首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OBJECTIVE: To determine whether in cases of variant Creutzfeldt-Jakob disease (vCJD), the florid-type plaques are derived from the diffuse plaques or whether the 2 plaque types develop independently. MATERIAL: Blocks of frontal, parietal, occipital and temporal neocortex and cerebellar cortex from 11 cases of vCJD. METHOD: The density, distribution and spatial pattern of the florid and diffuse plaques were determined in each brain region using spatial pattern analysis. RESULTS: The density of the diffuse plaques was significantly greater than that of the florid plaques in most areas. The ratio of the diffuse to florid plaques varied between brain regions and was maximal in the molecular layer of the cerebellum. The densities of the florid and diffuse plaques were positively correlated in the parietal cortex, occipital cortex, the inferior temporal gyrus and the dentate gyrus. Plaque densities were not related to disease duration. In the cerebral cortex, the diffuse plaques were more commonly evenly distributed or occurred in large clusters along the cortex parallel to the pia mater compared with the florid plaques which occurred more frequently in regularly distributed clusters. CONCLUSION: The florid plaques may not be derived from the diffuse plaques, the 2 plaque types appearing to develop independently with unique factors involved in their pathogenesis.  相似文献   

2.
The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than 1,600 micro m in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.  相似文献   

3.
The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.  相似文献   

4.
Summary. The histological features of cases of variant Creutzfeldt-Jakob disease (vCJD) are often distributed in the brain in clusters. This study investigated the spatial associations between the clusters of the vacuoles, surviving neurons, and prion protein (PrP) deposits in various brain areas in 11 cases of vCJD. Clusters of vacuoles and surviving neurons were positively correlated in the cerebral cortex but negatively correlated in the dentate gyrus. Clusters of the florid and diffuse type of PrP deposit were not positively correlated with those of either the vacuoles or the surviving neurons although a negative correlation was observed between the florid plaques and surviving neurons in some cortical areas. Clusters of the florid and diffuse deposits were either negatively correlated or uncorrelated. These data suggest: 1) that clusters of vacuoles in the cerebral cortex are associated with the presence of surviving neuronal cell bodies, 2) that the clusters of vacuoles are not spatially related to those of the PrP deposits, and 3) different factors are involved in the pathogenesis of the florid and diffuse PrP deposits.Received March 3, 2003; accepted July 18, 2003This revised version was published online December 2003 with corrections to title and abstract in Table of Contents only.  相似文献   

5.
To determine the pattern of cortical degeneration in cases of variant Creutzfeldt-Jakob disease (vCJD), the laminar distribution of the vacuolation ("spongiform change"), surviving neurones, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal lobes. The vacuolation exhibited two common patterns of distribution: either the vacuoles were present throughout the cortex or a bimodal distribution was present with peaks of density in the upper and lower cortical laminae. The distribution of the surviving neurones was highly variable in different regions; the commonest pattern being a uniform distribution with cortical depth. Glial cell nuclei were distributed largely in the lower cortical laminae. The non-florid PrP deposits exhibited either a bimodal distribution or exhibited a peak of density in the upper cortex while the florid deposits were either uniformly distributed down the cortex or were present in the upper cortical laminae. In a significant proportion of areas, the density of the vacuoles was positively correlated with either the surviving neurones or with the glial cell nuclei. These results suggest similarities and differences in the laminar distributions of the pathogenic changes in vCJD compared with cases of sporadic CJD (sCJD). The laminar distribution of vacuoles was more extensive in vCJD than in sCJD whereas the distribution of the glial cell nuclei was similar in the two disorders. In addition, PrP deposits in sCJD were localised mainly in the lower cortical laminae while in vCJD, PrP deposits were either present in all laminae or restricted to the upper cortical laminae. These patterns of laminar distribution suggest that the process of cortical degeneration may be distinctly different in vCJD compared with sCJD.  相似文献   

