首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facilitation of acetylcholine (ACh) release by SK-951 ((-)4-amino-N-[2-(1-azabicyclo[3.3.0] octan-5-yl)ethyl]-5-chloro-2,3-dihydro-2-methylbenzo[b]furan-7-carboxami de hemifumarate), a benzofuran derivative, via the 5-hydroxytryptamine (5-HT)4 receptor in guinea pig stomach was examined by in vitro receptor autoradiography and functional studies. [125I]SB207710 binding was detected in the myenteric plexus of the gastric corpus. High densities of binding sites were observed in the myenteric plexus and a moderate density in the muscle layer. SK-951 inhibited the binding of [125I]SB207710, a specific 5-HT4-receptor ligand, as in the case of SB204070, a specific 5-HT4-receptor antagonist, thus indicating the presence of 5-HT4 receptors in guinea pig stomach. SK-951 as well as 5-HT enhanced the electrically stimulated twitch contractions of gastric corpus strips, which were sensitive to tetrodotoxin and atropine, and enhanced electrically stimulated release of ACh from corporal strips, which was tetrodotoxin-sensitive and Ca2+-dependent. The enhancements of twitch contractions and ACh release by SK-951 were antagonized by GR113808, a selective 5-HT4-receptor antagonist. Thus, SK-951 binds to 5-HT4 receptors of the guinea pig gastric corpus and may accelerate gastric motility due to facilitation of ACh release.  相似文献   

2.
Effect of mosapride, a benzamide, on the motor activity associated with the release of endogenous acetylcholine (ACh) from enteric neurons was examined in the ileum of anesthetized dogs using an in vivo microdialysis method and compared with the effect of 5-hydroxytryptamine (5-HT). Intraarterial administration of 5-HT accelerated intestinal motor activity and increased the concentration of dialysate ACh, and the responses were inhibited by SB204070, a specific 5-HT4-receptor antagonist, but were apparently not affected by methiothepin, ketanserin and granisetron. Intraarterial administration of mosapride, a prokinetic benzamide, accelerated intestinal motor activity and the concentration of dialysate ACh increased. The effects of mosapride were antagonized by SB204070. Specific [125I]SB207710 binding was observed in the myenteric and submucosal plexuses and muscle layers of dog ileum by in vitro receptor autoradiography. High densities of [125I]SB207710 binding sites were detected in the myenteric and submucosal plexuses. Mosapride as well as SB204070 inhibited [125I]SB207710 binding. Thus, in the whole body of dogs, 5-HT and mosapride accelerated the intestinal motor activity due to the increases in ACh release mediated by stimulation of the 5-HT4 receptor.  相似文献   

3.
Localization and function of 5-HT4 receptors in the stomach were examined in mucosa-free preparations of antrum, corpus and fundus from guinea pig stomach by determination of acetylcholine release and in vitro receptor autoradiography. Specific [125I]SB207710, (1-n-butyl-4-piperidinyl) methyl-8-amino-7-iodo-1,4-benzodioxane-5-carboxylate, binding sites were detected in 3 regions of the stomach. High densities of binding were observed in the myenteric plexus of antrum and corpus, but not fundus. In mucosa-free preparations treated with 5-HT1, 5-HT2 and 5-HT3 receptor antagonists, 5-HT (10(-8)-10(-6) M) potentiated the electrically stimulated (0.5 Hz, 1 ms) outflow of [3H]acetylcholine from antrum and corpus strips preloaded with [3H]choline, but not from fundus strips, and the potentiation was antagonized by SB204070, (1-n-butyl-4-piperidinyl) methyl-8-amino-7-chloro-1,4-benzodioxane-5-carboxylate. Thus, 5-HT4 receptors are located on myenteric cholinergic neurons in the antrum and corpus of guinea pig stomach and their activation evokes the release of acetylcholine.  相似文献   

