首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using rat -cells we present evidence that Sr2+ and Ba2+, like Ca2+, support depolarization-induced increases in membrane capacitance which reflect insulin granule exocytosis. Even with identical total charge entry, Sr2+ and Ba2+ are 3–5 and 20-fold less effective than Ca2+ in supporting release. While exocytosis supported by Sr2+ is graded with cation entry and complete within 250ms of depolarization, exocytosis supported by Ba2+ begins abrupty after a threshold of charge entry and continues for many seconds. Ba2+-supported release continues in the presence of greatly enhanced cytosolic Ca2+ buffering, arguing against release of Ca2+ from stores as its principal action. These results suggest that Sr2+ and Ba2+ support exocytosis largely by binding to Ca2+-dependent release-activating sites, though with less affinity than Ca2+.  相似文献   

2.
Exocytosis of secretory vesicles results in the release of insulin from pancreatic β-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human β-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 μM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human β-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.  相似文献   

3.
Capacitance measurements of exocytosis were combined with carbon fibre amperometry for time-resolved measurements of the properties of secretion in single, insulin-secreting, mouse pancreatic beta-cells pre-loaded with the amine serotonin (5-HT). Glucose-induced electrical activity was associated with the appearance of brief and transient amperometric currents reflecting the serotonin co-released with insulin. The integrated amperometric responses resulting from voltage-clamp depolarisations were proportional to the corresponding increase in cell capacitance. Both parameters exhibited U-shaped relationships to the membrane potential with maximums around 0 mV. There was a variable latency (40-730 ms, average 230 ms) between the onset of the depolarisation and the amperometric current. During high-frequency repetitive stimulation, a progressive decrease in the exocytotic capacity ("depression") was observed. This was paralleled by a corresponding reduction of the amperometric responses. Using the carbon fibre to map the beta-cell for release sites indicated that exocytosis was confined to the part of the cell containing the highest density of secretory granules. Two types of amperometric responses were observed. In about 50% of the cells, a smooth increase was observed with no discernible discrete events. In the remaining cells, the amperometric records contained large spikes. These were ten or more times larger than that expected for the fusion of individual secretory granules. We propose that these large spikes reflect the exocytosis of multigranular complexes formed inside the beta-cell prior to exocytosis.  相似文献   

4.
We describe three voltage-dependent inward currents in human pancreatic -cells. First, a rapidly inactivating Na+ current, blocked by tetrodotoxin (TTX) is seen upon brief depolarization to or beyond –40 mV. Second, a transient, low-voltage-activated (LVA), amiloride-blockable Ca2+ current is seen upon depolarization to or beyond –55 mV; it inactivates within less than 1s of sustained depolarization to –40 mV. Third, a more sustained, high-voltage-activated (HVA) Ca2+ current, which shows variable sensitivity to dihydropyridines is seen upon depolarization to or beyond –40 mV, and thereafter slowly inactivates over a time course of many seconds. Our pharmacological evidence suggests that all three currents contribute to action potential initiation and upstroke when the background membrane potential (V m) is equal or negative to –45 to –40 mV, a situation often induced by glucose concentrations (5–6 mM) in the range of those seen post-prandially. Consistent with this, TTX drastically reduces both transient and sustained insulin secretion in the presence of 5–6 mM glucose, but has little effect in 10 mM glucose, at which concentration cells rapidly depolarize to –35 mV, a V m sufficient to rapidly inactivate Na+ and LVA Ca2+ currents.  相似文献   

