首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal and tumor DNA samples of 35 patients with sporadic colorectal carcinoma were analyzed for microsatellite alterations at 12 markers linked to mismatch repair loci: hMLH1, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2. Remarkably, no correlation was observed between the replication error phenotype (RER+) and allelic losses at these loci. Hemizygous deletions, seen in 6/35 (17%) informative cases at hMLH1, 4/27 (15%) at hMSH2/hMSH6 and 6/34 (18%) at hMSH3, were rarely found in RER+ tumors. Since mismatch repair protein components act in molecular complexes of defined stoichiometry we propose that hemizygous deletion of the corresponding loci may be involved in colorectal tumorigenesis through defects in cellular functions other than replication error correction. The analysis of the methylation status of the promoter region of hMLH1 revealed that methylation might be an important mechanism of this locus inactivation in RER+ sporadic colorectal cancer.   相似文献   

2.
Genomic instability has been proposed as a new mechanism of carcinogenesis involved in hereditary non-polyposis colorectal cancer (HNPCC) and in a large number of sporadic cancers like pancreatic and colon tumours. Mutations in human mismatch repair genes have been found in HNPCC patients, but their involvement in sporadic cancer has not been clarified yet. In this study we screened 21 pancreatic and 23 colorectal sporadic cancers for microsatellite instability by ten and six different microsatellite markers respectively. Microsatellite alterations were observed at one or more loci in 66.6% (14/21) of pancreatic cancers and in 26% (6/23) colon tumours, but all the pancreatic and half of the colon samples showed a low rate of microsatellite instability. All the unstable samples were further analysed for mutations in the hMLH1 and hMSH2 genes and for hypermethylation of the hMLH1 promoter region. Alterations in the hMLH1 gene were found only in colorectal tumours with a large presence of microsatellite instability. None of the pancreatic tumours showed any alteration in the two genes analysed. Our results demonstrate that microsatellite instability is unlikely to play a role in the tumorigenesis of sporadic pancreatic cancers and confirm the presence of mismatch repair gene alterations only in sporadic colon tumours with a highly unstable phenotype.  相似文献   

3.
Microsatellite instability due to a deficiency in DNA mismatch repair is characteristic of a replication error (RER) phenotype. This widespread genomic instability is well documented in hereditary non-polyposis colon cancer (HNPCC) as well as subsets of sporadic carcinomas. Features of the RER phenotype such as the early appearance in tumour development and better prognosis of RER+ colorectal tumours render its examination important for cancer patients. Recently, we identified four loci that were shown to be highly susceptible to RER in cancer cells. Here, we used these loci to detect the RER phenotype in sporadic carcinomas of colon, breast, lung, endometrium and ovary. Replication errors revealed by these four markers followed the same tumour specificity as observed in HNPCC patients. In particular, 24% (6/25) of colorectal, 33% (4/12) of endometrial and 17% (2/12) of ovarian cancers displayed the RER phenotype characterized by an increased allelic mobility, whereas none of the breast (n = 22) and the lung (n = 27) carcinomas were found to be unstable. Assaying RERs sensitive loci provides us with a useful diagnostic tool for HNPCC-like sporadic tumours.  相似文献   

4.
5.
Microsatellite instability is present in over 80% of the hereditary non-polyposis colorectal carcinoma and about 15-20% of the sporadic cancer. Microsatellite instability is caused by the inactivation of the mismatch repair genes, such as primarily hMLH1, hMSH2. To study the mechanisms of the inactivation of mismatch repair genes in colorectal cancers, especially the region-specific methylation of hMLH1 promoter and its correlation with gene expression, we analysed microsatellite instability, expression and methylation of hMLH1 and loss of heterozygosity at hMLH1 locus in these samples. Microsatellite instability was present in 17 of 71 primary tumours of colorectal cancer, including 14 of 39 (36%) mucinous cancer and three of 32 (9%) non-mucinous cancer. Loss of hMLH1 and hMSH2 expression was detected in nine and three of 16 microsatellite instability tumours respectively. Methylation at CpG sites in a proximal region of hMLH1 promoter was detected in seven of nine tumours that showed no hMLH1 expression, while no methylation was present in normal mucosa and tumours which express hMLH1. However, methylation in the distal region was observed in all tissues including normal mucosa and hMLH1 expressing tumours. This observation indicates that methylation of hMLH1 promoter plays an important role in microsatellite instability with a region-specific manner in colorectal cancer. Loss of heterozygosity at hMLH1 locus was present in four of 17 cell lines and 16 of 54 tumours with normal hMLH1 status, while loss of heterozygosity was absent in all nine cell lines and nine tumours with abnormal hMLH1 status (mutation or loss of expression), showing loss of heterozygosity is not frequently involved in the inactivation of hMLH1 gene in sporadic colorectal cancer.  相似文献   