4.
5-HT4 receptors mediate relaxation of human colon circular muscle. However, after 5-HT4 receptor blockade (SB 204070 10 nM), 5-HT still induced a relaxation (pEC50 6.3). 5-HT4 receptors were sufficiently blocked, as the curves to 5-HT obtained in the presence of 10 and 100 nM SB 204070 were indistinguishable. This 5-HT-induced relaxation was tetrodotoxin-insensitive, indicative of a smooth muscle relaxant 5-HT receptor. This, and the rank order of potency (5-CT=5-MeOT=5-HT) suggested involvement of 5-HT1 or 5-HT7 receptors. Mesulergine, a 5-HT7 receptor antagonist at nanomolar concentrations, and a 5-HT1 receptor antagonist at micromolar concentrations, competitively antagonized the 5-HT-induced relaxation (pKB 8.3) and antagonized the relaxation to 5-CT. Methysergide antagonized the 5-HT-induced relaxation (pA2 7.6). It is concluded that the profile of the smooth muscle inhibitory 5-HT receptor resembles that of the 5-HT7 receptor. These data provide the first evidence for functional human 5-HT7 receptors.  相似文献   

5.
1. Selective antagonism of 5-HT4 receptors may provide therapeutic benefit in certain disorders of the myocardium, alimentary and lower urinary tract. We now report on RS 39604, a novel and selective 5-HT4 receptor antagonist and compare its pharmacological properties with those of SB 204070. 2. In guinea-pig striatal membranes, both RS 39604 and SB 204070 inhibited specific binding of [3H]-GR 113808 in a concentration-dependent manner yielding pKi estimates of 9.1 and 10.9, respectively. RS 39604 displayed a low affinity (pKi < 6.5) for 5-HT1A, 5-HT2C, 5-HT3, alpha 1c, D1, D2, M1, M2, AT1, B1 and opioid mu receptors and moderate affinity for sigma 1, (pKi = 6.8) and sigma 2 (pKi = 7.8) sites. 3. In the rat isolated oesophagus, precontracted with carbachol, RS 39604 (30-300 nM) behaved as a competitive antagonist towards 5-HT-induced relaxation (pA2 = 9.3; Schild slope = 1.0). We and others have shown previously that SB 204070 behaves as an unsurmountable antagonist in this preparation (pA2 approximately 10.5). In the guinea-pig isolated ileal mucosa, RS 39604 (30 nM) antagonized 5-MeOT-induced increase in short-circuit current (pA2 = 9.1). 4. In anaesthetized vagotomized micropigs, RS 39604, administered by the i.v. or intraduodenal (i.duod.) route, produced dose-dependent inhibition of 5-HT-induced tachycardia (ID50 = 4.7 micrograms kg-1, i.v. and 254.5 micrograms kg-1, i.duod). At maximal doses of 30 micrograms kg-1, i.v. and 6 mg kg-1, i.duod., the inhibitory effects of RS 39604 lasted for more than 6 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Lobo SB  Denyer M  Britland S  Javid FA 《Pharmacology》2011,88(3-4):225-232
The relevance of age on serotonergic involvement in the control of alimentary contractility has not been pharmacologically described. Experiments were performed to investigate the effects of acetylcholine, atropine, 5-hydroxytryptamine (5-HT) and its related drugs on intestinal segments taken from the neonatal and adult ileum. 5-HT induced concentration-dependent contractions of ileum irrespective of age; however, these contractions were diminished by pretreatment with atropine only in neonatal tissues. In tissues taken from both the neonatal and adult ileum, methysergide (5-HT(1/2/5-7) receptor antagonist), ritanserin (5-HT(2) receptor antagonist), and RS23597-190/SB204070 (5-HT(4) receptor antagonists) all differentially reduced 5-HT-induced contractions at a concentration <100 μmol/l. At higher concentrations, the contractions were comparable to those in control tissues. Granisetron and ondansetron (5-HT(3) receptor antagonists) significantly reduced contractions induced by 5-HT at concentrations >30 μmol/l in both neonatal and adult ileum. Combined treatments with ritanserin, granisetron, plus RS23597-190 reduced or abolished contraction responses induced in neonatal ileum by 5-HT. SB269970A (5-HT(7) receptor antagonist) and WAY100635 (5-HT(1A) receptor antagonist) failed to influence contractile responses induced by 5-HT or 5-HT receptor agonists. Pretreatments with WAY100635 and SB267790A also had no influence on the contractile responses induced by 5-HT(1A/7) receptor agonist, 5-CT, and 5-HT(1A) receptor agonist, 8-OH-DPAT, which itself failed to induce a measurable response. It is concluded that the 5-HT-induced contractions in segments taken from both the neonatal and adult rat ileum were mediated via 5-HT(2) receptors, 5-HT(3) receptors and 5-HT(4) receptors. However, the effect of atropine on the neonatal rat intestine indicates that the mechanism of serotonergic involvement in ileal contractility is influenced by age.  相似文献   