6.
In variant Creutzfeldt-Jakob disease (vCJD), a disease linked to bovine spongiform encephalopathy (BSE), florid-type prion protein (PrP(sc)) deposits are aggregated around the larger diameter (> 10 μm) cerebral microvessels. Clustering of PrP(sc) deposits around blood vessels may result from blood-borne prions or be a consequence of the cerebral vasculature influencing the development of the florid deposits. To clarify the factors involved, the dispersion of the florid PrP(sc) deposits was studied around the larger diameter microvessels in the neocortex, hippocampus, and cerebellum of ten cases of vCJD. In the majority of brain regions, florid deposits were clustered around the larger diameter vessels with a mean cluster size of between 50 μm and 628 μm. With the exception of the molecular layer of the dentate gyrus, the density of the florid deposits declined as a negative exponential function of distance from a blood vessel profile suggesting that diffusion of molecules from blood vessels is a factor in the formation of the florid deposits. Diffusion of PrP(sc) directly into the brain via the microvasculature has been demonstrated in vCJD in a small number of cases. However, the distribution of the prion deposits in vCJD is more likely to reflect molecular 'chaperones' diffusing from vessels and promoting the aggregation of pre-existing PrP(sc) in the vicinity of the vessels to form florid deposits.  相似文献   

7.
Local cerebral glucose utilization (LCGU) was examined in an El mouse during an entire seizure (tonic-clonic convulsions and recovery), and during the recovery period only. LCGU was measured quantitatively in 18 structures. In the whole-seizure group, the parietal cortex, dorsal hippocampus, dentate gyrus, ventral thalamus and cerebellar nuclei showed a significant increase in the uptake of 2-DG. In the recovery-period group, compared with the control group, a relative increase was found in the frontal, temporal and occipital cortex, amygdala, substantia grisea centralis mesencephali, cerebellar nuclei and caudate putamen, as well as the parietal cortex, dorsal and ventral hippocampus and dentate gyrus. To summarize, the hyperactivity in the parietal cortex, dorsal hippocampus, dentate gyrus, amygdala and cerebellar nuclei continued throughout the convulsive and recovery periods.  相似文献   

8.
Aims : To determine in the cerebellum in variant Creutzfeldt–Jakob disease (vCJD): (i) whether the pathology affected all laminae; (ii) the spatial topography of the pathology along the folia; (iii) spatial correlations between the pathological changes; and (iv) whether the pathology was similar to that of the common methionine/methionine Type 1 subtype of sporadic CJD. Methods : Sequential cerebellar sections of 15 cases of vCJD were stained with haematoxylin and eosin, or immunolabelled with monoclonal antibody 12F10 against prion protein (PrP) and studied using spatial pattern analysis. Results : Loss of Purkinje cells was evident compared with control cases. Densities of the vacuolation and the protease-resistant form of prion protein (PrPSc) (diffuse and florid plaques) were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques occurred in clusters regularly distributed along the folia with larger clusters of vacuoles and diffuse plaques in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML. There was a positive spatial correlation between the vacuoles and diffuse PrPSc plaques in the ML and GL. Conclusions : (i) all laminae were affected by the pathology, the GL more severely than the ML; (ii) the pathology was topographically distributed along the folia especially in the Purkinje cell layer and ML; (iii) pathological spread may occur in relation to the loop of anatomical connections involving the cerebellum, thalamus, cerebral cortex and pons; and (iv) there were pathological differences compared with methionine/methionine Type 1 sporadic CJD.  相似文献   

9.
The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick’s disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP. Received: 9 March 1998 / Revised, accepted: 27 October 1998  相似文献   