5.
High-voltage-activated (HVA) Ba2+ currents of rat insulinoma (RINm5F) and human pancreatic -cells were tested for their sensitivity to dihydropyridines (DHPs), -conotoxin (-CgTx) and noradrenaline. In RINm5F cells, block of HVA currents by nimodipine, nitrendipine and nifedipine was voltage- and dose-dependent (apparent K D<37 nM) and largely incomplete even at saturating doses of DHPs (mean 53%, at 10 M and 0 mV). Analysis of slow tail currents in Bay K 8644-treated cells indicated the existence of Bay K 8644-insensitive channels that turned on at slightly more positive voltages and deactivated more quickly than Bay K 8644-modified channels. DHP Ca2+ agonists and antagonists in human -cells had similar features to RINm5F cells except that DHP block was more pronounced (76%, at 10 M and 0 mV) and Bay K 8644 action was more effective, suggesting a higher density of L-type Ca2+ channels in these cells. In RINm5F cells, but not in human -cells, DHP-resistant currents were sensitive to -CgTx. The toxin depressed 10–20% of the DHP-resistant currents sparing a residual current (25–35%) with similar voltage-dependent characteristics and Ca2+/Ba2+ permeability. Noradrenaline (10 M) exhibited different actions on the various HVA current components: (1) it prolonged the activation kinetics of -CgTx-sensitive currents, (2) it depressed by about 20% the size of DHP-sensitive currents, and (3) it had little or no effects on the residual DHP- and -CgTx-resistant current although intracellularly applied guanosine 5-O-(3-thiotriphosphate) (GTP--S) prolonged its activation time course. The first action was clearly voltage-dependent and most evident in RINm5F cells that displayed neuronal-like processes. The second was observed more frequently, was voltage-independent and fully blocked by saturating doses of nifedipine (10 M). Both actions were prevented by intracellular perfusion with guanosine 5-O-(2-thiodiphosphate) (GDP--S). Our data suggest that beside a majority of L-type channels, RINm5F and human pancreatic -cells may express a variable fraction of DHP-insensitive channels that may be involved in the control of insulin secretion during -cell activity.  相似文献   

6.
The effect of internal Cl on the K-ATP channel of pancreatic ß-cells was examined. Reducing Cl from 140mM to 14mM potentiated channel activity (NPo) 4.5 fold in 60% of patches but was without effect in 40% of patches. The Ki for channel inhibition by ATP was not changed. The inhibitory effect of Cl interacted with the stimulatory action of MgGDP. In 140mM Cl, ImM MgGDP increased NPo in Cl-sensitive patches only: when NPo was potentiated by 14mM Cl, no further increase was produced by MgGDP. These observations suggest that MgGDP and low Cl solution may increase channel activity via a similar mechanism.  相似文献   

7.
Pancreatic β cells respond to increases in glucose concentration with enhanced metabolism, the closure of ATP-sensitive K+ channels and electrical spiking. The latter results in oscillatory Ca2+ influx through voltage-gated Ca2+ channels and the activation of insulin release. The relationship between changes in cytosolic and mitochondrial free calcium concentration ([Ca2+]cyt and [Ca2+]mit, respectively) during these cycles is poorly understood. Importantly, the activation of Ca2+-sensitive intramitochondrial dehydrogenases, occurring alongside the stimulation of ATP consumption required for Ca2+ pumping and other processes, may exert complex effects on cytosolic ATP/ADP ratios and hence insulin secretion. To explore the relationship between these parameters in single primary β cells, we have deployed cytosolic (Fura red, Indo1) or green fluorescent protein-based recombinant-targeted (Pericam, 2mt8RP for mitochondria; D4ER for the ER) probes for Ca2+ and cytosolic ATP/ADP (Perceval) alongside patch-clamp electrophysiology. We demonstrate that: (1) blockade of mitochondrial Ca2+ uptake by shRNA-mediated silencing of the uniporter MCU attenuates glucose- and essentially blocks tolbutamide-stimulated, insulin secretion; (2) during electrical stimulation, mitochondria decode cytosolic Ca2+ oscillation frequency as stable increases in [Ca2+]mit and cytosolic ATP/ADP; (3) mitochondrial Ca2+ uptake rates remained constant between individual spikes, arguing against activity-dependent regulation (“plasticity”) and (4) the relationship between [Ca2+]cyt and [Ca2+]mit is essentially unaffected by changes in endoplasmic reticulum Ca2+ ([Ca2+]ER). Our findings thus highlight new aspects of Ca2+ signalling in β cells of relevance to the actions of both glucose and sulphonylureas.  相似文献   

