首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the effects of permanently separating the immature forebrain from the brain stem upon sleeping and waking development. Kittens ranging from postnatal 9 to 27 days of age sustained a mesencephalic transection and were maintained for up to 135 days. Prior to postnatal day 40, the electroencephalogram of the isolated forebrain and behavioral sleep-wakefulness of the decerebrate animal showed the immature patterns of normal young kittens. Thereafter, the isolated forebrain showed alternating sleep-wakefulness electrocortical rhythms similar to the corresponding normal patterns of intact, mature cats. Olfactory stimuli generally changed forebrain sleeping into waking activity, and in cats with the section behind the third nerve nuclei, normal correlates of eye movements-pupillary activity with electrocortical rhythms were present. Behind the transection, decerebrate animals showed wakefulness, and after 20 days of age displayed typical behavioral episodes of rapid eye movements sleep and, during these periods, the pontine recordings showed ponto-geniculo-occipital waves, which are markers for this sleep stage, together with muscle atonia and rapid lateral eye movements. Typically, but with remarkable exceptions suggesting humoral interactions, the sleep-waking patterns of the isolated forebrain were dissociated from those of the decerebrate animal. These results were very similar to our previous findings in midbrain-transected adult cats. However, subtle differences suggested greater functional plasticity in the developing versus the adult isolated forebrain.We conclude that behavioral and electroencephalographic patterns of non-rapid eye movement sleep and of rapid eye movement sleep states mature independently in the forebrain and the brain stem, respectively, after these structures are separated early postnatally. In terms of waking, the findings strengthen our concept that in higher mammals the rostral brain can independently support wakefulness/arousal and, hypothetically, perhaps even awareness. Therefore, these basic sleeping-waking functions are intrinsic properties of the forebrain/brain stem and as such can develop autochthonously. These data help our understanding of some normal/borderline sleep-waking dissociations as well as peculiar states of consciousness in long term patients with brain stem lesions.  相似文献   

2.
In cats, rats, and mice, the amount of rapid eye movement sleep (REMS) lost during a sleep deprivation (SD) predicts the subsequent REMS rebound during recovery sleep. This suggests that REMS is homeostatically regulated and that a need or pressure for REMS accumulates in its absence, i.e. during both wakefulness and non-rapid eye movement sleep (NREMS). Conversely, it has been proposed that REMS pressure accumulates exclusively during NREMS [Benington and Heller, Am. J. Physiol. 266 (1994) R1992; Prog. Neurobiol. 44 (1994b) 433]. This hypothesis is based on the analysis of the duration of successive NREMS and REMS episodes and of electroencephalogram (EEG) events preceding REMS. Pre-REMS events (PREs) do not always result in sustained REMS and can thus be regarded as REMS attempts that increase as NREMS progresses. It is assumed that two processes regulating REMS can resolve the apparent contradiction between these two concepts: a 'long-term' process that homeostatically regulates the daily REMS amount and a 'short-term' process that regulates the NREM--REMS cycle. These issues were addressed in two SD experiments in rats. The two SDs varied in length (12 and 24 h) and resulted in very similar compensatory changes in NREMS but evoked very different changes for all REMS parameters studied. The large REMS increase observed after 24-h SD was accompanied by a reduction in unsuccessful PREs and an increase in sustained REMS episodes, together resulting in a threefold increase in the success-rate to enter REMS. Changes in success-rate matched those of a theoretically derived long-term REMS pressure. The SD induced changes in sleep architecture could be reproduced by assuming that the increased long-term REMS pressure interacts with the short-term process by increasing the probability to enter and remain in REMS.  相似文献   

