首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
Burkholderia pseudomallei is the causative agent of melioidosis. This bacterium can invade and survive inside the phagocytic and nonphagocytic cells. After internalization, the bacteria can escape from the membrane-bound phagosome into the cytoplasm. Internalised B. pseudomallei can also induce a cell-to-cell fusion, resulting in a multinucleated giant cell (MNGC) formation. In the present study, we demonstrated that B. pseudomallei rpoS null mutant was similar to its wild type parent in its ability to survive and multiply inside the mouse macrophages, but it failed to stimulate MNGC formation. The rpoS mutant was also unable to activate inducible Nitric Oxide Synthase (iNOS) in resting mouse macrophages but in gamma interferon (IFN-gamma)-activated macrophages, the mutant was able to induce significantly higher levels of iNOS and NO when compared with its wild-type counterpart, resulting in a significantly lower number of bacteria inside the infected host cells.  相似文献   

2.
Burkholderia pseudomallei is a Gram-negative soil bacterium and the causative agent of melioidosis, a disease of humans and animals. It is also listed as a category B bioterrorism threat agent by the U.S. Centers for Disease Control and Prevention, and there is currently no melioidosis vaccine available. Small modified nucleotides such as the hyperphosphorylated guanosine molecules ppGpp and pppGpp play an important role as signaling molecules in prokaryotes. They mediate a global stress response under starvation conditions and have been implicated in the regulation of virulence and survival factors in many bacterial species. In this study, we created a relA spoT double mutant in B. pseudomallei strain K96243, which lacks (p)ppGpp-synthesizing enzymes, and investigated its phenotype in vitro and in vivo. The B. pseudomallei ΔrelA ΔspoT mutant displayed a defect in stationary-phase survival and intracellular replication in murine macrophages. Moreover, the mutant was attenuated in the Galleria mellonella insect model and in both acute and chronic mouse models of melioidosis. Vaccination of mice with the ΔrelA ΔspoT mutant resulted in partial protection against infection with wild-type B. pseudomallei. In summary, (p)ppGpp signaling appears to represent an essential component of the regulatory network governing virulence gene expression and stress adaptation in B. pseudomallei, and the ΔrelA ΔspoT mutant may be a promising live-attenuated vaccine candidate.  相似文献   

3.
Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular Gram-negative bacillus which can survive and multiply in both phagocytic and nonphagocytic cells. This bacterium could also induce apoptosis in various cell types. In the present study, we extend our finding to demonstrate the role of RpoS of B. pseudomallei in apoptosis induction. Unlike the wild-type strain, the B. pseudomallei rpoS mutant strain failed to induce cytotoxicity in mouse macrophages (RAW264.7). Furthermore, the mutant produced less extensive mitochondrial membrane potential changes and caspase-3 activation in the macrophages than did the wild-type strain. These data suggest that the RpoS of B. pseudomallei plays an essential role in the regulation of cell death in mouse macrophages.  相似文献   

4.
Burkholderia pseudomallei, the cause of serious and life-threatening diseases in humans, is of national biodefense concern because of its potential use as a bioterrorism agent. This microbe is listed as a select agent by the CDC; therefore, development of vaccines is of significant importance. Here, we further investigated the growth characteristics of a recently created B. pseudomallei 1026b Δasd mutant in vitro, in a cell model, and in an animal model of infection. The mutant was typified by an inability to grow in the absence of exogenous diaminopimelate (DAP); upon single-copy complementation with a wild-type copy of the asd gene, growth was restored to wild-type levels. Further characterization of the B. pseudomallei Δasd mutant revealed a marked decrease in RAW264.7 murine macrophage cytotoxicity compared to the wild type and the complemented Δasd mutant. RAW264.7 cells infected by the Δasd mutant did not exhibit signs of cytopathology or multinucleated giant cell (MNGC) formation, which were observed in wild-type B. pseudomallei cell infections. The Δasd mutant was found to be avirulent in BALB/c mice, and mice vaccinated with the mutant were protected against acute inhalation melioidosis. Thus, the B. pseudomallei Δasd mutant may be a promising live attenuated vaccine strain and a biosafe strain for consideration of exclusion from the select agent list.  相似文献   