8.
 The effects of α1-adrenoceptor stimulation on intracellular Ca2+ transients, contractility and L-type Ca2+ current (I Ca,L) were studied in single cells isolated from ventricles of guinea-pig hearts. The aim of our study was to elucidate the mechanisms of the positive inotropic effect of α1-adrenergic stimulation by focussing on the role of protein kinase C (PKC). Phenylephrine, an α1-adrenergic agonist, at concentrations of 50–100 μM elicited a biphasic inotropic response: a transient negative inotropic response (22.9±6.0% of control) followed by a sustained positive inotropic response (61.0±8.4%, mean±SE, n=12). The Ca2+ transient decreased by 10.2±3.9% during the negative inotropic phase, while it increased by 67.7±10% (n=12) during the positive inotropic phase. These effects were inhibited by prazosin (1 μM), a α1-adrenergic antagonist. Phenylephrine increased the I Ca,L by 60.8±21% (n=5) during the positive inotropic phase. To determine whether activation of PKC is responsible for the increases in Ca2+ transients, contractile amplitude and I Ca,L during α1-adrenoceptor stimulation, we tested the effects of 4β-phorbol 12-myristate 13-acetate (PMA), a PKC activator, and of bisindolylmaleimide I (GF109203X) and staurosporine, both of which are PKC inhibitors. PMA mimicked phenylephrine’s effects on Ca2+ transients, contractile amplitude and I Ca,L. PMA (100 nM) increased the Ca2+ transient, contractile amplitude and I Ca,L by 131±17%, 137±25% (n=8), and 81.1±26% (n=5), respectively. Prior exposure to GF109203X (1 μM) or staurosporine (10 nM) prevented the phenylephrine-induced increases in Ca2+ transients, contractile amplitude and I Ca,L. Our study suggests that during α1-adrenoceptor stimulation increase in I Ca,L via PKC causes an increase in Ca2+ transients and thereby in the contractile force of the ventricular myocytes. Received: 16 July 1998 / Received after revision and accepted: 20 October 1998  相似文献   

9.
The inside-out configuration of the patchclamp method was used to study the effects of trypsin on the activity of ATP-sensitive potassium (K-ATP) channels from isolated mouse pancreatic -cells. Trypsin (20 g/ml) irreversibly enhanced channel activity around twofold by reducing the interburst intervals without altering the burst kinetics. No effect on the single channel conductance or the inward rectification produced by internal Mg2+ was observed: however, the protease did reduce the inhibitory effect of Mg2+ on channel activity. Trypsin both prevented rundown of K-ATP channel activity and reactivated the channels after complete rundown. These effects of trypsin were absent in the presence of trypsin inhibitor. The protease also reduced the inhibitory effect of ATP on channel activity, increasing the dissociation constant from 7 to 49 M. Trypsin removed the activating effect of ADP (0.1 mmol/l) on channel activity and reduced the inhibitory effect of tolbutamide (0.5 mmol/l). Carboxypeptidase A did not activate K-ATP channels in excised patches, although it was able to slightly reactivate channels after complete rundown, whereas chymotrypsin increased K-ATP channel activity but it did not produce reactivation. The effects of papain were similar to those of trypsin.  相似文献   

10.
Quantal release of adenosine triphosphate (ATP) was monitored in rat pancreatic β-cells expressing P2X2 receptors. Stimulation of exocytosis evoked rapidly activating and deactivating ATP-dependent transient inward currents (TICs). The unitary charge (q) of the events recorded at 0.2 μM [Ca2+]i averaged 4.3 pC. The distribution of the 3√q of these events could be described by a single Gaussian. The rise times averaged ∼5 ms over a wide range of TIC amplitudes. In β-cells preloaded with 5-hydroxytryptamine (5-HT; accumulating in insulin granules), ATP was coreleased with 5-HT during >90% of the release events. Following step elevation of [Ca2+]i to ∼5 μM by photo release of caged Ca2+, an increase in membrane capacitance was observed after 33 ms, whereas ATP release first became detectable after 43 ms. The step increase in [Ca2+]i produced an initial large TIC followed by a series of smaller events that echoed the changes in membrane capacitance (ΔC m). Mathematical modeling suggests that the large initial TIC reflects the superimposition of many unitary events. Exocytosis, measured as ΔC m or TICs, was complete within 2 s after elevation of [Ca2+]i with no sign of endocytosis masking the capacitance increase. The relationship between total charge (Q) and ΔC m was linear with a slope of ∼1.2 pC/fF. The latter value predicts a capacitance increase of 3.6 fF for the observed mean value of q, close to that expected for exocytosis of individual insulin granules. Our results indicate that measurements of ATP release and ΔC m principally (≥85–95%) report exocytosis of insulin granules.  相似文献   

