首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of recurrent excitatory synapses between pyramidal cells in the hippocampal CA1 region has been known for some time yet little is known about activity-dependent forms of plasticity at these synapses. Here we demonstrate that under certain experimental conditions, Schaffer collateral/commissural fiber stimulation can elicit robust polysynaptic excitatory postsynaptic potentials due to recurrent synaptic inputs onto CA1 pyramidal cells. In contrast to CA3 pyramidal cell inputs, recurrent synapses onto CA1 pyramidal cells exhibited robust paired-pulse depression and a sustained, but rapidly reversible, depression in response to low-frequency trains of Schaffer collateral fiber stimulation. Blocking GABA(B) receptors abolished paired-pulse depression but had little effect on low-frequency stimulation (LFS)-induced depression. Instead, LFS-induced depression was significantly attenuated by an inhibitor of A1 type adenosine receptors. Blocking the postsynaptic effects of GABA(B) and A1 receptor activation on CA1 pyramidal cell excitability with an inhibitor of G-protein-activated inwardly rectifying potassium channels had no effect on either paired-pulse depression or LFS-induced depression. Thus activation of presynaptic GABA(B) and adenosine receptors appears to have an important role in activity-dependent depression at recurrent synapses. Together, our results indicate that CA3-CA1 and CA1-CA1 synapses exhibit strikingly different forms of short-term synaptic plasticity and suggest that activity-dependent changes in recurrent synaptic transmission can transform the CA1 region from a sparsely connected recurrent network into a predominantly feedforward circuit.  相似文献   

2.
Effects of temperature increase on the neuronal activity of hippocampal CA2-CA1 regions were examined by using optical and electrophysiological recording techniques. Stimulation of the Schaffer collaterals at the CA2 region evoked depolarizing optical signals that spread toward the CA1 region at 32 degrees C. The optical signal recorded by 49 pixels was characterized by fast and slow components that were closely related to presynaptic action potentials and excitatory postsynaptic responses, respectively. The optical signal was depressed by temperature increase to 38-40 degrees C. The temperature increase to 38 degrees C produced a hyperpolarization and a depression of the excitatory postsynaptic potential (EPSP) in single hippocampal CA1 pyramidal neurons. The depression of the neuronal activity induced by temperature increase was attenuated by application of glucose (22 mM) or pyruvate (22 mM). Adenosine (200 microM) did not block the presynaptic action potential but strongly depressed the excitatory postsynaptic response. 8-Cyclopentyl-1,3-dimethylxanthine (8-CPT) (10 microM), an antagonist for adenosine A(1) receptors, attenuated the depression of the excitatory postsynaptic response but not the inhibition of the presynaptic action potential at 38 degrees C. These results suggest that adenosine mediates the high-temperature-induced depression of the excitatory synaptic transmission but not that of action potential propagation in rat CA1 neurons.  相似文献   

3.
We investigated whether adenosine neuromodulation is involved in a benzodiazepine (midazolam)-induced depression of excitatory synaptic transmissions in the CA1 and dentate gyrus (DG) regions in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs), evoked by electrical stimulation of the CA1-Schaffer collateral or the DG-perforant path, were recorded with extracellular microelectrodes from CA1-stratum radiatum or DG-stratum moleculare in oxygenated ACSF. The initial slope of the fEPSPs was analyzed for assessing the drug effects. Midazolam (1 microM) transiently depressed CA1- and DG-fEPSPs. The fEPSPs were depressed to approximately 75% of the control values, and then gradually recovered. The depression was not affected by bicuculline, a GABAA receptor antagonist, although it was completely antagonized by aminophylline, an adenosine receptor antagonist. Dipyridamole (5 microM), an adenosine uptake inhibitor, depressed the fEPSPs in a similar manner to midazolam. An adenosine deaminase inhibitor, EHNA, also transiently depressed the fEPSPs, but in a different manner. Exogenous adenosine persistently depressed the fEPSPs. The effects of the drugs were not significantly different in the CA1 and DG regions. The results suggest that midazolam (1 microM) depresses excitatory synaptic transmissions through the adenosine neuromodulatory system by inhibiting adenosine uptake in the CA1 and DG regions of the hippocampus.  相似文献   