7.
Recently, it was demonstrated that 5-HT induces relaxation of human colon circular muscle through activation of 5-HT(4) receptors and 5-HT(7) receptors. The aim of the current study was to develop a new in vitro bioassay of human colon that would facilitate the pharmacological analysis of 5-HT responses mediated solely by 5-HT(4) receptors. Contracting circular muscle strips with KCl (80 mM) yielded a stable contractile tension and, in contrast to muscarinic cholinoceptor agonists and histamine, a profound reduction of spontaneous contractility. This allowed the establishment of reproducible, fully-defined, agonist concentration-response curves by cumulative dosing. Under these conditions, 5-HT induced a concentration-dependent relaxation (pEC(50) 7.31, Hill slope 0.91). Neither methysergide (10 microM) nor granisetron (1 microM) affected the 5-HT-induced relaxation, suggesting that 5-HT(1), 5-HT(2), 5-HT(3), 5-ht(5), 5-HT(6) or 5-HT(7) receptors are not involved. The lack of effect of tetrodotoxin (0.3 microM) indicated a direct effect of 5-HT on the smooth muscle. The selective 5-HT(4) receptor antagonists GR 113808, GR 125487 and RS 39604 competitively antagonized the 5-HT-induced relaxation (pK(B) 9.43, 10.12 and 8.53, respectively). SB 204070 (1 nM) produced a rightward shift (pA(2) 10.34) and depression of the 5-HT curve. These affinity estimates are similar to those previously reported for 5-HT(4) receptors. The selective 5-HT(4) receptor agonists, prucalopride and R076186, induced relaxations (pEC(50) 7.50 and 7.57, respectively), that were blocked by GR 113808 (3 nM), yielding pA(2) estimates of 9.31 and 9.21, respectively. To summarise, in KCl (80 mM)-contracted muscle strips, 5-HT induces relaxation through activation of a homogeneous smooth muscle 5-HT(4) receptor population. This new bioassay allows the focused, pharmacological characterization of human colonic 5-HT(4) receptors in vitro.  相似文献   

8.
1. The aim of this study was to characterize the 5-HT receptors involved in the 5-HT-induced contraction of longitudinal muscle (LM) strips of porcine proximal stomach. This was done in a classical organ bath set-up for isotonic measurement. 2. The concentration-contraction curve to 5-HT was not modified by 5-HT(3) and 5-HT(4) receptor antagonism. Methysergide, ketanserin and mesulergine antagonized the curve to 5-HT. Concomitantly, increasing concentrations of ketanserin and mesulergine progressively revealed a biphasic nature of the 5-HT curve. Ketanserin antagonized the low-affinity receptor while it did not modify the high-affinity receptor. 3. Tetrodotoxin did not influence the concentration-contraction curve to 5-HT neither in the absence nor presence of ketanserin, indicating that nerves are not involved. 4. Ketanserin competitively antagonized the monophasic concentration-response curve to alpha-Methyl-5-HT, yielding a Schild slope that was not significantly different from unity. After constraining the Schild slope to unity, a pK(B) estimate of 8.23+/-0.90 was obtained. This affinity estimate of ketanserin closely approximates previously reported affinities at 5-HT(2A) receptors. 5. In the presence of ketanserin (0.1 microM; exposing the high-affinity receptor), a wide range of 5-HT receptor antagonists covering all 5-HT receptors known, was tested. Only methysergide and ritanserin inhibited the response to 5-HT, thus expressing affinity for the high-affinity receptor. This did not reveal the identity of the receptor involved. 6 It can be concluded that 5-HT induces pig proximal stomach (LM) contraction via 5-HT(2A) receptors located on smooth muscle. A ketanserin-insensitive phase of contractions could not be characterized between the actually known classes of 5-HT receptors with the pharmacological tools that were used.  相似文献   