10.
Summary The density of senile plaques (SP) was determined in 55 cytoarchitectonic areas of the cerebral cortex in three aged (27 + years) macaque monkeys. In silverstained sections the SP distributions pattern was variable, with a predilection for frontal areas and the primary somatosensory cortex. In one monkey, SP density in motor and premotor areas reached a level comparable to that found in Alzheimer's disease (AD). Lower SP densities were found in the amygdala and insula, and in cingulate, limbic temporal, and temporal, occipital, and parietal association cortices. Then lowest densities were in the hippocampus and in the primary auditory and primary visual cortices. SP stained with Congo red, to identify the older amyloid-containing plaques, showed a similar distribution.but were fewer in number. There was at times a marked shift in SP density between adjacent cytoarchitectonic fields, suggesting that cytoarchitectonics or connectivity may play a role in determining SP distribution. The distribution of the SP in the normal aged human brain according to cytoarchitectonic areas is not known. Their pattern of distribution in these three primates appears to differ from that found in AD, which emphasizes the hippocampus, amygdala, entorhinal cortex, and temporal and parietal lobe.  相似文献   

11.
Synapse loss is crucially involved in cognitive decline in Alzheimer’s disease (AD). This study was performed to investigate the distribution and density of chromogranin B-like immunoreactivity in the hippocampus of control compared to AD brain. Chromogranin B is a large precursor molecule found in large dense-core vesicles. For immunocytochemistry we used an antiserum raised against a synthetic peptide (PE-11) present in the chromogranin B molecule. Chromogranin B-like immunoreactivity was concentrated in the terminal field of mossy fibers, the inner molecular layer of the dentate gyrus and in layer II of the entorhinal cortex. In AD, chromogranin B was detected in neuritic plaques. The density of chromogranin B-like immunoreactivity was significantly reduced in the inner molecular layer of the dentate gyrus and in layers II, III and V of the entorhinal cortex in AD brains. The present study demonstrates that chromogranin B is a marker for human hippocampal pathways. It is particularly suitable for studying nerve fibers terminating at the inner molecular layer of the dentate gyrus. It is present in neuritic plaques, and its density is reduced in a layer-specific manner. Received: 14 February 2000 / Accepted: 6 March 2000  相似文献   

12.
Insulin-like growth factor (IGF)-I receptors were studied in adult human postmortem brain and pituitary gland using quantitative autoradiography with human recombinant [125I]IGF-I. The highest densities were found in the choroid plexus, pituitary gland-where IGF-I receptors were mainly concentrated in the anterior lobe, pineal gland, glomerular layer of the olfactory bulb, and the molecular layer of the cerebellar cortex. Moderate densities were present in cerebral cortex, caudate nucleus, putamen, accumbens, the CA1, CA2, CA3 fields and dentate gyrus of the hippocampus, the dendate nucleus of the cerebellum, amygdala, thalamus, pontine nuclei, and substantia nigra. All other brain areas, including white matter, contained low densities of IGF-I receptors. The finding that several well-defined brain structures are enriched with IGF-I receptors suggests a rieurotrophic/survival or neuromodulatory role of insulin-like growth factors on specific neuronal systems. IGF-I receptors observed in the white matter may be associated with oligodendrocytes. © 1994 Wiley-Liss, Inc.  相似文献   

13.
OBJECTIVE: To quantify the densities of neurofilament inclusions (NI), swollen achromatic neurons, surviving neurons and glial cells in a novel neurofilamentopathy neurofilament inclusion disease (NID). MATERIAL: Sections of temporal lobe from 4 cases of NID stained with an antibody raised to neurofilament proteins. METHOD: Densities of the pathological changes were estimated in the various gyri of the temporal lobe, hippocampus and dentate gyrus. RESULTS: Densities of the NI and swollen achromatic neurons (SN) were greater in the cerebral cortical gyri than in the hippocampus and dentate gyrus. Lesion density was relatively constant between gyri and between the CA sectors of the hippocampus. In cortical gyri, the density of the NI, SN and glial cell nuclei was greater in laminae II/III than laminae V/VI. Densities of the NI were negatively correlated with the surviving neurons and positively correlated with the glial cell nuclei. The density of the SN was positively correlated with that of the surviving neurons. CONCLUSION: The pathology of NID morphologically resembles that of Pick's disease (PD) and corticobasal degeneration (CBD), but there are distinct differences between NID and these disorders supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease.  相似文献   