4.
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom, on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 microM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 microM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the presynaptic axons, causing summation of EPSPs. In the presence of 10 microM CNQX and 50 microM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors.  相似文献   

5.
Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 and 24 h after transient forebrain ischemia in rats. The amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased significantly 12 h after ischemia and returned to control levels 24 h following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature inhibitory postsynaptic current (mIPSC) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia.  相似文献   

6.
Schaffer collateral axons form excitatory synapses that are distributed across much of the dendritic arborization of hippocampal CA1 pyramidal neurons. Remarkably, AMPA-receptor-mediated miniature EPSP amplitudes at the soma are relatively independent of synapse location, despite widely different degrees of dendritic filtering. A progressive increase with distance in synaptic conductance is thought to produce this amplitude normalization. In this study we examined the mechanism(s) responsible for spatial scaling by making whole-cell recordings from the apical dendrites of CA1 pyramidal neurons. We found no evidence to suggest that there is any location dependence to the range of cleft glutamate concentrations found at Schaffer collateral synapses. Furthermore, we observed that release probability ( P r), paired-pulse facilitation and the size of the readily releasable vesicular pool are not dependent on synapse location. Thus, there do not appear to be any changes in the fundamental presynaptic properties of Schaffer collateral synapses that could account for distance-dependent scaling. On the other hand, two-photon uncaging of 4-methoxy-7-nitroindolinyl-caged l -glutamate onto isolated dendritic spines shows that the number of postsynaptic AMPA receptors per spine increases with distance from the soma. We conclude, therefore, that the main synaptic mechanism involved in the production of distance-dependent scaling of Schaffer collateral synapses is an elevated postsynaptic AMPA receptor density.  相似文献   

7.
Jang IS  Nakamura M  Ito Y  Akaike N 《Neuroscience》2006,138(1):25-35
Mossy fiber-derived giant spontaneous miniature excitatory postsynaptic currents have been suggested to be large enough to generate action potentials in postsynaptic CA3 pyramidal neurons. Here we report on the functional roles of presynaptic GABA(A) receptors on excitatory terminals in contributing to spontaneous glutamatergic transmission to CA3 neurons. In mechanically dissociated rat hippocampal CA3 neurons with adherent presynaptic nerve terminals, spontaneous excitatory postsynaptic currents were recorded using conventional whole-cell patch clamp recordings. In most recordings, unusually large spontaneous excitatory postsynaptic currents up to 500 pA were observed. These large spontaneous excitatory postsynaptic currents were highly sensitive to group II metabotropic glutamate receptor activation, and were still observed even after the blockade of voltage-dependent Na(+) or Ca(2+) channels. Exogenously applied muscimol (0.1-3 microM) significantly increased the frequency of spontaneous excitatory postsynaptic currents including the large ones. This facilitatory effect of muscimol was completely inhibited in the presence of 10 microM 6-imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid HBr, a specific GABA(A) receptor antagonist. Pharmacological data suggest that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. In the current-clamp condition, a subset of large spontaneous excitatory postsynaptic potentials triggered action potentials, and muscimol greatly increased the frequency of spontaneous excitatory postsynaptic potential-triggered action potentials in postsynaptic CA3 pyramidal neurons. The results suggest that presynaptic GABA(A) receptors on glutamatergic terminals play an important role in the excitability of CA3 neurons as well as in the presynaptic modulation of glutamatergic transmission onto hippocampal CA3 neurons.  相似文献   