9.
Methysergide depresses the contractile effects of 5-hydroxytryptamine (5-HT) in bovine large coronary arteries devoid of endothelium. The IC50 of methysergide for depression of the response to 5-HT was (-log mol/l) 9.8. A low sensitivity contractile effect of 5-HT was not influenced by 1-1,000 nmol/l methysergide. The maximum force of this residual response is approximately 1/3 of the maximum force elicited by 5-HT in the absence of methysergide. Ketanserin restored the 5-HT-induced contraction depressed by methysergide. In the presence of 0.1 mumol/l ketanserin, methysergide caused depression of the 5-HT-induced effects with an IC50 (-log mol/l) of 6.5 without affecting the residual response. We propose that methysergide depresses 5-HT-induced contractions by acting on an allosteric site. The effect of binding of methysergide to the allosteric site would lead to a conformational change of the 5-HT2-receptor, thereby only allowing the production of a residual 5-HT-induced contraction. Ketanserin competes with high affinity not only with 5-HT for the 5-HT2-receptor but also with methysergide for the allosteric site, thus shifting the receptor back into its original conformation. The affinity estimate of ketanserin for the allosteric site yielded a KB (-log mol/l) of 10.3. Ketanserin (1-1,000 nmol/l) antagonized the contractile effects of 5-HT with a potency expected from its affinity for 5-HT2-receptors (-log KB, mol/l 9.4). However, micromolar concentrations of ketanserin antagonized the effects of 5-HT less than expected from its affinity for 5-HT2-receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have investigated the role of peripheral 5-hydroxytryptamine 1A (5-HT(1A)) receptors and their probable up-regulation in rat model of partial bladder outlet obstruction. Bladder outlet obstruction was induced in adult female rats, hypertropic bladders were harvested after 6 weeks and isometric contractions of bladder strips were recorded. A marked spontaneous activity of the bladder was observed in obstructed bladder strips compared to control strips. The effect of alpha(1A/1D)-adrenergic antagonist, tamsulosin, was observed to be inhibitory on the spontaneous contractions albeit at higher doses (10, 30 and 100 nM). As tamsulosin at higher doses also has high affinity for 5-HT(1A) receptors, the role of peripheral 5-HT(1A) receptors in overactive bladder was hypothesized. 8-hydroxy-2-(di-n-propylamino) tetralin [8-OH-DPAT], a selective 5-HT(1A) receptor agonist, dose-dependently induced significant contractions in the obstructed bladder strips, compared to control bladders. N-[2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide dihydrochloride (WAY-100635), a selective 5-HT(1A) receptor antagonist, competitively antagonized the contractile response to 8-OH-DPAT in obstructed bladder strips in a dose-dependent manner. Tamsulosin at a higher dose was also observed to antagonize the responses to 8-OH-DPAT. Taken together, these observations suggest the involvement of peripheral 5-HT(1A) receptors in detrusor over activity associated with bladder outlet obstruction in female rats.  相似文献   