6.
The role of hMLH3 in familial colorectal cancer   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is commonly associated with at least three currently known DNA mismatch repair genes: (a) hMSH2; (b) hMLH1; and (c) hMSH6. A majority of HNPCC families has identifiable mutations in hMLH1 and hMSH2. When these mutations cause an inherited risk of colorectal cancer, they are also most often associated with microsatellite instability in the tumors. Recently, hMLH3 was suggested to be causative in HNPCC. We screened 70 index patients suggestive of a genetic predisposition for germ-line mutations in hMLH3 with denaturing high-performance liquid chromatography. One frameshift mutation and 11 missense mutations were identified in 16 index patients (23%). Most families presented evidence against hMLH3 as a high risk factor in familial colorectal cancer, and most of the mutations were found in the low risk patients, suggesting hMLH3 to be a low risk gene for colorectal cancer. We demonstrate in one family that a hMLH3 mutation segregated with disease together with a missense mutation in hMSH2, which makes us hypothesize that these mutations work together in an additive manner and result in an elevated risk of colorectal tumors in the family. None of the tumors with hMLH3 mutations showed microsatellite instability, which demonstrates that hMLH3 does not make its contribution to carcinogenesis through an impaired DNA mismatch repair function.  相似文献   

7.
BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN) is one of the 10 most frequently occurring cancers in the world. Defective mismatch repair, as exhibited by the phenomenon of microsatellite instability, has been observed in SCCHN although no reports of mismatch repair gene mutations or altered protein expression have been published. In a variety of microsatellite instability (MSI) positive cancers where mutations in the mismatch repair (MMR) genes were not observed, allelic imbalance at the loci of the MMR genes was prevalent. OBJECTIVE: To investigate whether allelic imbalance at the MMR genetic loci contributes to the development of SCCHN. MATERIALS AND METHODS: 35 matched normal/tumour SCCHN pairs were studied using 29 microsatellite markers located within and adjacent to six known DNA mismatch repair genes. In addition, mutational analysis and protein expression of hMSH2 and hMLH1 were investigated. RESULTS AND CONCLUSIONS: We demonstrated that 36 and 17% of the analysed SCCHN specimens exhibited allele imbalance at the hMLH1 and hMSH3 genetic loci, respectively. Allelic instability at these two loci was found to be correlated with the MSI status of the SCCHN tumours. Allelic instability was found to be uncommon at the other MMR gene loci analysed. One mutation was found in hMSH2 and none in hMLH1 in this series of tumours. 23 of 24 (96%) of the examined SCCHN tumours showed reduced expression of either hMSH2 or hMCH1 genes. Allelic instability in the MMR genes, hMLH1 and hMSH3, is proposed to be involved in the aetiology of SCCHN tumours.  相似文献   

8.
Microsatellite instability (MSI) in tumors from patients with hereditary non-polyposis colorectal cancer (HNPCC) is caused by germline mutations in mismatch repair (MMR) genes, principally hMSH2 and hMLH1. In contrast, somatic mutations in MMR genes are relatively rare in sporadic MSI(+) colon cancers. Rather, the majority of mutation-negative, MSI(+) cases involve hypermethylation of the hMLH1 promoter and subsequent lack of expression of hMLH1. The details of the mechanisms of this epigenetic gene silencing remain to be elucidated. In some colon cancer cell lines, hMLH1 promoter methylation is accompanied by mutation of 1 of the 2 alleles, whereas in other cell lines and tumors, such combinations have not been reported. To contribute to the characterization of MSI in gastric cancer and to directly investigate whether hMLH1 promoter methylation is accompanied by gene mutation in these cancers, we have analyzed 42 gastric tumors and corresponding normal tissue for MSI, hypermethylation of the hMLH1 promoter, and mutations in hMLH1 as well as hMSH2. We found that 10 (23.8%) of 42 cases of sporadic gastric cancer were MSI(+) and that 8 had at least 2 of 12 altered microsatellite loci. All samples with at least 2 altered loci exhibited methylation of the hMLH1 promoter region, but none had detectable mutations in hMLH1 or hMSH2. Our results confirm the importance of methylation of the hMLH1 promoter region in MSI(+) gastric tumors and suggest that methylation takes place in the absence of hMLH1 mutations in these tumors.  相似文献   

