with cyclodextrins (CyDs) have been investigated using several techniques including phase solubility diagrams (PSD), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), proton nuclear magnetic resonance (1H NMR) and molecular mechanical modeling (MM+). Estimates of the complex formation constant (K11) show that the tendency of Sild to complex with CyDs follows the order: beta-CyD>HP-beta-CyD>gamma-CyD, alpha-CyD, where K11 values at pH 8.7 and 30 degrees C were 150, 68 and 46, 43 M-1, respectively. Ionization of Sild reduces its tendency to complex with beta-CyD, where protonated (at pH 3.6) and anionic Sild (at pH 12.1) species have K11 values of 17 and 42 M-1, respectively, compared with 150 M-1 for neutral Sild (at pH 8.7). The hydrophobic character of Sild was found to provide 39% of the driving force for complex stability, while other factors including specific interactions contribute -7.9 kJ/mol. Complex formation of Sild with beta-CyD (DeltaG degrees=-22.9 kJ/mol) is largely driven by enthalpy (DeltaH degrees=-19.8 kJ/mol) and slight entropy (DeltaS degrees=10.3 J/molK) changes. 1H NMR and MM+ studies indicate formation of two isomeric 1:1 complexes: one involving complete inclusion of the phenyl-moiety into the beta-CyD cavity while the other pertaining to partial inclusion of the pyrimidinone moiety. The dominant driving force for complexation is evidently van der Waals with very little electrostatic contribution. DSC, XRPD and 1H NMR studies proved the formation of inclusion complex in solution and the solid state.  相似文献   

14.
The results obtained previously by Ruckenstein and Shulgin [Int. J. Pharm. 258 (2003a) 193; Int. J. Pharm. 260 (2003b) 283] via the fluctuation theory of solutions regarding the solubility of drugs in binary aqueous mixed solvents were extended in the present paper to multicomponent aqueous solvents. The multicomponent mixed solvent was considered to behave as an ideal solution and the solubility of the drug was assumed small enough to satisfy the infinite dilution approximation.An expression derived for the activity coefficient of a solid solute in a multicomponent solvent was used to obtain an equation for the solubility of a drug in terms of its solubilities in two subsystems of the multicomponent solvent and their molar volumes. Ultimately the solubility can be expressed in terms of those in binary or even in individual solvents and their molar volumes.The method was applied to the solubility of tioconazole and 19-Nor-1alpha,25-dihydrovitamin D(2) in several ternary and in a quaternary aqueous mixed solvents. The predicted solubilities were compared with experimental data and good agreement was found.  相似文献   

15.
A mathematical equation has been derived to calculate the liquidus for a binary system consisting of an amorphous polymer and a crystalline low molar mass compound. The experimental input to this equation is an interaction enthalpy, which is derived from the variation of the melting enthalpy with composition in differential scanning calorimetry (DSC) experiments. The predictive power of the equation has been tested with mixtures of acetylsalicylic acid, carbamazepine, or intraconazole with poly(ethylene glycol) as well as mixtures of carbamazepine with poly(acrylic acid), poly(hydroxystyrene), or poly(vinylpyrrolidone). It has been confirmed that the evaluation of the melting enthalpy in DSC is a suitable method to identify the preferred solute-polymer combinations for thermodynamically stable molecular dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1673-1679, 2014  相似文献   

16.
The present study examined the interaction of four 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (atorvastatin, lovastatin, and simvastatin in acid and lactone forms, and pravastatin in acid form only) with multidrug resistance gene 1 (MDR1, ABCB1) P-glycoprotein, multidrug resistance-associated protein 2 (MRP2, ABCC2), and organic anion-transporting polypeptide 1B1 (OATP1B1, SLCO21A6). P-glycoprotein substrate assays were performed using Madin-Darby canine kidney (MDCK) cells expressing MDR1, and the efflux ratios [the ratio of the ratio of basolateral-to-apical apparent permeability and apical-to-basolateral permeability between MDR1 and MDCK] were 1.87, 2.32/4.46, 2.17/3.17, and 0.93/2.00 for pravastatin, atorvastatin (lactone/acid), lovastatin (lactone/acid), and simvastatin (lactone/acid), respectively, indicating that these compounds are weak or moderate substrates of P-glycoprotein. In the inhibition assays (MDR1, MRP2, Mrp2, and OATP1B1), the IC50 values for efflux transporters (MDR1, MRP2, and Mrp2) were >100 microM for all statins in acid form except lovastatin acid (>33 microM), and the IC50 values were up to 10-fold lower for the corresponding lactone forms. In contrast, the IC50 values for the uptake transporter OATP1B1 were 3- to 7-fold lower for statins in the acid form compared with the corresponding lactone form. These data demonstrate that lactone and acid forms of statins exhibit differential substrate and inhibitor activities toward efflux and uptake transporters. The interconversion between the lactone and acid forms of most statins exists in the body and will potentially influence drug-transporter interactions, and may ultimately contribute to the differences in pharmacokinetic profiles observed between statins.  相似文献   