5.
Yersinia pseudotuberculosis, a gram-negative bacterium responsible for enteric and systemic infection in humans, produces a superantigenic toxin designated YPMa (Y. pseudotuberculosis-derived mitogen). To assess the role of YPMa in the pathogenesis of Y. pseudotuberculosis, we constructed a superantigen-deficient mutant and compared its virulence in a mouse model of infection to the virulence of the wild-type strain. Determination of the survival rate after intravenous (i.v.) bacterial inoculation of OF1 mice clearly showed that inactivation of ypmA, encoding YPMa, reduced the virulence of Y. pseudotuberculosis. Mice infected i.v. with 10(4) and 10(5) wild-type bacteria died within 9 days, whereas mice infected with the ypmA mutant survived 12 and 3 days longer, respectively. This decreased virulence of the ypmA mutant strain was not due to an impaired colonization of the spleen, liver, or lungs. In contrast to i.v. challenge, bacterial inoculation by the intragastric (i.g.) route did not reveal any difference in virulence between wild-type Y. pseudotuberculosis and the ypmA mutant since the 50% lethal doses were identical for both strains. Moreover, inactivation of ypmA gene did not affect the bacterial growth of Y. pseudotuberculosis in Peyer's patches, mesenteric lymph nodes (MLNs), and spleen after oral infection. Histological studies of spleen, liver, lungs, heart, Peyer's patches, and MLNs after i.v. or i.g. challenge with the wild type or the ypmA mutant did not reveal any feature that can be specifically related to YPMa. Our data show that the superantigenic toxin YPMa contributes to the virulence of Y. pseudotuberculosis in systemic infection in mice.  相似文献   

6.
The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD(50)s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD(50) for the Δhcp1 mutant was >10(3) bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.  相似文献   

7.
Legionella pneumophila (Lpn) is a ubiquitous Gram-negative bacterium found in aquatic environments and is the causative agent of Legionnaires' disease, a severe form of pneumonia. We have used Lpn-permissive A/J mice as a model to analyze the B cell response upon intravenous (i.v.) and intranasal (i.n.) infection with Lpn. A strong antibody (Ab) response was observed upon i.v. infection with wild-type (WT) Lpn and an icmT mutant strain, which is unable to replicate within permissive host cells. In contrast to i.v. infection, only WT but not icmT mutant Lpn was able to induce specific Ab responses upon i.n. infection. After primary i.n. infection with WT Lpn, a strict compartmentalization of Lpn-specific Ab isotypes was observed, as IgG was found exclusively systemically, while IgA was detectable only locally in the lung. Regardless of the infection route, isotype switching to IgG and to IgA was strictly dependent on CD4+ T cells, whereas IgM production was completely Th-independent. Finally, we analyzed the protective capacity of the Lpn-specific Ab response. Actively or passively immunized mice or mice that were infected with opsonized Lpn had 50-100-fold reduced bacterial titers compared to naive animals, clearly demonstrating the capacity of Ab to protect against infection with Lpn.  相似文献   

8.
Burkholderia pseudomallei produces an extracellular polysaccharide capsule -3)-2-O-acetyl-6-deoxy-beta-D-manno-heptopyranose-(1- which has been shown to be an essential virulence determinant. The addition of purified capsule was shown to increase the virulence of a capsule mutant strain in the Syrian hamster model of acute melioidosis. An increase in the number of wild-type B. pseudomallei cells in the blood was seen by 48 h, while the number of capsule mutant cells in the blood declined by 48 h. Capsule expression was shown to be induced in the presence of serum using a lux reporter fusion to the capsule gene wcbB. The addition of purified B. pseudomallei capsule to serum bactericidal assays increased the survival of B. pseudomallei SLR5, a serum-sensitive strain, by 1,000-fold in normal human serum. Capsule production by B. pseudomallei contributed to reduced activation of the complement cascade by reducing the levels of complement factor C3b deposition. An increase in phagocytosis of the capsule mutant compared to the wild type was observed in the presence of normal human serum. These results suggest that the production of this capsule contributes to resistance to phagocytosis by reducing C3b deposition on the surface of the bacterium, thereby contributing to the persistence of bacteria in the blood of the infected host. Continued studies to characterize this capsule are essential for understanding the pathogenesis of B. pseudomallei infections and the development of preventive strategies for treatment of this disease.  相似文献   