11.
1. We investigated the hypothesis that, as in some other large human arteries, 5-HT-induced contraction of the temporal artery is mediated through two co-existing receptor populations, 5-HT1-like- and 5-HT2A. Temporal arterial segments were obtained from patients undergoing brain surgery and rings prepared set up to contract with 5-HT and related agents. Fractions of maximal 5-HT responses mediated through 5-HT1-like and 5-HT2A receptors, f1 and f2 = 1-f1, were estimated by use of the 5-HT2A-selective antagonist ketanserin. 2. In rings with intact endothelium 5-HT evoked contractions with a -log EC50, M of 7.0. Ketanserin (10-1000 nM) antagonized part of the 5-HT-induced contractions. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M of 6.9 and f1 of 0.17 (100 nM ketanserin) and -log EC50, M of 6.4 and f1 of 0.20 (1000 nM ketanserin). 3. In rings with endothelial function attenuated by enzymatic treatment, 5-HT caused contractions with a -log EC50, M of 7.2 that were partially blocked by ketanserin. Ketanserin-resistant components of 5-HT-induced contractions were found with -log EC50, M 7.4 and f1 of 0.16 (100 nM ketanserin) and -log EC50, M of 7.5 and f1 of 0.14 (1000 nM ketanserin). 4. The ketanserin-resistant component of 5-HT-evoked contraction was blocked by methiothepin (100-1000 nM) consistent with mediation through 5-HT1-like receptors. 5. In rings with intact endothelium the 5-HT1-like-selective agonist, sumatriptan, caused small contractions with a -log EC50, M of 6.5 and intrinsic activity of 0.21 with respect to 5-HT that were resistant to blockade by 1000 nM ketanserin but antagonized by 100 nM methiothepin. 6. In rings with intact endothelium the 5-HT2A receptor partial agonist SK&F 103829 (2,3,4,5-tetrahydro-8[methyl sulphonyl]-1H3-benzazepin-7-ol methensulphonate) contracted rings with a -log EC50, M of 5.0 and an intrinsic activity of 0.49 with respect to 5-HT; the effects were antagonized by ketanserin 1000 nM. 7. We conclude that 80-86% of the maximum 5-HT-evoked contraction of human temporal artery is mediated through 5-HT2A receptors, the remainder through 5-HT1-like-receptors, regardless of whether or not endothelium is functional. The 5-HT1-like-receptors are more likely to be 5-HT1D beta receptors than 5-HT1D alpha receptors and sumatriptan is a full agonist for these receptors. As found in arteries of other species, SK&F 103829 is a partial agonist for 5-HT2A receptors of human temporal artery.  相似文献   

12.
1. We aimed to characterize the 5-HT receptors involved in the 5-HT-induced effect on electrically induced contractions of dog antrum longitudinal muscle in vitro. 2. In the presence of L-NOARG (0.1 mM), electrical field stimulation (EFS) induced atropine- and tetrodotoxin-sensitive contractions. Tetrodotoxin or atropine left any agonist tested ineffective. These EFS-induced contractions were on average enhanced by 5-HT (0.3 microM), however, pronounced variation in the response to 5-HT was observed. There were non-significant trends of the selective 5-HT3 receptor antagonist granisetron (1 microM), and methysergide (1 microM; preventing interactions of 5-HT with 5-HT1, 5-HT2, 5-ht5, 5-HT6 and 5-HT7 receptors) to increase the response to 5-HT. The selective 5-HT4 receptor antagonist GR 113808 (0.1 microM) displayed a non-significant trend to inhibit the 5-HT-induced increase. 3. Combination experiments with methysergide (1 microM), granisetron (1 microM) and GR 113808 (0.1 microM) revealed that the 5-HT (0.3 microM)-induced response consisted of (1) an excitatory component blocked by GR 113808, (2) excitatory and inhibitory components both blocked by methysergide. 4. The selective 5-HT4 receptor agonist prucalopride (0.3 microM) increased EFS-induced contractions, an effect prevented by GR 113808 (0.1 microM). 5. The increase of EFS-induced contractions by the preferential 5-HT2 receptor agonist alpha-Me-5-HT (0.3 microM) was antagonized by 5-HT2B receptor antagonists. 6. The 5-HT1/5-HT7 receptor agonist 5-carboxamidotryptamine (5-CT; 0.3 microM) inhibited EFS-induced contractions. This was prevented by methysergide (1 microM), the 5-HT7 receptor antagonist mesulergine (0.3 microM) and the selective 5-HT7 receptor antagonist SB-269970 (0.3 microM). 7. In the presence of GR 113808 (0.1 microM), alpha-Me-5-HT (1 microM) increased EFS-induced contractions. The 5-HT (0.3 microM)-induced inhibition of the stimulation by alpha-Me-5-HT was prevented by SB-269970 (0.3 microM). 8. In conclusion, dog antral longitudinal muscle is endowed with (1) excitatory neuronal 5-HT4 receptors and 5-HT2B receptors and (2) inhibitory smooth muscle 5-HT7 receptors.  相似文献   