11.
We have examined the temporal relationship between intracellular Ca2+ concentration ([Ca2+]i) and secretion in single intact pancreatic -cells. Secretion was detected as the release of 5-hydroxytryptamine from pre-loaded -cells, using amperometry, and changes in [Ca2+]i were monitored by microfluorimetry. Stimulation of -cells by elevation of the extracellular K+ concentration ([K+]o), acetylcholine or glucose increased [Ca2+]i and, after a delay of 2–7 s, evoked amperometric currents. In the presence of glucose, we observed oscillations in [Ca2+]i which were associated with oscillations in the amplitude and frequency of amperometric currents: however, the temporal correlation was not exact, suggesting that there is a significant latency between the increase in average [Ca2+]i and exocytosis. Both the amplitude and frequency of the amperometric currents elicited by 50 mM KCl declined with successive stimulation, but were restored by agents which elevate intracellular adenosine 3'5:cyclic monophosphate (cAMP). This suggests that -cells may possess a readily releasable pool of granules which is replenished by cAMP. The variable amplitude of the amperometric currents is discussed in terms of a model in which several secretory granules fuse simultaneously with the plasma membrane.  相似文献   

12.

Background

Chemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro.

Method

Probe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites.

Results

The results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively.

Conclusions

These results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs.  相似文献   

13.
In glucose-stimulated pancreatic -cells, the membrane potential alternates between a hyperpolarized silent phase and a depolarized phase with Ca2+ action potentials. The molecular and ionic mechanisms underlying these bursts of electrical activity remain unknown. We have observed that 10.2–12.8 mM Ca2+, 1 M Bay K 8644 and 2 mM tetraethylammonium (TEA) trigger bursts of electrical activity and oscillations of intracellular free Ca2+ concentration ([Ca2+]i) in the presence of 100 M tolbutamide. The [Ca2+]i was monitored from single islets of Langerhans using fura-2 microfluorescence techniques. Both the high-Ca2+ and Bay-K-8644 evoked [Ca2+]i oscillations overshot the [Ca2+]i recorded in tolbutamide. Nifedipine (10–20 M) caused an immediate membrane hyperpolarization, which was followed by a slow depolarization to a level close to the burst active phase potential. The latter depolarization was accompanied by suppression of spiking activity. Exposure to high Ca2+ in the presence of nifedipine caused a steady depolarization of approximately 8 mV. Ionomycin (10 M) caused membrane hyperpolarization in the presence of 7.7 mM Ca2+, which was not abolished by nifedipine. Charybdotoxin (CTX, 40–80 nM), TEA (2 mM) and quinine (200 M) did not suppress the high-Ca2+-evoked bursts. It is concluded that: (1) the channel underlying the burst is sensitive to [Ca2+]i rises mediated by Ca2+ influx through L-type Ca2+ channels, (2) both the ATP-dependent K+ channel and the CTX and TEA-sensitive Ca2+-dependent K+ channel are highly unlikely to provide the pacemaker current underlying the burst. We propose that the burst is mediated by a distinct Ca2+-dependent K+ channel and/or by [Ca2+]idependent slow processes of inactivation of Ca2+ currents.  相似文献   