9.
The live vaccine strain (LVS) of Francisella tularensis caused lethal disease in several mouse strains. Lethality depended upon the dose and route of inoculation. The lethal dose for 50% of the mice (LD50) in four of six mouse strains (A/J, BALB/cHSD, C3H/HeNHSD, and SWR/J) given an intraperitoneal (i.p.) inoculation was less than 10 CFU. For the other two strains tested, C3H/HeJ and C57BL/6J, the i.p. log LD50 was 1.5 and 2.7, respectively. Similar susceptibility was observed in mice inoculated by intravenous (i.v.) and intranasal (i.n.) routes: in all cases the LD50 was less than 1,000 CFU. Regardless of the inoculation route (i.p., i.v., or i.n.), bacteria were isolated from spleen, liver, and lungs within 3 days of introduction of bacteria; numbers of bacteria increased in these infected organs over 5 days. In contrast to the other routes of inoculation, mice injected with LVS intradermally (i.d.) survived infection: the LD50 of LVS by this route was much greater than 10(5) CFU. This difference in susceptibility was not due solely to local effects at the dermal site of inoculation, since bacteria were isolated from the spleen, liver, and lungs within 3 days by this route as well. The i.d.-infected mice were immune to an otherwise lethal i.p. challenge with as many as 10(4) CFU, and immunity could be transferred with either serum, whole spleen cells, or nonadherent spleen cells (but not Ig+ cells). A variety of infectious agents induce different disease syndromes depending on the route of entry. Francisella LVS infection in mice provides a model system for analysis of locally induced protective effector mechanisms.  相似文献   

10.
Using a transposon mutagenesis approach, we have identified a mutant of Burkholderia pseudomallei that is auxotrophic for branched chain amino acids. The transposon was shown to have interrupted the ilvI gene encoding the large subunit of the acetolactate synthase enzyme. Compared to the wild type, this mutant was significantly attenuated in a murine model of disease. Mice inoculated intraperitoneally with the auxotrophic mutant, 35 days prior to challenge, were protected against a challenge dose of 6,000 median lethal doses of wild-type B. pseudomallei.  相似文献   

11.
Although Salmonella enterica serovar Typhimurium can undergo phase variation to alternately express two different types of flagellin subunit proteins, FljB or FliC, no biological function for this phenomenon has been described. In this investigation, we constructed phase-locked derivatives of S. enterica serovar Typhimurium that expressed only FljB (termed locked-ON) or FliC (termed locked-OFF). The role of phase variation in models of enteric and systemic pathogenesis was then evaluated. There were no differences between the wild-type parent strain and the two phase-locked derivatives in adherence and invasion of mouse epithelial cells in vitro, survival in mouse peritoneal macrophages, or in a bovine model of gastroenteritis. By contrast, the locked-OFF mutant was virulent in mice following oral or intravenous (i.v.) inoculation but the locked-ON mutant was attenuated. When these phase-locked mutants were compared in studies of i.v. kinetics in mice, similar numbers of the two strains were isolated from the blood and spleens of infected animals at 6 and 24 h. However, the locked-OFF mutant was recovered from the blood and spleens in significantly greater numbers than the locked-ON strain by day 2 of infection. By 5 days postinfection, a majority of the mice infected with the locked-OFF mutant had died compared with none of the mice infected with the locked-ON mutant. These results suggest that phase variation is not involved in the intestinal stage of infection but that once S. enterica serovar Typhimurium reaches the spleens of susceptible mice those organisms in the FliC phase can grow and/or survive better than those in the FljB phase. Additional experiments with wild-type S. enterica serovar Typhimurium, fully capable of switching flagellin type, supported this hypothesis. We conclude that organisms that have switched to the FliC(+) phase have a selective advantage in the mouse model of typhoid fever but have no such advantage in invasion of epithelial cells or the induction of enteropathogenesis.  相似文献   