13.
1. In isolated detrusor strips from the guinea-pig urinary bladder, contractile responses to electrical field stimulation were mostly mediated by neurally released acetylcholine (ACh) and adenosine 5'-triphosphate (ATP). 2. 5-Hydroxytryptamine (5-HT) produced a concentration-dependent increase in the amplitude of stimulated detrusor strip contractions. The 5-HT concentration-response curve showed a biphasic profile: the high potency phase was obtained at sub-micromolar concentrations (10-300 nM), while the low potency phase in the range 1-30 microM. The maximum response of the first phase was 30% of the total 5-HT response. 3. Like 5-HT, the 5-HT3 receptor agonist, 2-methyl-5-hydroxytryptamine (2-methyl-5-HT: 0.3-100 microM), the 5-HT2 receptor agonist, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI: 30 nM-3 microM) and the 5-HT4 receptor agonist, 5-methoxytryptamine (5-MeOT: 0.1-30 microM) potentiated, though with lower potency, detrusor contractions. The resulting concentration-response curves were monophasic in nature. 2-Methyl-5-HT had a maximum effect comparable to that of 5-HT. By contrast, the maximal effects of DOI and 5-MeOT were only 20% and 30% of that elicited by 30 microM 5-HT, respectively. 4. The 5-HT3 receptor antagonist, granisetron (0.3 microM) had no effect on the high potency phase, but caused a rightward parallel shift of the low potency phase of the 5-HT curve (pKB = 7.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The pharmacological profile of SK-951 ((-)4-amino-N-[2-(1-azabicyclo[3.3.0]octan-5-yl) ethyl]-5-chloro-2,3-dihydro-2-methylbenzo[b]furan-7-carboxamide hemifumarate) was identified in relation to serotonin 5-HT3 and 5-HT4 receptors by the receptor binding assay and functional studies. The receptor binding assay showed that SK-951 bound to the 5-HT3 receptor with a high affinity, to the 5-HT4 receptor with relatively higher affinity and to the muscarinic M2 receptor with a low affinity, but not to dopamine D1 and D2 and serotonin 5-HT1 and 5-HT2 and muscarinic M1 and M3 receptors. SK-951 caused relaxations of tunica muscularis mucosae preparations from rat esophagus which were precontracted with carbachol, and the effects were antagonized by GR113808, a selective 5-HT4 antagonist. In the longitudinal muscle with myenteric plexus (LMMP) preparations from guinea pig ileum, SK-951 enhanced the electrically-stimulated contraction of preparations in which the 5-HT1, 5-HT2 and 5-HT3 receptors were blocked, and it enhanced the electrically-stimulated release of [3H]acetylcholine (ACh). These effects of SK-951 were antagonized by GR113808. SK-951 inhibited the 5-HT3 receptor-mediated contractions. These results indicate that SK-951 possesses properties of an agonist for the 5-HT4 receptor and an antagonist for the 5-HT3 receptor. Thus, SK-951 is a new and potent 5-HT4-receptor agonist and causes contractions of guinea pig ileum mediated by enhancement of ACh release via the 5-HT4 receptor.  相似文献   

15.
The use of human prokinetic drugs in colic horses leads to inconsistent results. This might be related to differences in gastrointestinal receptor populations. The motor effects of 5-hydroxytryptamine (5-HT; serotonin) on the equine mid-jejunum were therefore studied. Longitudinal muscle preparations were set up for isotonic measurement. 5-HT induced tonic contractions with superimposed phasic activity; these responses were not influenced by tetrodotoxin and atropine, suggesting a non-neurogenic, non-cholinergic pathway. The 5-HT receptor antagonists GR 127935 (5-HT(1B,D)), ketanserin (5-HT(2A)), SB 204741 (5-HT(2B)), RS 102221 (5-HT(2C)), granisetron (5-HT(3)), GR 113808 (5-HT(4)) and SB 269970 (5-HT(7)) had no influence on the 5-HT-induced response; the 5-HT(1A) receptor antagonists NAN 190 (pK(b)=8.13+/-0.06) and WAY 100635 (pK(b)=8.69+/-0.07), and the 5-HT(1,2,5,6,7) receptor antagonist methysergide concentration-dependently inhibited the 5-HT-induced contractile response. The 5-HT(1,7) receptor agonist 5-carboxamidotryptamine (5-CT) induced a contractile response similar to that of 5-HT; its effect was not influenced by tetrodotoxin and atropine, and SB 269970, but antagonised by WAY 100635. 8-OHDPAT, buspiron and flesinoxan, which are active at rat and human 5-HT(1A) receptors, had no contractile influence. These results suggest that the contractile effect of 5-HT in equine jejunal longitudinal muscle is due to interaction with muscular 5-HT receptors, which cannot be characterised between the actually known classes of 5-HT receptors.  相似文献   