3.
STUDY OBJECTIVES: Oleamide and anandamide are fatty acid amides implicated in the regulatory mechanisms of sleep processes. However, due to their prompt catabolism by fatty acid amide hydrolase (FAAH), their pharmacologic and behavioral effects, in vivo, disappear rapidly. To determine if, in the absence of FAAH, the hypnogenic fatty acid amides induce an increase of sleep, we characterized the sleep-wake patters in FAAH-knockout mice [FAAH (-/-)] before and after sleep deprivation. DESIGN: FAAH (-/-), FAAH (+/-), and FAAH (+/+) mice were implanted chronically for sleep, body temperature (Tb), and locomotor activity (LMA) recordings. Sleep-wake states were recorded during a 24-hour baseline session followed by 8 hours of sleep deprivation. Recovery recordings were done during the 16 hours following sleep deprivation. Total amount of wake, slow-wave sleep, and rapid eye movement sleep were calculated and compared between genotypes. The electroencephalographic spectral analysis was performed by fast Fourier transform analysis. Telemetry recordings of Tb and LMA were carried out continuously during 4 days under baseline conditions. SETTING: N/A. PATIENTS OR PARTICIPANTS: FAAH (-/-) mice and their heterozygote (+/-) and control (+/+) littermates were used. INTERVENTIONS: Sleep deprivation. MEASUREMENTS AND RESULTS: FAAH (-/-) mice possess higher values of slow-wave sleep and more intense episodes of slow-wave sleep than do control littermates under baseline conditions that are not related to differences in Tb and LMA. A rebound of slow-wave sleep and rapid eye movement sleep as well an increase in the levels of slow-wave activity were observed after sleep deprivation in all genotypes. CONCLUSION: These findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.  相似文献   

4.
This paper reviews the lifetime contributions of the author to the field of sleep-wakefulness (S-W), reinterprets results of the early studies, and suggests new conclusions and perspectives. Long-term cats with mesencephalic transection show behavioral/polygraphic rapid eye movement sleep (REMS), including the typical oculo-pupillary behavior, even when the section is performed in kittens prior to S-W maturation. REMS can be induced as a reflex. Typical non-rapid eye movement S (NREMS) is absent and full W/arousal is present only after a precollicular section. The isolated forebrain (IF) rostral to the transection exhibits all features of W/arousal and NREMS [with electroencephalographic (EEG) spindles and delta waves], arousal to olfactory stimuli, and including the appropriate oculo-pupillary behaviors. These features also mature normally after neonatal transection. REMS is absent from the IF. After deprivation there is NREMS pressure and rebound in the IF, but the decerebrate cat only shows pressure for REMS. Most IF reactions to pharmacologic agents are within expectations, except for the tolerance/withdrawal effects of long-term morphine use which are absent. In contrast, these effects are supported by the brainstem (i.e. seen in the decerebrate cat). In cats with ablation of the telencephalon, or diencephalic cats, delta waves are absent in the thalamus. EEG thalamic spindle waves are seen triggering S for only 4-5 days after ablation. Therefore, true NREMS is absent in chronic diencephalic cats although pre- and postsomniac behaviors persist. These animals are hyperactive and show a pronounced, permanent insomnia; however, a low dose of barbiturate triggers a dramatic REMS/atypical NREMS rebound. Cats without the thalamus (athalamic cats), initially show a dissociation between behavioral hyperactivity/insomnia and the neocortical EEG, which for 15-20 days exhibits only delta and slower oscillations. Fast, low-voltage W rhythms appear later on, first during REMS, but spindle waves and S postures are absent from the start, such that these cats also display only atypical NREMS. Athalamic cats also show barbiturate-sensitive insomnia. Cats with ablation of the frontal cortices or the caudate nuclei remain permanently hyperactive. They also show a mild, but significant hyposomnia, which is permanent in afrontal cats, but lasts for about a month in acaudates. The polygraphic/behavioral features of their S-W states remain normal. We conclude and propose that: (a) the control of the S-W system is highly complex and distributed, but is organized hierarchically in a well-defined rostro-caudal manner; the rostral-most or highest level (telencephalon), is the most functionally complex/adaptative and regulates the lower levels; the diencephalic/basal forebrain, or middle level, has a pivotal role in inducing switching between S and W and in coordinating the lowest (brainstem) and highest levels; (b) W can occur independently in both the forebrain and brainstem, but true NREMS- and REMS-generating mechanisms exist exclusively in the forebrain and brainstem, respectively; (c) forebrain and brainstem S-W processes can operate independently from each other and are preprogrammed at birth; this helps understanding normal and abnormal polygraphic/behavioral dissociations in humans and normal dissociations/splitting in aquatic mammals; (d) NREMS homeostasis is present in the IF, but only REMS pressure after deprivation persists in the decerebrate cat; (e) the thalamus engages in both NREMS and W; (f) insomnia in diencephalic cats is the result of an imbalance between antagonistic W- and S-promoting cellular groups in the ventral brain (normally modulated by the telencephalon); (g) the EEG waves, which are signature for each S-W state, appear to truly drive the concomitant behaviors, e.g. a hypothetical human IF could alternate between behavioral NREMS and W/arousal/awareness; (h) a role for REMS is to keep the individual sleeping at the end of the self-limiting NREMS periods. The need for accelerating research on telencephaling NREMS periods. The need for accelerating research on telencephalic S-W processes and downstream control of the lower S-W system levels is emphasized.  相似文献   