12.
The course of mouse cytomegalovirus (MCMV) infection was compared between wild-type and mutant C57BL / 6 (B6) mice deficient in either RAG-2, perforin, granzyme A, granzyme B or combinations thereof at two time points post infection (p. i.). At day 15 p. i., virus titers were similarly elevated in salivary glands of all mutant, but not wild-type B6 mice and undetectable in lung and spleen tissues of any of the mouse strains. Significant pathological alterations were only seen in salivary glands and spleen from RAG2(- / -), but not in those from other mice whereas few inflammatory foci were observed in lung tissues of all mice except B6. At day 30 p. i., elevated virus titers were observed only in salivary glands, lung and spleen from RAG2(- / -), but in none of the other mice, and were accompanied by extended pathological alterations in all three organs. The data extend previous reports on the critical role of NK / CD8(+) T cells in the early control of MCMV infection by showing that both perforin and granzymes A / B contribute to viral elimination in salivary glands; however, neither of the three molecules alone seem to be indispensable for the final control of infection.  相似文献   

13.
Salmonella enterica serovar Typhi and Typhimurium vaccine candidates elicit significant immune responses in mice by intranasal (i.n.) immunization. Because of the proximity of the cribriform plate of the ethmoid bone, we were concerned that Salmonella bacteria delivered i.n. might access the brain. Accordingly, wild-type and attenuated (by single and double mutations) strains of S. enterica serovars Typhimurium and Typhi were recovered at low numbers initially from the olfactory lobe and then from the brain for 3 to 4 days after i.n. immunization. This was independent of invA gene function. Although the presence of bacteria in blood 1 to 3 h after i.n. inoculation was sometimes observed, this was infrequent compared to the frequency of bacteria detected in brain tissues. In confirmation of recent observations by Wickham et al. (M. E. Wickham, N. F. Brown, J. Provias, B. B. Finlay, and B. K. Coombes, BMC Infect. Dis. 7:65, 2007) that oral inoculation with wild-type S. enterica serovar Typhimurium strains lead to bacteria in blood with subsequent colonization of brain tissues with neurological symptoms of disease, we found similar results by using the i.n. and intraperitoneal (i.p.) routes of inoculation for wild-type but not for attenuated strains of S. enterica serovar Typhimurium. In contrast, a highly modified attenuated S. enterica serovar Typhimurium strain was not present in brain tissues when administered at higher doses by the oral, i.n., and i.p. routes than the wild-type strain even though the presence of bacteria in blood was detectable 1 to 3 h after inoculation by each of the three routes. Our results indicate that i.n. and possibly even oral delivery of live Salmonella vaccines may be unsafe although it is possible to reduce this risk by appropriate genetic modifications.  相似文献   

14.
Flagella are virulence determinants of Burkholderia pseudomallei   总被引:2,自引:0,他引:2       下载免费PDF全文
Burkholderia pseudomallei, a facultatively intracellular pathogen, is a flagellated and motile gram-negative bacterium and is the causative agent of melioidosis in humans. Flagella are commonly recognized as important virulence determinants expressed by bacterial pathogens since the motility phenotype imparted by these organelles often correlates with the ability of an organism to cause disease. We used a virulent isolate of B. pseudomallei, KHW, to construct an isogenic deletion mutant with a mutation in the flagellin gene (fliC) by gene replacement transposon mutagenesis. The KHWDeltafliCKm mutant was aflagellate and nonmotile in semisolid agar. The isogenic KHWDeltafliCKm mutant was not impaired in terms of the ability to invade and replicate in cultured human lung cells compared with the wild type. It was also equally virulent in slow-killing assays involving Caenorhabditis elegans, but it was avirulent during intranasal infection of BALB/c mice. Very few bacteria, if any, were isolated from the lungs and spleens of KHWDeltafliCKm-infected mice. In contrast, the bacterial loads in the lungs and spleens were similar in mice infected with KHW and in mice infected with the complemented mutant, KHWDeltafliCKm/pUCP28TfliC. Unlike the Syrian hamster or diabetic rat models of infection, the B. pseudomallei flagellin was also a virulence factor during intraperitoneal infection of BALB/c mice. In this study, all animals infected with KHWDeltafliCKm remained healthy and did not succumb to disease regardless of the route of infection. The flagellum is therefore an important and necessary virulence determinant of B. pseudomallei during intranasal and intraperitoneal infection of mice.  相似文献   