16.
Functions and the presence of 5-hydroxytryptamine (5-HT) receptors in the fundus, corpus and antrum of the guinea pig stomach were examined by measuring contractile force and acetylcholine (ACh) release. Stimulation of the 5-HT1 receptor caused tetrodotoxin (TTX)-insensitive relaxations in the preparations from 3 regions. Stimulation of the 5-HT2 receptor caused TTX-insensitive contractions in the preparations of fundus and antrum. Stimulation of 5-HT3 receptors caused contractions that were sensitive to TTX and atropine and enhanced the outflow of [3H]ACh from preparations of only antrum. Stimulation of 5-HT4 receptors caused contractions of antral strips and decreased relaxations of corporal strips and enhanced the outflow of [3H]ACh from the preparations of both corpus and antrum. In the guinea pig stomach, the fundus possesses relaxant 5-HT1 receptor < contractile 5-HT2 receptors and caused the contractile response to 5-HT. The corpus possesses relaxant 5-HT1 receptors and relaxant receptors other than 5-HT1, 5-HT2, 5-HT3 and 5-HT4 receptors > contractile 5-HT4 receptor, and therefore 5-HT caused relaxations. The antrum possesses relaxant 5-HT1 receptor < contractile 5-HT2, 5-HT3 and 5-HT4 receptors, and thus 5-HT caused contractions.  相似文献   

17.
The influence of the selective 5-HT(4) receptor agonist prucalopride on acetylcholine release from cholinergic nerve endings innervating pig gastric circular muscle and the possible regulation of this effect by phosphodiesterases (PDEs) was investigated, as PDEs have been shown to control the response to 5-HT(4) receptor activation in pig left atrium. Circular muscle strips were prepared from pig proximal stomach and either submaximal cholinergic contractions or tritium outflow after incubation with [(3)H]-choline, induced by electrical field stimulation, were studied. Prucalopride concentration-dependently increased the amplitude of submaximal cholinergic contractions and of acetylcholine release induced by electrical field stimulation. The effect of the highest concentration tested (0.3 μM) on cholinergic contractions was antagonized by the selective 5-HT(4) receptor antagonist GR113808 but not by granisetron or methysergide; the antagonism of prucalopride by GR113808 was confirmed in the release assay. The non-selective PDE-inhibitor 3-isobutyl-methyl-xanthine (IBMX) concentration-dependently reduced the amplitude of the cholinergic contractions; 3 μM IBMX reduced the cholinergic contractions maximally by 16% but it enhanced the facilitating effect of prucalopride from 51 to 83%. IBMX (10 μM) induced and enhanced the facilitating effect of prucalopride on electrically induced acetylcholine release. The selective inhibitors vinpocetine (PDE1), EHNA (PDE2) and cilostamide (PDE3) did not influence the effect of prucalopride on acetylcholine release but the PDE4-inhibitor rolipram (1 μM) enhanced the facilitating effect of prucalopride to the same extent as IBMX. These results demonstrate that 5-HT(4) receptors are present on the cholinergic nerves towards the pig gastric circular muscle, facilitating acetylcholine release; the intracellular transduction pathway of this facilitation is regulated by PDE4. Combination of a 5-HT(4) receptor agonist with selective inhibition of the PDE involved in this regulation of transmitter release might enhance the prokinetic effect of the 5-HT(4) receptor agonist.  相似文献   