5.
R L Horner  L Kubin 《Neuroscience》1999,93(1):215-226
Microinjection of a cholinergic agonist, carbachol, into the pontine reticular formation of chronically instrumented intact or acutely decerebrate rats and cats has been used extensively to study rapid eye movement sleep mechanisms. In this study, we sought to develop a reduced carbachol model of rapid eye movement sleep-like neural events exhibiting multiple physiological markers of this state, and allowing for the use of invasive electrophysiological techniques. Accordingly, we investigated whether pontine carbachol could produce rapid eye movement sleep-like motor atonia and electrocortical changes in urethane-anaesthetized rats. We recorded cortical and hippocampal electroencephalograms and genioglossus and inspiratory intercostal muscle activities in 13 urethane-anaesthetized, spontaneously breathing, tracheotomized and vagotomized rats. In steady-state periods with high-voltage/low-frequency electroencephalogram activity, carbachol microinjections (15-40 nl, 10 mM) were placed in the medial pontine reticular formation. In 12 rats, carbachol elicited episodes of stereotyped hypotonia of genioglossus but not intercostal muscle activity, typical of rapid eye movement sleep, with a latency and duration of 2.2+/-0.3min (mean+/-S.E.M.) and 11.0+/-2.9 min, respectively. In four of these rats, also similar to rapid eye movement sleep, the major suppression of genioglossus activity (-74+/-9%) was accompanied by electroencephalogram desynchronization, appearance of hippocampal theta rhythm, and a respiratory rate increase (+ 14+/-3%). In the remaining eight rats, the stereotyped suppression of genioglossus activity (-48+/-3%) occurred without electroencephalogram desynchronization and hippocampal theta, and was accompanied by a respiratory rate decrease (-6+/-2%); a pattern of response typical of decerebrate animals. Within a rat, similar patterns of response to repeated carbachol injections at the same anatomical site were obtained. Pontine atropine prevented responses to subsequent carbachol injections. Thus, in urethane-anaesthetized rats, pontine carbachol consistently produced a differential suppression of pharyngeal versus respiratory pump muscle activity, and in a subset of animals, this was also accompanied by cortical and hippocampal electrographic changes typical of rapid eye movement sleep. This shows that complex and stereotyped neuronal events underlying both ascending and descending signs of rapid eye movement sleep can be pharmacologically activated under general anaesthesia. Such a reduced preparation may be useful for studies into the central neuronal mechanisms underlying generation of rapid eye movement sleep; particularly for studies requiring techniques that are difficult to implement in intact, naturally sleeping animals. The acceleration of the respiratory rate observed only when carbachol induced electroencephalogram desynchronization suggests that neural events associated with electrocortical changes contribute to the respiratory rate increases observed in natural rapid eye movement sleep.  相似文献   

6.
Previous data suggested that increases in extracellular adenosine in the basal forebrain mediated the sleep-inducing effects of prolonged wakefulness. The present study sought to determine if the state-related changes found in basal forebrain adenosine levels occurred uniformly throughout the brain. In vivo microdialysis sample collection coupled to microbore high-performance liquid chromatography measured extracellular adenosine levels in six brain regions of the cat: basal forebrain, cerebral cortex, thalamus, preoptic area of hypothalamus, dorsal raphe nucleus and pedunculopontine tegmental nucleus. In all these brain regions extracellular adenosine levels showed a similar decline of 15 to 20% during episodes of spontaneous sleep relative to wakefulness. Adenosine levels during non-rapid eye movement sleep did not differ from rapid eye movement sleep. In the course of 6h of sleep deprivation, adenosine levels increased significantly in the cholinergic region of the basal forebrain (to 140% of baseline) and, to a lesser extent in the cortex, but not in the other regions. Following sleep deprivation, basal forebrain adenosine levels declined very slowly, remaining significantly elevated throughout a 3-h period of recovery sleep, but elsewhere levels were either similar to, or lower than, baseline.The site-specific accumulation of adenosine during sleep deprivation suggests a differential regulation of adenosine levels by as yet unidentified mechanisms. Moreover, the unique pattern of sleep-related changes in basal forebrain adenosine level lends strong support to the hypothesis that the sleep-promoting effects of adenosine, as well as the sleepiness associated with prolonged wakefulness, are both mediated by adenosinergic inhibition of a cortically projecting basal forebrain arousal system.  相似文献   