15.
Naegleria fowleri, which produces a fatal meningoencephalitis in humans, is also able to produce a progressive and fatal disease in mice. The course of the disease in DUB/ICR mice is dependent upon the infecting dose of organisms, whether administered intraperitoneally (i.p.) or intravenously (i.v.). All of the mice receiving 10(7) trophozoites/mouse i.v. or 4.85 X 10(7) trophozoites/mouse i.p. were killed within 10 days. Escherichia coli O26:B6 lipopolysaccharide, administered at a dose of 1 mg/kg 24 h prior to N. fowleri, afforded some protection for several days after challenge, but by day 8 there was no difference in survival of untreated and endotoxin-treated mice. No significant protection was afforded by a complex of lipid A with concanavalin A (ConA) or bovine serum albumin (BSA) or by dimethylmyristamide-BSA, dimethylmyristamide, BSA, beta-hydroxymyristic acid-ConA, beta-hydroxymyristic acid, ConA, myristic acid-BSA, or myristic acid. Mice surviving primary i.v. or i.p. challenge doses of N. fowleri, 5 X 10(6) and 10(7) trophozoites/mouse, respectively, were highly resistant to rechallenge with an i.v. dose of organisms (5 X 10(6) Naegleria/mouse) that produced uniformly fatal disease in untreated control mice.  相似文献   

16.
The bacterial pathogen Burkholderia pseudomallei invades host cells, escapes from endocytic vesicles, multiplies intracellularly, and induces the formation of actin tails and membrane protrusions, leading to direct cell-to-cell spreading. This study was aimed at the identification of B. pseudomallei genes responsible for the different steps of this intracellular life cycle. B. pseudomallei transposon mutants were screened for a reduced ability to form plaques on PtK2 cell monolayers as a result of reduced intercellular spreading. Nine plaque assay mutants with insertions in different open reading frames were selected for further studies. One mutant defective in a hypothetical protein encoded within the Bsa type III secretion system gene cluster was found to be unable to escape from endocytic vesicles after invasion but still multiplied within the vacuoles. Another mutant with a defect in a putative exported protein reached the cytoplasm but exhibited impaired actin tail formation in addition to a severe intracellular growth defect. In four mutants, the transposon had inserted into genes involved in either purine, histidine, or p-aminobenzoate biosynthesis, suggesting that these pathways are essential for intracellular growth. Three mutants with reduced plaque formation were shown to have gene defects in a putative cytidyltransferase, a putative lipoate-protein ligase B, and a hypothetical protein. All nine mutants proved to be significantly attenuated in a murine model of infection, with some mutants being essentially avirulent. In conclusion, we have identified a number of novel major B. pseudomallei virulence genes which are essential for the intracellular life cycle of this pathogen.  相似文献   

17.
It was recently reported that the complement system may be critically involved in the febrile response of guinea pigs to systemic, particularly intraperitoneally (i.p.) injected, lipopolysaccharides (LPS). The present study was designed to identify which component(s) of the complement cascade may be specifically critical. To this end, we used mice with C3, C5, and CR2 gene deletions. To assess preliminarily the suitability of mice for such a study, we replicated our earlier studies with guinea pigs. Thus, to verify initially whether complement is similarly involved in the febrile response of wild-type (C57BL/6J) mice to i.p. LPS (Escherichia coli, 1 microg/mouse), we depleted complement with cobra venom factor (CVF; 7 U/mouse, intravenously [i.v.]). These animals did not develop fever, whereas the core temperature (T(c)) of CVF vehicle-treated controls rose approximately 1 degrees C by 80 min postinjection and then gradually abated over the following 2.5 h, confirming the involvement of complement in fever production after i.p. LPS injection and the suitability of this species for these studies. C3- and C5-sufficient (C3(+/+) and C5(+/+)) mice also developed 1 degrees C fevers within 80 min after i.p. LPS (1 or 2 microg/mouse) injection. These fevers were totally prevented by CVF (10 U/mouse, i.v.) pretreatment. C3- and C5-deficient (C3(-/-) and C5(-/-)) mice were also unable to develop T(c) rises after i.p. LPS. Both CR2(+/+) and CR2(-/-) mice responded normally to i.p. LPS (1 microg/mouse). These data indicate that C5, but not C3d acting through CR2, may play a critical role in the febrile response of mice to i.p. LPS.  相似文献   