9.
Hereditary non polyposis colorectal cancer (HNPCC) is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis.In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA) to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.  相似文献   

10.
目的探讨错配修复缺陷的散发性大肠癌的临床病理特征及错配修复缺陷检测手段的应用。方法对71例散发性大肠癌行hMLH1启动子甲基化检测、微卫星不稳定检测以及hMLH1和hMSH2的免疫组化检测,分析错配修复缺陷的散发性大肠癌的临床病理特征,探讨三种检测方法的应用价值。结果hMLH1基因启动子甲基化、微卫星不稳定和错配修复蛋白表达的阳性率分别为9.9%,9.9%和71.0%,三者密切相关。hMLH1启动子甲基化和微卫星不稳定的散发性大肠癌均具有结肠癌多发和低分化腺癌相对多见的特征。错配修复蛋白表达阴性的散发性大肠癌仅具有低分化腺癌相对多见的特征。结论错配修复缺陷的散发性大肠癌具有结肠癌和低分化腺癌多发的倾向,hMLH1启动子甲基化和微卫星不稳定以及错配修复蛋白的失表达三者密切相关。  相似文献   

11.
Hereditary non polyposis colorectal cancer (HNPCC) is characterized by the presence of early onset colorectal cancer and other epithelial malignancies. The genetic basis of HNPCC is a deficiency in DNA mismatch repair, which manifests itself as DNA microsatellite instability in tumours. There are four genes involved in DNA mismatch repair that have been linked to HNPCC; these include hMSH2, hMLH1, hMSH6 and hPMS2. Of these four genes hMLH1 and hMSH2 account for the majority of families diagnosed with the disease. Notwithstanding, up to 40 percent of families do not appear to harbour a change in either hMSH2 or hMLH1 that can be detected using standard screening procedures such as direct DNA sequencing or a variety of methods all based on a heteroduplex analysis.In this report we have screened a series of 118 probands that all have the clinical diagnosis of HNPCC for medium to large deletions by the Multiplex Ligation-Dependent Probe Amplification assay (MLPA) to determine the frequency of this type of mutation. The results indicate that a significant proportion of Australian HNPCC patients harbour deletion or duplication mutations primarily in hMSH2 but also in hMLH1.  相似文献   

12.
13.
DNA mismatch repair genes, hMLH1 and hMSH2, assigned on chromosome 3p21-23 and 2p21-22 are involved in hereditary non-polyposis colorectal cancer (HNPCC). The heterozygous carrier of the mutated allele results in a mutator phenotype and accelerating tumorigenesis, which especially causes carcinomas in the gastrointestinal and genitourinary tracts. We screened germline mutations of mismatch repair genes hMLH1 and hMSH2 in a patient with multiple primary neoplasms (multiple stomach cancers, colon cancer and brain tumor) in a cancer clustered HNPCC family. Screening by long RT-PCR from the RNA extracted from puromycin-treated heparinized blood showed skipping of the exon 2 in hMLH1. The analysis of the genomic DNA showed a GT deletion in the splice-donor site of the exon 2, which is compatible with the splicing variant detected by long RT-PCR analysis. This is a novel germline mutation that has not been reported previously.  相似文献   

14.
hMLH1 and hMSH2 expression in human hepatocellular carcinoma   总被引:10,自引:0,他引:10  
The role of microsatellite instability (MSI) in the pathogenesis of hepatocellular carcinoma (HCC) is incompletely defined. Although high-frequency MSI (MSI-H) is infrequently seen in HCC, some studies have suggested a role for MSI in HCC development. While MSI has been clearly defined for a subset of tumors, in particular colorectal, gastric and endometrial cancers, generally accepted criteria have not been developed for other tumors. Colorectal cancers (CRC) are classified as MSI-H if >30-40% of >5 microsatellite loci analyzed show instability. The MSI-H phenotype is associated with defective DNA mismatch repair (MMR) and is observed in the majority of tumors from patients with hereditary non-polyposis colon cancer (HNPCC) and also in 15% of sporadic CRCs. Inactivating mutations of the hMLH1 or hMSH2 genes lead to defects in MMR in HNPCC. In sporadic CRCs, MMR is usually due to hypermethylation of the hMLH-1 promoter. The role of defective MMR in hepatocellular carcinogenesis is controversial. Immunohistochemistry for hMLH1 and hMSH2 reliably indicates hMLH1 or hMSH2 loss in MSI-H CRC tumors. To investigate the role of defective MMR in HCC carcinogenesis, we performed immunohistochemistry for hMLH1 and hMSH2 on 36 HCCs. BAT26, a microsatellite marker that reliably predicts MSI-H was also examined. All 36 of the tumors stained positively for both hMLH1 and hMSH2, strongly suggesting an absence of either inactivating mutations of hMLH1 and hMSH2 or promoter hypermethylation of hMLH1. None of the tumors showed MSI at the BAT26 locus. These findings suggest that defective MMR does not contribute significantly to hepatocellular carcinogenesis.  相似文献   