8.
Platelet-activating factor (PAF) is an important inflammatory lipid mediator affecting neural plasticity. In the present study, we demonstrated how PAF affects synaptic efficacy through activation of protein kinases in the rat hippocampal CA1 region. In cultured hippocampal neurons, 10 to 1000 nM PAF stimulated autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphorylation of synapsin I and myristoylated alanine-rich protein kinase C substrate (MARCKS). In hippocampal CA1 slices, field excitatory postsynaptic potentials (fEPSPs) induced by stimulation of the Schaffer collateral/commissural pathways were significantly increased 10–50 min after exposure to 100 to 1000 nM PAF. Immunoblotting analysis showed that 100 nM PAF treatment for 10 or 50 min significantly and persistently increased CaMKII autophosphorylation in the hippocampal CA1 region. Increased protein kinase Cα (PKCα) autophosphorylation was also seen at the same time point after PAF exposure. By contrast, extracellular signal-regulated kinase (ERK) phosphorylation was slightly but significantly increased at 10 min after PAF exposure. Consistent with increased CaMKII autophosphorylation, AMPA-type glutamate receptor subunit 1 (GluR1) (Ser-831) phosphorylation as a CaMKII postsynaptic substrate significantly increased after 10 or 50 min of treatment, whereas synapsin I (Ser-603) phosphorylation as a presynaptic substrate increased at 10 min in the hippocampal CA1 region. Phosphorylation of MARCKS (Ser-152/156) and NMDA receptor subunit 1 (NR1) (Ser-896) as PKCα substrates also significantly increased after 10 min but had not further increased by 50 min in the CA1 region. Increased of fEPSPs induced by PAF treatment completely and/or partly inhibited by KN93 and/or U0126 treatment. These results suggest that PAF induces synaptic facilitation through activation of CaMKII, PKC and ERK in the hippocampal CA1 region.  相似文献   

9.
Activation of metabotropic glutamate receptors (mGluRs) with the group I mGluR selective agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induces a long-term depression (LTD) of excitatory synaptic transmission in the CA1 region of the hippocampus. Here we investigated the potential roles of pre- and postsynaptic processes in the DHPG-induced LTD at excitatory synapses onto hippocampal pyramidal cells in the mouse hippocampus. Activation of mGluRs with DHPG, but not ACPD, induced LTD at both Schaffer collateral/commissural fiber synapses onto CA1 pyramidal cells and at associational/commissural fiber synapses onto CA3 pyramidal cells. DHPG-induced LTD was blocked when the G-protein inhibitor guanosine-5'-O-(2-thiodiphosphate) was selectively delivered into postsynaptic CA1 pyramidal cells via an intracellular recording electrode, suggesting that DHPG depresses synaptic transmission through a postsynaptic, GTP-dependent signaling pathway. The effects of DHPG were also strongly modulated, however, by experimental manipulations that altered presynaptic calcium influx. In these experiments, we found that elevating extracellular Ca(2+) concentrations ([Ca(2+)](o)) to 6 mM almost completely blocked the effects of DHPG, whereas lowering [Ca(2+)](o) to 1 mM significantly enhanced the ability of DHPG to depress synaptic transmission. Enhancing Ca(2+) influx by prolonging action potential duration with bath applications of the K(+) channel blocker 4-aminopyridine (4-AP) also strongly reduced the effects of DHPG in the presence of normal [Ca(2+)](o) (2 mM). Although these findings indicate that alterations in Ca(2+)-dependent signaling processes strongly regulate the effects of DHPG on synaptic transmission, they do not distinguish between potential pre- versus postsynaptic sites of action. We found, however, that while inhibiting both pre- and postsynaptic K(+) channels with bath-applied 4-AP blocked the effects of DHPG; inhibition of postsynaptic K(+) channels alone with intracellular Cs(+) and TEA had no effect on the ability of DHPG to inhibit synaptic transmission. This suggests that presynaptic changes in transmitter release contribute to the depression of synaptic transmission by DHPG. Consistent with this, DHPG induced a persistent depression of both AMPA and N-methyl-D-aspartate receptor-mediated components of excitatory postsynaptic currents in voltage-clamped pyramidal cells. Together our results suggest that activation of postsynaptic mGluRs suppresses transmission at excitatory synapses onto CA1 pyramidal cells through presynaptic effects on transmitter release.  相似文献   