14.
Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [3H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.  相似文献   

15.
In the cerebral cortex of cases of sporadic Creutzfeldt– Jakob disease (sCJD), the vacuolation (spongiform change) and PrP deposits are aggregated into clusters which are regularly distributed parallel to the pia mater. The objective of the present study was to determine the spatial relationships between the clusters of the vacuoles and PrP deposits and between the pathological changes and variations in the density of surviving neurons. In areas with low densities of pathological change, clusters of vacuoles were spatially correlated with the surviving neurons and not with the PrP deposits. By contrast, in more significantly affected areas, clusters of vacuoles were spatially correlated with those of the PrP deposits and not with the surviving neurons. In addition, areas with a high density of vacuoles and a low density of PrP deposits exhibited no spatial correlations between the variables. These data suggest that the spatial relationships between the vacuolation, PrP deposits and surviving neurons in sCJD depend on the density of lesions present. Differences in the pattern of correlation may reflect the developmental stage of the pathology in particular cortical areas.  相似文献   

16.
An in vitro autoradiographic technique has been used to localize [125I]omega-conotoxin GVIA binding sites in the brains of normal and cerebellar mutant mice. In the brains of normal mice, the highest densities of binding sites were observed at glomeruli of the olfactory bulb, cerebral cortex, caudate nucleus-putamen, hippocampus, and the nucleus of the solitary tract. Moderate densities of the silver grains occurred on the granular layer of the olfactory bulb, the molecular layer of the dentate gyrus, the molecular layer of the cerebellum, and the cochlear nucleus. No specific binding appeared in the white matter or the deep nucleus of the cerebellum, the corpus callosum, the internal capsule and the external plexiform layer of the olfactory bulb. Autoradiographic studies of the cerebella of Purkinje cell degeneration (pcd) mice showed that the distribution of binding sites on the molecular layer of the cerebellum are not affected by the degeneration of Purkinje cells. However, only background levels of the silver grains occurred on the cerebella of agranular weaver mutant mice, suggesting that the receptors for omega-conotoxin GVIA in the cerebellum are predominantly distributed on the parallel fibers of granule cells.  相似文献   

17.
The density of ballooned neurons (BN), tau-positive neurons with inclusion bodies (tau+ neurons), and tau-positive plaques (tau+ plaques) was determined in sections of the frontal, parietal, and temporal lobe in 12 patients with corticobasal degeneration (CBD). No significant differences in the mean density of BN and tau+ neurons were observed between neocortical regions. In the hippocampus, the densities of BN were significantly lower than in the neocortex, and densities of tau+ neurons were greater in sectors CA1 and CA2, compared with CA3 and CA4. Tau+ plaques were present in one or more brain regions in six patients. Significantly more BN were recorded in the lower (laminae V/VI) compared with the upper cortex (laminae I/II/III) but tau+ neurons were equally frequent in the upper and lower cortex. No significant correlations were observed between the densities of BN and tau+ neurons, but the densities of BN in the superior temporal gyrus and tau+ plaques in the frontal cortex were positively correlated with age. A principal components analysis (PCA) suggested that differences in the density of tau+ neurons in the frontal and motor cortex were the most important sources of variation between patients. In addition, one patient with a particularly high density of tau+ neurons in the hippocampus appeared to be atypical of the patient group studied. The data support the hypothesis that, although clinically heterogeneous, CBD is a pathologically distinct disorder.  相似文献   