15.
Microsatellite instability was analysed in 93 primary breast tumours at 13 chromosomal loci frequently altered in breast cancer. RER (replication errors) were observed at a low (5%) frequency in sporadic, familial and hereditary breast tumours, as well as in breast tumours from patients with multiple primary cancers. Our study suggests that the RER+ phenotype is rare in breast tumours, and that breast cancer is not included in the hereditary non-polyposis colon cancer (HNPCC) syndrome. Moreover, the RER+ tumours revealed an atypical pattern of microsatellite alteration as compared with those usually seen in HNPCC tumours. In agreement with the findings in HNPCC tumours, all RER+ breast tumours were diploid, although having a similar frequency of allelic imbalance as RER— tumours. Thus, mismatch repair deficiency is rare in breast cancer, is most likely caused by somatic mutations, and possibly in a set of DNA repair genes different from that involved in the HNPCC syndrome.  相似文献   

16.
Colorectal carcinoma is uncommon in Egypt, but a high proportion of cases occurs before age 40 years and in the rectum. We compared the molecular pathology of 59 representative Egyptian patients aged 10-72 to Western patients with sporadic, young-onset, or hereditary non-polyposis colorectal cancer syndrome (HNPCC)-associated carcinoma and found significant differences. Most Egyptian cancers were rectal (51%) and poorly differentiated (58%). High levels of microsatellite instability (MSI-H) were frequent (37%) and attributable in some cases (36%) to methylation of the promoter of the hMLH1 mismatch repair gene, but no MSI-H cancer had loss of hMSH2 mismatch repair gene product of the type seen with germline hMSH2 mutation in HNPCC. K-ras mutation was uncommon (11%). In subset analyses, high frequencies of MSI-H in rectal carcinomas (36%) and p53 gene product overexpression in MSI-H cancers (50%) were found. MSI-H and K-ras mutation in Egyptians under age 40 were unusual (17% and 0%, respectively), and schistosomiasis was associated with MSI and K-ras mutation. Cluster analysis identified 2 groups: predominantly young men with poorly differentiated mucinous and signet-ring cell colorectal carcinoma lacking K-ras mutation; older patients who had well- or moderately differentiated adenocarcinoma often with MSI-H, K-ras mutation and schistosomiasis. Our findings show that the molecular pathology of colorectal cancer in older as well as younger Egyptians has unique differences from Western patients, and schistosomiasis influences the molecular pathogenesis of some tumours.  相似文献   

17.
BACKGROUND: A recently identified mismatch repair gene, hMLH3, contains two simple repeat sequence regions, (A)9 and (A)8, in its coding region. To clarify the role of hMLH3 in hereditary nonpolyposis colorectal cancer (HNPCC), we searched for hMLH3 somatic and germline mutations, particularly in the repeat regions, in 41 HNPCC patient cells. METHODS: We analyzed the hMLH3 (A)9 and (A)8 repeats in 27 colorectal cancers with microsatellite instability (MSI) as well as in normal cells from 41 HNPCC patients by means of polymerase chain reaction-single-strand conformation polymorphism. hMSH3 (A)8 and hMSH6 (C)8 repeats were also examined in these cancers. RESULTS: Frameshift mutations in the hMLH3 (A)9 repeat were observed in 4/27 (14.8%) cancers with MSI, all of which showed the severe MSI phenotype. No mutations in the (A)8 repeat were found in any case. The mutation frequency of the hMLH3 (A)9 repeat was similar to that of the hMSH6 (C)8 repeat (5/26, 19.2%), but was significantly lower than that of the hMSH3 (A)8 repeat (16/27, 59.3%) (P < 0.001). All four cancers with hMLH3 mutations exhibited germline hMSH2 and/or somatic hMSH3 mutations. No germline mutation in the hMLH3 (A)9 or (A)8 repeat was detected in normal cells from the 41 HNPCC patients. CONCLUSION: hMLH3 mutations were infrequently observed in HNPCC cancers with MSI and they may be secondary to other mismatch repair gene mutations. Hence hMLH3 may only play a small role in HNPCC tumorigenesis.  相似文献   