10.
Reductions in extracellular free Ca2+-concentration [( Ca2+]o) result from neuronal activation and can be induced by repetitive electrical stimulation or by application of excitatory amino acids. They reflect Ca2+-movements along its electrochemical gradient into pre- and postsynaptic elements. Amino acid-induced reductions in [Ca2+]o are predominantly caused by postsynaptic Ca2+ entry. Under conditions of blocked chemical synaptic transmission, a presynaptic component of extracellular Ca2+ loss becomes apparent during stimulation of the Schaffer collateral/commissural fibers system in stratum radiatum/moleculare. GABA, both iontophoretically and bath applied, always reduces pre- and postsynaptic components of [Ca2+]o changes. Baclofen regularly affects postsynaptic Ca2+ entry and has frequently also a suppressant action on presynaptic Ca2+ entry in area CA1.  相似文献   

11.
Li H  Henry JL 《Neuroscience》2000,100(1):21-31
The present study was done to determine the possible effects of endogenous adenosine, present in the extracellular fluid of the hippocampal slice, on pyramidal cells in the CA1 region using intracellular recording techniques. Administration of 5 microM of the adenosine receptor antagonist, 8-sulfophenyltheophylline (n=11), induced a depolarization (2.6+/-0.4 mV, mean+/-S.E.M.) with an increase in input resistance (6.7+/-2.1%) in pyramidal cells, and increased the amplitude of the excitatory postsynaptic potentials elicited by stimulation of Schaffer collateral afferents; 50 microM 8-sulfophenyltheophylline (n=68) produced a similar depolarization (3.4+/-1.7 mV) and an increase in input resistance (26+/-3.0%), but also produced spontaneous, synchronized giant excitatory postsynaptic potentials which could generate bursts of spikes. These effects lasted more than 10 min after washout. In the presence of 20 microM 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate receptor antagonist, and 50 microM D-2-amino-5-phosphonovalerate, an N-methyl-D-aspartate receptor antagonist, 50 microM 8-sulfophenyltheophylline (n=4) induced only depolarization (3.1+/-1.3 mV) and an increase in input resistance (23+/-3.8%). In the presence of 20 microM 6-cyano-7-nitro-quinoxaline-2,3-dione only, 50 microM 8-sulfophenyltheophylline (n=7) induced not only the depolarization with an increase in input resistance, but also the occurrence of small-amplitude (11+/-5.6 mV), fast rising, all-or-none, voltage-sensitive spikes of 2-3 ms duration, which were attributed to a dendritic origin. The latency of these dendritic spikes in response to stimulation of Schaffer collateral afferents lasted up to 21 ms. These dendritic spikes could generate one or more action potentials, depending on the resting membrane potential and the frequency of the dendritic spikes. In the presence of 50 microM 8-sulfophenyltheophylline plus 20 microM 6-cyano-7-nitro-quinoxaline-2,3-dione, 50 microM D-2-amino-5-phosphonovalerate blocked the spontaneous dendritic spikes (n=4). In the presence of 5 microM 8-sulfophenyltheophylline, 200 microM N-methyl-D-aspartate (n=5) increased the occurrence of dendritic spikes.These data indicate that adenosine present in the extracellular fluid of the hippocampal slice tonically inhibits not only (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-mediated synaptic transmission, but also voltage- and N-methyl-D-aspartate receptor-sensitive dendritic spikes. Endogenous adenosine acting on adenosine A(1) receptors is thus visualized as a control to prevent the genesis of synchronized giant excitatory postsynaptic potentials. In our experiments, blockade of this tonic activation of adenosine receptors appears to have altered the origins of action potentials and led to epileptiform firing in CA1 pyramidal cells.  相似文献   