18.
The disulfide loop domain of Pseudomonas aeruginosa PAO pilin was altered by insertion of a chloramphenicol acetyltransferase gene into the pilin gene so that the C-terminal nine amino acids were replaced with 11 new amino acids. The altered pilin gene was transferred into wild-type PAO by recombination, where it did not affect normal piliation as observed by transmission electron microscopy or change of sensitivity to f116, PO4, B9, and Pf1 pilus-specific bacteriophages. However, the binding to human pneumocyte A549 cells was markedly reduced when tested in an in vitro binding assay (2 to 6 bacteria bound per A549 cell for the mutant bacteria compared with 50 bacteria per A549 cell for the wild-type bacteria). Additionally, when susceptible A.BY/SnJ mice were challenged with wild-type P. aeruginosa PAO and with P. aeruginosa PAO-MP (altered pilin gene), a 50% lethal dose of 3 x 10(6) bacteria per mouse was observed for PAO-MP compared with 7 x 10(4) bacteria per mouse for PAO. Approximately 90 of the adherence capability of P. aeruginosa PAO is seemingly attributable to the C-terminal disulfide loop adherence domain of pili. The pilus adherence function contributes significantly to the virulence of P. aeruginosa PAO in the A.BY/SnJ mouse infection model.  相似文献   

19.
Mice inoculated either subcutaneously (s.c.) or intradermally (i.d.) with a sublethal dose of Francisella tularensis LVS are immune to a lethal intraperitoneal (i.p.) or intravenous (i.v.) challenge of LVS. Here, we show that this immunity developed quite rapidly: mice given a sublethal dose of live LVS s.c. or i.d. (but not i.v.) withstood lethal i.p., i.v., or i.d. challenge as early as 2 days after the initial inoculation, despite the presence of bacterial burdens already in tissues. The magnitude of this early protection was quite impressive. The i.p. 50% lethal dose (LD50) in naive C3H/HeN mice was only 2 bacteria, while the i.p. LD50 in mice given 10(4) LVS i.d. 3 days previously was 3 x 10(6) bacteria. Similarly, the i.v. LD50 in C3H/HeN mice shifted from 3 x 10(2) in naive mice to 5 x 10(6) in primed mice within 3 days after i.d. LVS infection. Comparable changes in the i.p. and i.v. LD50 were observed in C57BL/6J mice. This rapid generation of protective immunity was specific for LVS, in that mice given a sublethal i.d. inoculation of LVS did not survive a lethal challenge with either Salmonella typhimurium W118 or Escherichia coli O118 BORT at any time, nor could mice given sublethal doses of S. typhimurium, E. coli, or Mycobacterium bovis BCG survive lethal doses of LVS. Although an increase in the mean time to death from S. typhimurium infection was noted when mice were given a sublethal i.d. dose of LVS 4 to 14 days earlier, no overall increase in protection or change in the S. typhimurium LD50 was observed. Thus, sublethal infection with LVS at skin sites induced rapid and specific protective immunity.  相似文献   

20.
Burkholderia pseudomallei is a facultative intracellular pathogen capable of surviving and replicating within eukaryotic cells. Recent studies have shown that B. pseudomallei Bsa type III secretion system 3 (T3SS-3) mutants exhibit vacuolar escape and replication defects in J774.2 murine macrophages. In the present study, we characterized the interactions of a B. pseudomallei bsaZ mutant with RAW 264.7 murine macrophages. Following uptake, the mutant was found to survive and replicate within infected RAW 264.7 cells over an 18-h period. In addition, high levels of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES, but not IL-1alpha and IL-1beta, were detected in culture supernatants harvested from infected monolayers. The subcellular location of B. pseudomallei within infected RAW 264.7 cells was determined, and as expected, the bsaZ mutant demonstrated early-vacuolar-escape defects. Interestingly, however, experiments also indicated that this mutant was capable of delayed vacuolar escape. Consistent with this finding, evidence of actin-based motility and multinucleated giant cell formation were observed between 12 and 18 h postinfection. Further studies demonstrated that a triple mutant defective in all three B. pseudomallei T3SSs exhibited the same phenotype as the bsaZ mutant, indicating that functional T3SS-1 and T3SS-2 did not appear to be responsible for the delayed escape phenotype in RAW 264.7 cells. Based upon these findings, it appears that B. pseudomallei may not require T3SS-1, -2, and -3 to facilitate survival, delayed vacuolar escape, and actin-based motility in activated RAW 264.7 macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号