18.
Hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is an autosomal dominant condition accounting for 2-5% of all colorectal carcinomas as well as a small subset of endometrial, upper urinary tract and other gastrointestinal cancers. An assay to detect the underlying defect in HNPCC, inactivation of a DNA mismatch repair enzyme, would be useful in identifying HNPCC probands. Monoclonal antibodies against hMLH1 and hMSH2, two DNA mismatch repair proteins which account for most HNPCC cancers, are commercially available. This study sought to investigate the potential utility of these antibodies in determining the expression status of these proteins in paraffin-embedded formalin-fixed tissue and to identify key technical protocol components associated with successful staining. A set of 20 colorectal carcinoma cases of known hMLH1 and hMSH2 mutation and expression status underwent immunoperoxidase staining at multiple institutions, each of which used their own technical protocol. Staining for hMSH2 was successful in most laboratories while staining for hMLH1 proved problematic in multiple labs. However, a significant minority of laboratories demonstrated excellent results including high discriminatory power with both monoclonal antibodies. These laboratories appropriately identified hMLH1 or hMSH2 inactivation with high sensitivity and specificity. The key protocol point associated with successful staining was an antigen retrieval step involving heat treatment and either EDTA or citrate buffer. This study demonstrates the potential utility of immunohistochemistry in detecting HNPCC probands and identifies key technical components for successful staining.  相似文献   

19.
Our previous studies of lung cancer in chromate-exposed workers (chromate lung cancer) have revealed that the frequency of replication error (RER) in chromate lung cancer is very high. We examined whether the RER phenotype of chromate lung cancer is due to an abnormality of DNA mismatch repair protein. We investigated the expression of a DNA mismatch repair gene, hMLH1, and hMSH2 proteins using immunohistochemistry and microsatellite instability (MSI) in 35 chromate lung cancers and 26 nonchromate lung cancers. Lung cancer without MSI or with MSI at one locus was defined as "RER(-)," lung cancer with MSI at two loci was defined as "RER(+)," and lung cancer with MSI at three or more loci was defined as "RER(++)." The repression rate of hMLH1 and hMSH2 proteins in chromate lung cancer was significantly more than that of nonchromate lung cancer (hMLH1: 56% vs. 20%, P = 0.006, hMSH2: 74% vs. 23%, P < 0.0001). In chromate lung cancer, the repression rate for hMLH1 was 43% in RER(-), 40% in RER(+), and 90% in the RER(++) group. The repression rate of hMLH1 protein in the RER(++) group was significantly higher than that in the RER(-) and RER(+) groups (P = 0.039). The inactivation of hMLH1 expression strongly correlated with the microsatellite high instability phenotype in chromate lung cancer. The genetic instability of chromate lung cancer is due to the repression of hMLH1 protein.  相似文献   

20.
Hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is an autosomal dominant condition accounting for 2–5% of all colorectal carcinomas as well as a small subset of endometrial, upper urinary tract and other gastrointestinal cancers. An assay to detect the underlying defect in HNPCC, inactivation of a DNA mismatch repair enzyme, would be useful in identifying HNPCC probands. Monoclonal antibodies against hMLH1 and hMSH2, two DNA mismatch repair proteins which account for most HNPCC cancers, are commercially available. This study sought to investigate the potential utility of these antibodies in determining the expression status of these proteins in paraffin-embedded formalin-fixed tissue and to identify key technical protocol components associated with successful staining. A set of 20 colorectal carcinoma cases of known hMLH1 and hMSH2 mutation and expression status underwent immunoperoxidase staining at multiple institutions, each of which used their own technical protocol. Staining for hMSH2 was successful in most laboratories while staining for hMLH1 proved problematic in multiple labs. However, a significant minority of laboratories demonstrated excellent results including high discriminatory power with both monoclonal antibodies. These laboratories appropriately identified hMLH1 or hMSH2 inactivation with high sensitivity and specificity. The key protocol point associated with successful staining was an antigen retrieval step involving heat treatment and either EDTA or citrate buffer. This study demonstrates the potential utility of immunohistochemistry in detecting HNPCC probands and identifies key technical components for successful staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号