12.
Shen KZ  Johnson SW 《Neuroscience》2003,116(1):99-106
Whole-cell patch clamp recordings were made from the subthalamic nucleus in rat brain slice preparations to examine the effect of adenosine on inhibitory and excitatory synaptic transmission. Adenosine reversibly inhibited both GABA-mediated inhibitory and glutamate-mediated excitatory postsynaptic currents. Adenosine at 100 microM reduced the amplitude of inhibitory and excitatory postsynaptic currents by 42+/-5% and 34+/-6%, respectively. Reductions in the amplitude of both inhibitory and excitatory postsynaptic currents were accompanied by increases in paired-pulse ratios. In addition, adenosine decreased the frequency of spontaneous miniature excitatory postsynaptic currents but had no effect on their amplitude. These results are consistent with a presynaptic site of action. The adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine completely reversed the adenosine-induced attenuation of inhibitory and excitatory postsynaptic currents, but 8-cyclopentyl-1,3-dipropylxanthine alone had no effect on synaptic currents evoked at 0.1 Hz. However, 8-cyclopentyl-1,3-dipropylxanthine inhibited a time-dependent depression of excitatory postsynaptic currents that was normally observed in response to a 5 Hz train of stimuli, suggesting that endogenous adenosine could be released during higher frequencies of stimulation. These results suggest that adenosine inhibits synaptic release of GABA and glutamate by stimulation of presynaptic A(1) receptors in the subthalamic nucleus.  相似文献   

13.
The relationship between step reductions in inspired oxygen and the amplitude of evoked field excitatory postsynaptic potentials (fEPSPs) recorded from hippocampal CA1 neurons was examined in anaesthetized rats with a unilateral common carotid artery occlusion. The amplitudes of fEPSPs recorded from the hippocampus ipsilateral to the occlusion were significantly more depressed with hypoxia than were the fEPSPs recorded from the contralateral hippocampus. The adenosine A1-selective antagonist, 8-cyclopentyl-1,3-dimethylxanthine (8-CPT), blunted the hypoxic depression of the fEPSP. Tissue partial pressure of oxygen ( P tiss,O2) was measured in the ipsilateral and contralateral hippocampus using glass Clark-style microelectrodes. P tiss,O2 fell to similar levels as a function of inspired oxygen in the ipsilateral and contralateral hippocampus, and in the ipsilateral hippocampus after administration of 8-CPT. Hippocampal blood flow (HBF) was measured using laser Doppler flowmetry. A decline in HBF was associated with systemic hypoxia in both hippocampi. HBF, as a function of inspired oxygen, fell significantly more in the ipsilateral than in the contralateral hippocampus. We conclude that endogenous adenosine acting at the neuronal A1 receptor plays a major role in the depression of synaptic transmission during hypoxic ischaemia. The greater susceptibility of the fEPSP in the ipsilateral hippocampus to systemic hypoxia cannot be explained entirely by differences in P tiss,O2 or HBF between the two hemispheres.  相似文献   

14.
Electrophysiological investigation of basal synaptic transmission and synaptic plasticity in the CA1 region of the hippocampus was carried out in anesthetized obese Zucker rats (OZR). Comparison of the input/output curves of basal field excitatory postsynaptic potential indicates that these are similar in both the OZR and its lean counterpart suggesting that basal synaptic transmission is intact in the OZR. However, high frequency stimulation evokes long-term potentiation (LTP) in the lean rat but not in the OZR. Since post-tetanic potentiation and paired pulse facilitation, forms of short-term potentiation of presynaptic origin, are also severely impaired in the OZR, the results imply that impairment of CA1 hippocampal LTP in these obese rats may be due, in part, to impaired presynaptic function. The results emphasize the potential deleterious effect of obesity on learning and memory functions of the CNS.  相似文献   

15.
The mammalian hippocampus, together with subcortical and cortical areas, is responsible for some forms of learning and memory. Proper hippocampal function depends on the highly dynamic nature of its circuitry, including the ability of synapses to change their strength for brief to long periods of time. In this study, we focused on a transient depression of glutamatergic synaptic transmission at Schaffer collateral synapses in acute hippocampal slices. The depression of evoked excitatory postsynaptic current (EPSC) amplitudes, herein called transient depression, follows brief trains of synaptic stimulation in stratum radiatum of CA1 and lasts for 2-3 min. Depression results from a decrease in presynaptic glutamate release, as NMDA-receptor-mediated EPSCs and composite EPSCs are depressed similarly and depression is accompanied by an increase in the paired-pulse ratio. Transient depression is prevented by blockade of metabotropic glutamate and acetylcholine receptors, presumably located presynaptically. These two receptor types--acting together--cause depression. Blockade of a single receptor type necessitates significantly stronger conditioning trains for triggering depression. Addition of an acetylcholinesterase inhibitor enables depression from previously insufficient conditioning trains. Furthermore, a strong coincident, but not causal, relationship existed between presynaptic depression and postsynaptic internal Ca(2+) release, emphasizing the potential importance of functional interactions between presynaptic and postsynaptic effects of convergent cholinergic and glutamatergic inputs to CA1. These convergent afferents, one intrinsic to the hippocampus and the other likely originating in the medial septum, may regulate CA1 network activity, the induction of long-term synaptic plasticity, and ultimately hippocampal function.  相似文献   