14.
Using the patch-clamp method, we studied the mechanism of depolarization of rat pancreatic beta-cells induced by glucagon-like peptide 1 (7-36) amide (GLP-1). GLP-1 caused depolarization in a concentration-dependent manner (0.2-100 nM). Exendin (9-39) amide, a GLP-1 receptor antagonist, prevented the GLP-1-induced depolarization. GLP-1 reduced tolbutamide-sensitive membrane currents evoked by voltage ramps from -90 to -50 mV, recorded in the perforated whole-cell configuration, suggesting that GLP-1 decreased the activity of the ATP-sensitive K+ channel (KATP). This GLP-1 effect was prevented by exendin (9-39) amide. In cells treated with Rp-cAMPS, an inhibitor of the cAMP-dependent protein kinase (PKA), GLP-1 still caused depolarization and reduced the whole-cell membrane current through KATP. Examined in the cell-attached configuration, 20 nM GLP-1, applied out of the patch, had little effect on KATP activity. In the inside-out configuration, the open time probability and the single-channel conductance of KATP in the absence of ATP inside the membrane were unaffected by the presence of 20 nM GLP-1 in the pipette. In both conditions, application of ATP to the inside of the membrane reduced KATP activity. The half-maximal concentrations (ki) of ATP were 11.6 microM without and 5.6 microM with 20 nM GLP-1 in the pipette (P<0.05). The values of the Hill coefficient (h) were 1.03 without and 1.01 with GLP-1. We conclude that GLP-1 reduces KATP activity by elevating the sensitivity of KATP to ATP, resulting in depolarization of pancreatic beta-cells. This GLP-1 action is independent of the cAMP signalling pathway.  相似文献   

15.
Atrial myocytes obtained by enzymatic perfusion of hearts from adult guinea-pigs and cultured for 0–14 days were studied using different configurations of the patch-clamp technique. Activation of muscarinic K current [I K(ACh)] in whole-cell voltage-clamp mode by strongly diluted sera from various sources could be mimicked by corresponding concentrations of albumin, but not by delipidated (fatty-acid-free) samples of albumin. In cell-attached membrane patches activity of I K(ACh) channels was significantly higher than basal I K(ACh) channel activity, if the pipette contained serum, whereas application of serum-containing solution to the cell outside the patch did not affect channel activity. In isolated inside-out membrane patches, strong I K(ACh) activation by internal guanosine triphosphate (GTP, 5 M) was observed if the pipette contained serum. If no activator was presented to the outer face of the membrane, only weak opening activity was observed during bath application of GTP. These results demonstrate that the serum factor which causes activation of I K(ACh) is associated with albumin. Furthermore activation of I K(ACh) by that factor proceeds analogous to ACh or adenosine, i. e. via a membrane-delimited receptor, G-protein, channel interaction.  相似文献   

16.
A major problem in medical research is to translate in vitro observations into the living organism. In this perspective, we discuss ongoing efforts to non-invasively image pancreatic islets/β-cells by techniques, such as magnetic resonance imaging and positron emission tomography, and present an experimental platform, which allows in vivo imaging of pancreatic β-cell mass and function longitudinally and at the single-cell level. Following transplantation of pancreatic islets into the anterior chamber of the eye of mice and rats, these islets are studied by functional microscopic imaging. This imaging platform can be utilized to address fundamental aspects of pancreatic islet cell biology in vivo in health and disease. These include the dynamics of pancreatic islet vascularization, islet cell innervation, signal-transduction, change in functional β-cell mass and immune responses. Moreover, we discuss the feasibility of studying human islet cell physiology and pathology in vivo as well as the potential of using the anterior chamber of the eye as a site for therapeutic transplantation in type 1 diabetes mellitus.  相似文献   