7.
H Tojima  L Kubin  H Kimura  R O Davies 《Sleep》1992,15(5):404-414
Microinjections of carbachol into the pons induce a state that resembles rapid eye movement (REM) sleep in intact cats and, in decerebrate, artificially ventilated cats, produce postural atonia accompanied by a powerful depression of the respiratory motor output. In this study, pontine carbachol was used in decerebrate, spontaneously breathing cats to assess the effects of mechanical and chemical respiratory reflexes on the magnitude and pattern of the carbachol-induced depression of breathing, and to determine whether the depression is altered in those animals in which rapid eye movements are present. Phrenic nerve activity and tidal volume were only transiently depressed at the onset of the carbachol-induced postural atonia, whereas the decrease in respiratory rate and the depressions of hypoglossal and intercostal activities persisted until the response was reversed by a pontine microinjection of atropine 15-101 minutes after the onset of carbachol response. Ventilation was reduced to 70% of control during the steady-state conditions. The irregularity of breathing, characterized by the inter-quartile ranges of the distributions of the peak phrenic nerve activity and respiratory timing, did not increase following pontine carbachol. Neither vagotomy nor vigorous eye movements were associated with increased breathing irregularity. This contrasts with the irregular breathing (with minor average changes in ventilation) typical of natural REM sleep. We propose that the carbachol-injected decerebrate cat provides a useful model of the depressant effects that neural events associated with REM sleep may have on breathing.  相似文献   

8.
STUDY OBJECTIVES: We recently proposed insufficient non-rapid eye movement sleep (NREMS) intensity to contribute to disturbed nocturnal sleep in patients with narcolepsy-cataplexy (NC). To test this hypothesis, we investigated the effect of physiologically intensified NREMS in recovery sleep following sleep deprivation. DESIGN: Nocturnal baseline and recovery sleep architecture, and the sleep electroencephalogram (EEG) before and after 40 hours of sustained wakefulness were compared between 6 drug-free patients with NC (age range: 19-37 years) and 6 individually matched, healthy control subjects (18-43 years). MEASUREMENTS: Sleep and sleep EEG power spectra (C3A2 derivation). The dynamics of the homeostatic Process S were estimated from the time course of slow-wave activity (SWA, spectral power within 0.75-4.5 Hz) across consecutive NREMS episodes. SETTINGS: Sleep research laboratory. RESULTS: In baseline, SWA decreased across consecutive NREMS episodes in patients with NC and control subjects. The build-up of SWA, however, was attenuated in NC in the second episode (P = 0.01) due to a higher number of short wake periods (P = 0.02). Prolonged wakefulness increased initial SWA in both groups (P = 0.003) and normalized the baseline differences between patients and control subjects in the time course of SWA in NREMS. The changed dynamics of SWA in the patients in recovery sleep when compared with baseline were associated with reduced numbers of intermittent wake periods in the first (P = 0.01) and second (P = 0.04) NREMS episodes. All patients, but no control subjects, showed a sleep-onset rapid eye movement period (SOREMP) in both baseline and recovery sleep. Sleep deprivation increased SOREMP duration (P = 0.03). CONCLUSIONS: Increased SWA after sleep deprivation indicates that sleep homeostasis is functional in NC. Increased NREMS intensity in recovery sleep postpones sleep fragmentation, supporting our concept that sleep fragmentation is directly related to insufficient NREMS intensity in NC. The persistence of SOREMP despite enhanced NREMS pressure suggests an abnormal interaction between NREMS and REMS regulatory processes.  相似文献   