18.
Neuronal loss and axonal sprouting are the most typical histopathological findings in the hippocampus of patients with drug-refractory temporal lobe epilepsy (TLE). It is under dispute, however, whether remodeling of neuronal circuits is a continuous process or whether it occurs only during epileptogenesis. Also, little is known about the plasticity outside of the hippocampus. We investigated the immunoreactivity of the highly polysialylated neural cell adhesion molecule (PSA-NCAM) in the surgically removed hippocampus and the entorhinal cortex of patients with drug-refractory TLE (n = 25) and autopsy controls (n = 7). Previous studies have shown that the expression of PSA-NCAM is associated with the induction of synaptic plasticity, neurite outgrowth, neuronal migration, and events requiring remodeling or repair of tissue. In patients with TLE, the optical density (OD) of punctate PSA-NCAM immunoreactivity was increased both in the inner and outer molecular layers of the dentate gyrus, compared with controls. The intensity of PSA-NCAM immunoreactivity in the inner molecular layer correlated with the duration of epilepsy, severity of hippocampal neuronal loss, density of mossy fiber sprouting, and astrogliosis. In TLE patients with only mild neuronal loss in the hippocampus, the density of infragranular immunopositive neurons was increased twofold compared with controls, whereas in TLE patients with severe neuronal loss, the infragranular PSA-NCAM–positive cells were not present. In the hilus, the somata and tortuous dendrites of some surviving neurons were intensely stained in TLE. PSA-NCAM immunoreactivity was also increased in CA1 and in layer II of the rostral entorhinal cortex, where immunopositive neurons were surrounded by PSA-NCAM-positive fibers and puncta. Our data provide evidence that synaptic reorganization is an active process in human drug-refractory TLE. Moreover, remodeling is not limited to the dentate gyrus, but also occurs in the CA1 subfield and the entorhinal cortex.  相似文献   

19.
The spatial patterns of the vacuolation ("spongiform change"), surviving cells, and prion protein (PrP) deposition were studied in the various cell laminae of the cerebellar cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Clustering of the histological features, with the clusters regularly distributed along the folia, was evident in all cell laminae. In the molecular layer, clusters of vacuoles coincided with the surviving Purkinje cells. In the granule cell layer, however, the spatial relationship between the vacuoles and surviving cells was more complex and varied between cases. PrP deposition was not spatially correlated with either the vacuoles or the surviving cells in any of the cerebellar laminae in the majority of cases. In some cases, there were spatial relationships between the histological features in the molecular and granule cell layers. The data suggest that degeneration of the cerebellar cortex in sCJD may occur in a topographic pattern consistent with the spread of prion pathology along anatomical pathways. The development of the vacuolation may be an early stage of the pathology in the cerebellum preceding the appearance of the PrP deposits. In addition, there is evidence that the pathological changes may spread across the different laminae of the cerebellar cortex.  相似文献   

20.
Although there is evidence that beta-amyloid impairs synaptic function, the relationship between beta-amyloid and synapse loss is not well understood. In this study we assessed synapse density within the hippocampus and the entorhinal cortex of Tg2576 mice at 6-18 months of age using stereological methods at both the light and electron microscope levels. Under light microscopy we failed to find overall decreases in the density of synaptophysin-positive boutons in any brain areas selected, but bouton density was significantly decreased within 200 mum of compact beta-amyloid plaques in the outer molecular layer of the dentate gyrus and Layers II and III of the entorhinal cortex at 15-18 months of age in Tg 2576 mice. Under electron microscopy, we found overall decreases in synapse density in the outer molecular layer of the dentate gyrus at both 6-9 and 15-18 months of age, and in Layers II and III of the entorhinal cortex at 15-18 months of age in Tg 2576 mice. However, we did not find overall changes in synapse density in the stratum radiatum of the CA1 subfield. Furthermore, in the two former brain areas we found a correlation between lower synapse density and greater proximity to beta-amyloid plaques. These results provide the first quantitative morphological evidence at the ultrastructure level of a spatial relationship between beta-amyloid plaques and synapse loss within the hippocampus and the entorhinal cortex of Tg2576 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号