17.
The Goto–Kakizaki (GK) rat offers a genetic model of type 2 diabetes and displays profoundly defective insulin secretion leading to basal hyperglycemia. This animal is widely used for studying type 2 diabetes. However, the morphological characteristics of the pancreatic islets of Langerhans in GK rats are not fully understood. The present study sought to clarify this issue using immunohistochemical and electron microscopic techniques. GK rats were killed at 7, 14, 21, and 35 weeks of age. Structural islet changes were not observed at 7 weeks old. At 14 and 21 weeks of age, GK rats displayed histopathological islet changes. The general shape of islets became irregular, and immunoreaction of β-cells against antiinsulin appeared diffusely weakened. Electron microscopy revealed that the numbers of so-called β-granules decreased and the numbers of immature granules increased. The Golgi apparatus of β-cells was developed and the cisternae of rough endoplasmic reticulum were often dilated, indicating hyperfunction of the cells. However, at 35 weeks old, immunoreactivities of dispersed β-cells into the exocrine portion recovered, and numbers of secretory granules increased again and features of the cell organelles did not display hyperfunction. These results suggest that insulin deficiency in GK rats is not caused by simple dysfunction and/or degeneration of β-cells but rather by more complicated events within cells.  相似文献   

18.
19.
Variants in genes involved in pancreatic β-cell development and function are known to cause monogenic forms of type 2 diabetes and are also associated with complex form. In this study, we studied the genetic association of polymorphisms in such important genes with type 2 diabetes in the high-risk Indians. We genotyped 91 polymorphisms in 19 genes (ABCC8, HNF1A, HNF1B, HNF4A, INS, INSM1, ISL1, KCNJ11, MAFA, MNX1, NEUROD1, NEUROG3, NKX2.2, NKX6.1, PAX4, PAX6, PDX1, USF1 and WFS1) in 2025 unrelated North Indians of Indo-European ethnicity comprising of 1019 diabetic and 1006 non-diabetic subjects. HNF4A promoter P2 polymorphisms rs1884613 and rs2144908, which are in high linkage disequilibrium, showed significant association with type 2 diabetes (odds ratio (OR)=1.37 (95% confidence interval (CI) 1.19-1.57), P=9.4 × 10(-6) for rs1884613 and OR=1.37 (95%CI 1.20-1.57), P=6.0 × 10(-6) for rs2144908), as previously shown in other populations. We observed body mass index-dependent association of these variants with type 2 diabetes in normal-weight/lean subjects. Variants in USF1, ABCC8, ISL1 and KCNJ11 showed nominal association, while haplotypes in these genes were significantly associated. rs3812704 upstream of NEUROG3 significantly increased risk for type 2 diabetes in normal-weight/lean subjects (OR=1.68 (95%CI 1.25-2.24), P=4.9 × 10(-4)). Thus, pancreatic β-cell development and function genes contribute to susceptibility to type 2 diabetes in North Indians.  相似文献   

20.
Stimulation of rat lacrimal acinar cells with acetylcholine (ACh) and the -adrenergic agonist isoprenaline causes a rapid increase in inositol phosphates with 1–4 phosphate groups, resulting in release of Ca2+ from intracellular stores. Stimulation with the -adrenergic agonist phenylephrine, however, causes a release of Ca2+ from internal stores which is 36% of that observed with ACh stimulation, but without inositol phosphate production. This Ca2+ rise was completely inhibited by 100 M ryanodine. Adrenaline (causing activation of both - and -adrenergic receptors) induces a Ca2+ release with inositol phosphate synthesis identical to that occuring in the -adrenergic response. Thus, the signalling pathway for -adrenergic stimulation occurs via a path different from that which releases Ca2+ via muscarinic cholinergic and -adrenergic stimulation. In permeabilized lacrimal acinar cells cyclic adenosine 5-diphosphoribose (cADP-ribose) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P 3] cause release of Ca2+ from intracellular stores. The Ca2+ release evoked by cADP-ribose, but not by Ins(1,4,5)P 3, was abolished by 100 M ryanodine, implicating a possible involvement of cADP-ribose in phenylephrine-induced Ca2+ signalling. When the intracellular free Ca2+ concentration ([Ca2+]i) is raised by application of ionomycin, inositol phosphates are synthesized with a half-maximal effect seen at 425 nM. In contrast, loading cells with the Ca2+ chelator 1,2-bis(2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) reduced the adrenaline-induced inositol phosphate synthesis by 27%. The stimulation-induced rise in [Ca2+]i, therefore, appears to cause further synthesis of inositol phosphates, thereby amplifying the receptor-mediated response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号