16.
Imidazole-4-acetic acid-ribotide (IAA-RP), an endogenous agonist at imidazoline receptors (I-Rs), is a putative neurotransmitter/regulator in mammalian brain. We studied the effects of IAA-RP on excitatory transmission by performing extracellular and whole cell recordings at Schaffer collateral-CA1 synapses in rat hippocampal slices. Bath-applied IAA-RP induced a concentration-dependent depression of synaptic transmission that, after washout, returned to baseline within 20 min. Maximal decrease occurred with 10 μM IAA-RP, which reduced the slope of field extracellular postsynaptic potentials (fEPSPs) to 51.2 ± 5.7% of baseline at 20 min of exposure. Imidazole-4-acetic acid-riboside (IAA-R; 10 μM), the endogenous dephosphorylated metabolite of IAA-RP, also produced inhibition of fEPSPs. This effect was smaller than that produced by IAA-RP (to 65.9 ± 3.8% of baseline) and occurred after a further 5- to 8-min delay. The frequency, but not the amplitude, of miniature excitatory postsynaptic currents was decreased, and paired-pulse facilitation (PPF) was increased after application of IAA-RP, suggesting a principally presynaptic site of action. Since IAA-RP also has low affinity for α(2)-adrenergic receptors (α(2)-ARs), we tested synaptic depression induced by IAA-RP in the presence of α(2)-ARs, I(1)-R, or I(3)-R antagonists. The α(2)-AR antagonist rauwolscine (100 nM), which blocked the actions of the α(2)-AR agonist clonidine, did not affect either the IAA-RP-induced synaptic depression or the increase in PPF. In contrast, efaroxan (50 μM), a mixed I(1)-R and α(2)-AR antagonist, abolished the synaptic depression induced by IAA-RP and abolished the related increase in PPF. KU-14R, an I(3)-R antagonist, partially attenuated responses to IAA-RP. Taken together, these data support a role for IAA-RP in modulating synaptic transmission in the hippocampus through activation of I-Rs.  相似文献   

17.
The purpose of this study was to investigate the pre- and postsynaptic mechanisms that contribute to synaptic facilitation in the myenteric plexus of the trinitrobenzene sulphonic acid-inflamed guinea-pig distal colon. Intracellular recordings of evoked fast excitatory postsynaptic potentials (fEPSPs) in myenteric S neurons were evaluated, and the density of synaptic terminals was morphometrically analysed by transmission electron microscopy. In inflamed tissue, fEPSPs were reduced to control levels by the protein kinase A (PKA) inhibitor, H89, but H89 did not affect the fEPSPs in control tissue. This PKA activation in inflamed tissue did not appear to involve 5-HT4 receptors because the antagonist/inverse agonist, GR 125487, caused comparable decreases of fEPSPs in both tissues. Inhibition of BK channels with iberiotoxin did not alter the fEPSPs in inflamed tissue, but increased the fEPSPs in control tissue to the amplitude detected in inflamed tissue. During trains of stimuli, run-down of EPSPs was less extensive in inflamed tissue and there was a significant increase in the paired pulse ratio. Depolarizations in response to exogenous neurotransmitters were not altered in inflamed tissue. These inflammation-induced changes were not accompanied by alterations in the pharmacological profile of EPSPs, and no changes in synaptic density were detected by electron microscopy. Collectively, these data indicate that synaptic facilitation in the inflamed myenteric plexus involves a presynaptic increase in PKA activity, possibly involving an inhibition of BK channels, and an increase in the readily releasable pool of synaptic vesicles.  相似文献   