18.
Summary We present an analysis of the interactions of 5-hydroxytryptamine (5-HT) and antagonists (methysergide, ketanserin, ritanserin) with the 5-HT2 receptor system of strips of rat tail artery. The mode of action of ritanserin was also studied on strips of calf coronary arteries. 1. Ketanserin competitively antagonized 5-HT-induced effects in rat tail artery with an affinity (pKB = 9.4 nmol/l) consistent with the assumption of an interaction of 5-HT and ketanserin at 5-HT2-receptors. 2. Methysergide reduced to 50–60% the maximum response to 5-HT in rat tail artery. Concentration-effect curves for 5-HT became biphasic in the presence of methysergide with quickly and slowly developing contractions at low and high concentrations of 5-HT, respectively. 100 nmol/l ketanserin completely restored effects of 5-HT depressed by low concentrations of methysergide (< 10 nmol/l). Higher concentrations of methysergide in the presence of 100 nmol/l ketanserin again depressed the effects of 5-HT. 3. Ritanserin resembles methysergide by causing insurmountable antagonism of 5-HT-induced contractions which can be prevented by ketanserin in both rat tail artery and calf coronary artery. These results are inconsistent with competition between ritanserin and 5-HT for the 5-HT2 receptor. 4. The findings are consistent with the assumption of an interaction of ketanserin and methysergide or ritanserin with an allosteric site near the 5-HT2-receptor. Both methysergide and ritanserin appear to antagonize the effects of 5-HT through an allosteric site which is distinct from the 5-HT2 receptor. Send offprint requests to A. J. Kaumann at the above address  相似文献   

19.
The serotonin 5-HT3 receptor antagonist effects of DAT-582, the (R) enantiomer of AS-5370 ((+/-)-N-[1-methyl-4-(3-methyl-benzyl)hexahydro-1H-1,4-diazepin-6- yl]-1H- indazole-3-carboxamide dihydrochloride), and its antipode were compared with those of AS-5370 and existing 5-HT3 receptor antagonists. In anesthetized rats, DAT-582 antagonized 2-methyl-5-HT-induced bradycardia with an ED50 value of 0.25 microgram/kg i.v., whereas the (S) enantiomer was without effect even at 1000 micrograms/kg i.v. In antagonizing the bradycardia, DAT-582 was as potent as granisetron, slightly more potent than AS-5370, and 2, 5 and 18 times more potent than ondansetron, ICS 205-903 and renzapride, respectively, although it was less potent than zacopride. DAT-582 inhibited cisplatin (10 mg/kg i.v.)-induced emesis in ferrets with an ED50 value of 3.2 micrograms/kg i.v. twice. The antiemetic activity of DAT-582 was more potent than that of the existing 5-HT3 receptor antagonists examined, except zacopride. In contrast, the (S) enantiomer had little effect at 1000 micrograms/kg i.v. twice. In isolated guinea-pig ileum, DAT-582 inhibited 5-HT-induced contractions with an IC50 value of 91 nM, whereas the (S) enantiomer hardly inhibited them even at 1000 nM. These results suggest that DAT-582, the (R) enantiomer of AS-5370, potently and selectively blocks 5-HT3 receptors.  相似文献   

20.
5-hydroxytryptamine (5-HT) contracts vascular smooth muscle and pharmacological and molecular biological data suggest that these effects are mediated primarily by stimulation of 5-HT(1B) and 5-HT(2A) receptor subtypes. We have studied the properties of 7-fluoro-2-oxo-4-[2-[4-(thieno[3,2-c] pyridin-4-yl) piperazin-1-yl] ethyl]-1,2-dihydroquinoline-1-acetamide (SL 65.0472 ), a novel 5-HT receptor antagonist, in isolated vascular preparations contracted by 5-HT or sumatriptan. In canine isolated saphenous vein strips (putatively 5-HT(1B)-mediated contraction), SL 65.0472 antagonised sumatriptan-induced contractions in a competitive manner (pA(2) 8. 17+/-0.36). 5-HT contracts rabbit aorta by stimulation of 5-HT(2A) receptors. SL 65.0472 displaced the 5-HT concentration response curve in rabbit aorta rightwards with a significant reduction in maximum. The apparent pK(B) value was 8.58+/-0.18. 5-HT-induced contractions of human coronary arteries are mediated by a mixed population of 5-HT(1B) and 5-HT(2A) receptors. SL 65.0472 produced rightward parallel shifts of the 5-HT concentration response curves in all tissues studied (pA(2) 8.8+/-0.14, n=7). In conclusion, SL 65. 0472 is a potent antagonist of vascular smooth muscle contraction in vitro mediated by 5-HT receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号