9.
In order to determine if renin release would be affected by a dysfunction of the circadian and ultradian organization of sleep, 24-hour profiles of plasma renin activity (PRA) concomitant with sleep stages were established in 10 normal subjects and nine narcoleptic patients, with 10-minute blood sampling intervals. Mean PRA levels were similar in control subjects and narcoleptic patients. Individual 24-hour profiles revealed that the previously described association between renin oscillations and sleep stage alternations was preserved. Increased PRA release was observed during the transition from rapid eye movement (REM) sleep or waking periods to nonrapid eye movement (NREM) sleep, and REM sleep occurred as PRA levels were decreasing. Thus, PRA curves exactly reflected the irregularities and disturbances in the sleep structure of the narcoleptic patients. The 24-hour PRA profiles of the patients did not show the general upward trend during nighttime sleep, which is probably induced in the control subjects by the repetitive recurrence of longer episodes of undisturbed NREM sleep. Because of marked sleep fragmentation in the patients, the duration of NREM sleep was often insufficient to allow for the occurrence of a significant PRA increase. Because sleep onset REM (SOREM) episodes, characteristic of narcolepsy, are not preceded by NREM sleep and its associated increase in PRA, no relative PRA decline occurred during this type of REM sleep. In conclusion, the 24-hour PRA profiles of the narcoleptic patients reflected exactly their sleep stage distribution, confirming previous findings that PRA oscillations appear to be inseparable from the NREM-REM sleep cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The photoperiod has been evidenced to influence sleep regulation in the rat. Nevertheless, lengthening of the photoperiod beyond 30 days seems to have little effect on the 24‐hr baseline level of sleep and the response to total sleep deprivation. We studied the effects of 12:12 (habitual) and 16:8 (long) light–dark photoperiods on sleep, locomotor activity and body core temperature, before and after 24 hr of total sleep deprivation. Eight rats were submitted for 14 days to light–dark 12:12 (lights on: 08:00 hours–20:00 hours) followed by total sleep deprivation, and then for 14 days to light–dark 16:8 (light extended to 24:00 hours) followed by total sleep deprivation. Rats were simultaneously recorded for electroencephalogram, locomotor activity and body core temperature for 24 hr before and after total sleep deprivation. At baseline before total sleep deprivation, total sleep time and non‐rapid eye movement sleep per 24 hr and during extended light hours (20:00 hours–24:00 hours) were higher (13% for total sleep time) after light–dark exposure compared with habitual photoperiod, while percentage delta power in non‐rapid eye movements and rapid eye movements were unchanged. Locomotor activity and body core temperature were lower, particularly during extended light hours (20:00 hours–24:00 hours). Following total sleep deprivation, total sleep time and non‐rapid eye movements were significantly lower after long photoperiod between 20:00 hours and 24:00 hours, and between 10:00 hours and 12:00 hours, and unchanged per 24 hr. The percentage delta power in non‐rapid eye movements was lower between 08:00 hours and 11:00 hours. Total sleep deprivation decreased locomotor activity and body core temperature after habitual photoperiod exposure only. Fourteen days under long photoperiod (light–dark 16:8) increased non‐rapid eye movements sleep, and decreased sleep rebound related to total sleep deprivation (lower non‐rapid eye movements duration and delta power). This may create a model of sleep extension for the rat that has been found to favour anabolism in the brain and the periphery.  相似文献   

11.
Studies have shown that synchrony or temporal coupling of gamma activity is involved in processing and integrating information in the brain. Comparing rapid eye movement (REM) sleep to waking and non-REM (NREM) sleep, interhemispheric temporal coupling is higher, but lower between the frontal and posterior association areas of the same hemisphere. However, the homeostatic response of REM sleep temporal coupling after selective REM sleep deprivation (REMD) has not been studied. This study proposed exploring the effect of one night of selective REMD on the temporal coupling of cortical gamma activity during recovery REM sleep. Two groups of healthy subjects were subjected to either REMD by awakening them at each REM sleep onset, or to NREM sleep interruptions. Subjects slept four consecutive nights in the laboratory: first for adaptation, second as baseline, third for sleep manipulation, and fourth for recovery. Interhemispheric and intrahemispheric EEG correlations were analyzed during tonic REM (no eye movements) for the first three REM sleep episodes during baseline sleep, and recovery sleep after one night of selective REMD. Temporal coupling between frontal lobes showed a significant homeostatic rebound that increased during recovery REM sleep relative to baseline and controls. Results showed a rebound in temporal coupling between the two frontal lobes after REM sleep deprivation, indicating that the enhanced gamma temporal coupling that occurs normally during REM sleep has functional consequences. Conclusion: results suggest that synchronized activity during REM sleep may play an important role in integrating and reprocessing information.  相似文献   