17.
This study was aimed at investigating the pH-dependent solubility and in vitro transmucosal permeability of sildenafil, an amphoteric compound with limited aqueous solubility, across parallel artificial membrane. The aqueous solubility and permeability of sildenafil as a function of solution pH were theoretically derived from the individual contributions of all species (cationic, neutral and anionic). The stability, octanol-water distribution coefficient (log D), and solubility of sildenafil were then determined at various pHs, the permeability study was also performed at different pHs using parallel artificial membrane. The pH-solubility and -permeability profiles were then fitted to theoretical equations using non-linear regression. The experimental pH-solubility profile was fitted very well to the theoretical equations (R(2)=0.9996). The in vitro permeability of saturated sildenafil solution at different pH values also showed similar trend as the predicted one (R(2)=0.7829). The two optimum pH (pH(max)) values were found to be 4.50 and 10.24, where the maximum solubility of either cationic or neutral species, or anionic and neutral species is simultaneously obtained, and the maximal transmucosal fluxes (J(ss)) are achieved. The above method can be applied to optimize the transmucosal delivery of other amphoteric drugs with low aqueous solubility.  相似文献   

18.
Hou J  Li Z  Fang Q  Feng C  Zhang H  Guo W  Wang H  Gu G  Tian Y  Liu P  Liu R  Lin J  Shi YK  Yin Z  Shen J  Wang PG 《Journal of medicinal chemistry》2012,55(7):3066-3075
Herein, further SAR studies of lead compound NSC746457 (Shen, J.; Woodward, R.; Kedenburg, J. P.; Liu, X. W.; Chen, M.; Fang, L. Y.; Sun; D. X.; Wang. P. G. J. Med. Chem. 2008, 51, 7417-7427) were performed, including the replacement of the trans-styryl moiety with a 2-substituted benzo-hetero aromatic ring and the introduction of a substituent onto the central methylene carbon. A promising chiral lead, S-(E)-3-(1-(1-(benzo[d]oxazol-2-yl)-2-methylpropyl)-1H-1,2,3-triazol-4-yl)-N-hydroxyacrylamide (12, NK-HDAC-1), was discovered and showed about 1 order of magnitude more potency than SAHA in both enzymatic and cellular assays. For the in vitro safety tests, NK-HDAC-1 was far less toxic to nontransformed cells than tumor cells and showed no significant inhibition activity against CYP-3A4. The pharmaceutical properties (LogD, solubility, liver micrsomal stability (t1/2), plasma stability (t1/2), and apparent permeability) strongly suggested that NK-HDAC-1 might be superior to SAHA in bioavailability and in vivo half-life.  相似文献   

19.
Temperature dependencies of saturated vapor pressure for the monoclinic modification of paracetamol (acetaminophen), acetanilide, and phenacetin (acetophenetidin) were measured and thermodynamic functions of sublimation calculated (paracetamol: DeltaGsub298=60.0 kJ/mol; DeltaHsub298=117.9+/-0.7 kJ/mol; DeltaSsub298=190+/-2 J/mol.K; acetanilide: DeltaGsub298=40.5 kJ/mol; DeltaHsub298=99.8+/-0.8 kJ/mol; DeltaSsub298=197+/-2 J/mol.K; phenacetin: DeltaGsub298=52.3 kJ/mol; DeltaHsub298=121.8+/-0.7 kJ/mol; DeltaSsub298=226+/-2 J/mol.K). Analysis of packing energies based on geometry optimization of molecules in the crystal lattices using diffraction data and the program Dmol3 was carried out. Parameters analyzed were: (a) energetic contribution of van der Waals forces and hydrogen bonding to the total packing energy; (b) contributions of fragments of the molecules to the packing energy. The fraction of hydrogen bond energy in the packing energy increases as: phenacetin (17.5%)相似文献   

20.
As in our previous publications in this journal [Int. J. Pharm. 258 (2003a) 193; Int. J. Pharm. 260 (2003b) 283; Int. J. Pharm. 267 (2003c) 121], this paper is concerned with the solubility of poorly soluble drugs in aqueous mixed solvents. In the previous publications, the solubilities of drugs were assumed to be low enough for the so-called infinite dilution approximation to be applicable. In contrast, in the present paper, the solubilities are considered to be finite and the dilute solution approximation is employed. As before, the fluctuation theory of solutions is used to express the derivatives of the activity coefficient of a solute in a ternary solution (dilute solute concentrations in a binary solvent) with respect to the concentrations of the solvent and cosolvent. The expressions obtained are combined with a theoretical equation for the activity coefficient of the solute. As a result, the activity coefficient of the solute was expressed through the activity coefficients of the solute at infinite dilution, solute mole fraction, some properties of the binary solvent (composition, molar volume and activity coefficients of the components) and parameters reflecting the nonidealities of binary species. The expression thus obtained was used to derive an equation for the solubility of poorly soluble drugs in aqueous binary solvents which was applied in two different ways. First, the nonideality parameters were considered as adjustable parameters, determined from experimental solubility data. Second, the obtained equation was used to correct the solubilities of drugs calculated via the infinite dilution approximation. It was shown that both procedures provide accurate correlations for the drug solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号