18.
Activation of presynaptic receptors plays an important role in modulation of transmission at many synapses, particularly during high-frequency trains of stimulation. Adenosine-triphosphate (ATP) is coreleased with several neurotransmitters and acts at presynaptic sites to reduce transmitter release; such presynaptic P2X receptors occur at inhibitory and excitatory terminals in the medial nucleus of the trapezoid body (MNTB). We have investigated the mechanism of purinergic modulation during high-frequency repetitive stimulation at the calyx of Held synapse. Suppression of calyceal excitatory postsynaptic currents (EPSCs) by ATP and ATPgammaS (100 microM) was mimicked by adenosine application and was blocked by DPCPX (10 microM), indicating mediation by adenosine A1 receptors. DPCPX enhanced EPSC amplitudes during high-frequency synaptic stimulation, suggesting that adenosine has a physiological role in modulating transmission at the calyx. The Luciferin-Luciferase method was used to probe for endogenous ATP release (at 37 degrees C), but no release was detected. Blockers of ectonucleotidases also had no effect on endogenous synaptic depression, suggesting that it is adenosine acting on A1 receptors, rather than degradation of released ATP, which accounts for presynaptic purinergic suppression of synaptic transmission during physiological stimulus trains at this glutamatergic synapse.  相似文献   

19.
Y Sekino  I Koyama 《Neuroscience letters》1992,148(1-2):109-113
The involvement of adenosine A1 receptors in post-tetanic depression (PTD) of CA1, induced by 5 Hz, 20 s stimulation to the Schaffer collateral/commissural fibers was studied in the rat hippocampal slice. The tetanic stimulation induced post-tetanic depression (PTD) lasting for 5-10 min in the excitatory postsynaptic potentials (EPSP) and the population spike (PS) of the tetanized pathway (homosynaptic PTD), and of a non-tetanized pathway (heterosynaptic PTD). 8-Cyclopentyltheophylline (an adenosine A1 antagonist) blocked the induction of homosynaptic PTD, but not of heterosynaptic PTD. These results indicate that adenosine released during tetanic stimulation acts on the A1 receptor to induce the homosynaptic PTD.  相似文献   

20.
Nystatin-perforated patch recordings were made from rat parabrachial neurons in an in vitro slice preparation to examine the effect of dopamine on parabrachial cells and on excitatory synaptic transmission in this nucleus. In current clamp mode, dopamine reduced the amplitude of the evoked excitatory postsynaptic potential without significant change in membrane potential. In cells voltage-clamped at -65 mV, dopamine dose dependently and reversibly decreased evoked, pharmacologically isolated, excitatory postsynaptic currents with an EC50 of 31 microM. The reduction in excitatory postsynaptic current was accompanied by an increase in paired pulse ratio (a protocol used to detect presynaptic site of action) with no change in the holding current or in the decay of the evoked excitatory postsynaptic currents. In addition, dopamine altered neither postsynaptic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate-induced currents, nor steady-state current voltage curves. Miniature excitatory postsynaptic current analysis revealed that dopamine caused a rightward shift of the frequency-distribution curve with no change in the amplitude-distribution curve, which is consistent with a presynaptic mechanism. The dopamine-induced attenuation of the excitatory postsynaptic current was almost completely blocked by the D1-like receptor antagonist SCH23390 (10 microM), although the D2-like antagonist sulpiride (10 microM) also partially blocked it. Combined application of both antagonists blocked all dopamine-induced synaptic effects. The synaptic effect of dopamine was mimicked by the D1-like agonist SKF38393 (50 microM), but the D2-1ike agonist quinpirole (50 microM) also had a small effect. Combined application of both agonists did not produce potentiated responses. Dopamine's effect on the excitatory postsynaptic current was independent of serotonin, GABA and adenosine receptors, but may have some interactions with adrenergic receptors. These results suggest that dopamine directly modulates excitatory synaptic events in the parabrachial nucleus predominantly via presynaptic D1-like receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号