12.
Previous studies have shown a decrease in rapid eye movement (REM) frequency during desynchronized sleep in recovery nights following total or partial sleep deprivation. This effect has been ascribed to an increase in sleep need or sleep depth consequent to sleep length manipulations. The aims of this study were to assess REM frequency variations in the recovery night after two consecutive nights of selective slow-wave sleep (SWS) deprivation, and to evaluate the relationships between REM frequency and SWS amount and auditory arousal thresholds (AAT), as an independent index of sleep depth. Ten normal males slept for six consecutive nights in the laboratory: one adaptation, two baseline, two selective SWS deprivation and one recovery night. SWS deprivation allowed us to set the SWS amount during both deprivation nights close to zero, without any shortening of total sleep time. In the ensuing recovery night a significant SWS rebound was found, accompanied by an increase in AAT. In addition, REM frequency decreased significantly compared with baseline. This effect cannot be attributed to a variation in prior sleep duration, since there was no sleep loss during the selective SWS deprivation nights. Stepwise regression also showed that the decrease in REM frequency is not correlated with the increase in AAT, the traditional index of sleep depth, but is correlated with SWS rebound.  相似文献   

13.
The brainstems of 3 cats were transected at the ponto-medullary junction and the cats maintained in stable condition for periods of from 16 to 31 days. After transection, all of these cats had periods in which forebrain sensorimotor cortex, olfactory bulb, hippocampus, eye movement and lateral geniculate recordings exhibited the pattern of activity seen only in REM sleep in the intact cat. We conclude that medullary regions are not required to generate these signs of REM sleep. The pons is necessary for REM sleep and is sufficient to produce REM sleep signs in rostral as well as caudal brain regions. However, the medulla may contribute to regulation of the duration and periodicity of REM sleep.  相似文献   

14.
Deboer T  Tobler I 《Sleep》2003,26(5):567-572
STUDY OBJECTIVES: Emerging from daily torpor, Djungarian hamsters (Phodopus sungorus) show an initial increase in electroencephalographic slow-wave activity (power density between 0.75 and 4.0 Hz) during sleep that gradually declines. This feature is typical for sleep following prolonged waking and supports the hypothesis that sleep pressure increases during daily torpor. After hamsters were subjected to sleep deprivation or partial non-rapid eye movement sleep deprivation immediately following torpor, slow-wave activity remained high and decreased only when sleep was allowed. An analysis of the dynamics of the process underlying the build-up of sleep pressure during episodes of waking and torpor may provide insights into the regulation of normal sleep and wakefulness. We have analyzed in more detail the timecourse of the process that is common for waking and daily torpor and that could account for the subsequent increase in slow-wave activity. DESIGN: Continuous 24-hour recordings of electroencephalography, electromyography, cortical temperature, and electroencephalographic spectral analysis were performed. Torpor data of 28 hamsters and sleep-deprivation data of diverse durations collected previously in 15 hamsters were analyzed. SETTING: N/A. PATIENTS OR PARTICIPANTS: N/A. INTERVENTIONS: Sleep deprivation. MEASUREMENTS AND RESULTS: Slow-wave activity invariably increased as a function of the duration of both prior waking and torpor. However, the time constant of the build-up of slow-wave activity was approximately 2.75 times slower during torpor compared to sleep deprivation. Brain temperature recorded during the torpor bouts was 10 degrees to 12 degrees C below euthermic brain temperature. Therefore, the temperature coefficient of the time constant for the slow-wave-activity increase is between 2.3 and 2.8, a range typical for biochemical processes. CONCLUSIONS: We conclude that the processes occurring during daily torpor in the Djungarian hamster are similar to those occurring during sleep deprivation, but the build-up of sleep pressure during torpor appears to be slowed down by the lower brain temperature.  相似文献   

15.
It has been hypothesized that proteins modulate rapid eye movement sleep (REMS). Studies have shown an increase in the liberation of proteins in the mesencephalic reticular formation of cats during REMS. It has also been determined that protein-synthesis inhibitors diminish REMS and that protease-inhibitors increase this sleep phase. These and other studies support the importance of “di novo” protein molecules in sleep, and in particular, in REMS regulation. In this context, it is important to determine the role of endogenous proteases and their endogenous inhibitors in sleep regulation. In this study, we found that Cystatin C (CC), an endogenous protease inhibitor, diminishes wakefulness and increases REMS. We have also found an increase in CC expression after REMS deprivation and a tendency to decrease after a 2 h period of REMS rebound. We further showed that REMS deprivation increases the expression of Cathepsin H (CH), a protease inhibited by CC. These results suggest that naturally occurring protease-inhibitors enhance REMS, perhaps by facilitating the availability of proteins.  相似文献   

16.
The effect of total sleep deprivation on the sleep stages and their interrelations was studied in 10 cats. EEG, EMG and eye movements were recorded for 24 h after 12 h and 24 h sleep deprivation and after no sleep deprivation. Sleep was divided into three stages: Light slow wave sleep (LSWS), deep slow wave sleep (DSWS) and rapid eye movement (REM) sleep. The total quantities of DSWS and REM sleep in the 24 h recordings increased with deprivation, as did the relative proportion (per cent of total sleep) of these sleep stages. The total quantity of LSWS did not change with sleep deprivation, and the LSWS per cent of total sleep decreased. The changes were most pronounced after 24 h deprivation and in the first hours of recovery sleep. Sleep deprivation reduced LSWS episode length and tended to increase DSWS and REM sleep episode length. The number of sleep cycles was increased, but the length of each cycle was not altered. The results support earlier findings of a functional dissociation between LSWS and DSWS and a functional relationship between DSWS and REM sleep.  相似文献   

17.
Twenty-four hour cycles of food intake were continuously recorded in eight male rats on a 1212 hr light/dark schedule during baseline conditions and rapid eye movement sleep deprivation. The results suggest that food intake in the rat is controlled by two different mechanisms, one serving control of immediate caloric demands during the dark part of the LD cycle and the other, activated prior to the beginning of the inactive light hours, being responsible for the intake of a few large meals covering the total energy requirement for this time period. The correct timing of the consumption of these large meals with respect to the LD cycle seems to be dependent on undisturbed rapid eye movement sleep.  相似文献   

18.
The periodicity of the rapid eye movement-nonrapid eye movement (REM-NREM) cycle in real time versus compressed sleep was determined by autocorrelation, computed on the sequence of sleep stages in recordings from spontaneously sleeping cats. The resulting autocorrelation function was correlated to damped cosine waves, and the highest squared correlation coefficient (r2) was taken as indicating the most likely periodicity in the data entered for each animal. The periodicity of REM sleep was stronger (significantly higher r2) in the compressed sleep data than in the real-time data, indicating sleep dependency of the REM-NREM cycle. The REM-NREM cycle lengths determined by the autocorrelation technique were not significantly different for the real-time and compressed sleep data. The REM sleep episode interval, defined as the average interval between the start of successive REM sleep episodes, was significantly shorter for real-time sustained sleep than the cycle lengths as determined by the autocorrelation technique. A model is proposed which explains this phenomenon as due to fragmentation of REM sleep within the time periods with high probability for REM sleep. When such fragmentation occurs, the average REM sleep episode interval will not reflect an ultradian REM sleep periodicity.  相似文献   

19.
Procedures that deprive animal subjects of rapid eye movement sleep have often been associated with learning impairments. Previously, the conclusion has been drawn that these learning impairments are due to the absence of some positive function of rapid eye movement sleep. The present research indicates more precisely that typical impairments associated with the deprivation procedures may be due to isolated periods of non-REM sleep, rather than due to the simple absence of rapid eye movement sleep. Mice were tested for acquistion of a complex maze task, and subjected to post-trial rapid eye movement sleep deprivation by the pedestal method. Only animals demonstrating (non-REM) sleep behaviors during deprivation gave evidence of learning deficits.  相似文献   

20.
The relationship between the temporal organization of cortisol secretion and sleep structure is controversial. To determine whether the cortisol profile is modified by 4 hours of sleep deprivation, which shifts slow-wave sleep (SWS) episodes, 12 normal men were studied during a reference night, a sleep deprivation night and a recovery night. Plasma cortisol was measured in 10-minute blood samples. Analysis of the nocturnal cortisol profiles and the concomitant patterns of sleep stage distribution indicates that the cortisol profile is not influenced by sleep deprivation. Neither the starting time of the cortisol increase nor the mean number and amplitude of pulses was significantly different between the three nights. SWS episodes were significantly associated with declining plasma cortisol levels (p less than 0.01). This was especially revealed after sleep deprivation, as SWS episodes were particularly present during the second half of the night, a period of enhanced cortisol secretion. In 73% of cases, rapid eye movement sleep phases started when cortisol was reflecting diminished adrenocortical activity. Cortisol increases were not concomitant with a specific sleep stage but generally accompanied prolonged waking periods. These findings tend to imply that cortisol-releasing mechanisms may be involved in the regulation of sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号