共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Ethylene glycol poisoning of companion animals is a common occurrence and is sometimes involved in human intoxication. Ethylene glycol is of limited toxicity, but the metabolites including glycolic acid are responsible for poisoning. Conventional treatment has employed substances to prevent alcohol dehydrogenase from metabolizing the ethylene glycol, but to be effective, therapy must begin within hours of ethylene glycol consumption. We describe a rapid (10 min) analysis of biological fluids for ethylene glycol and glycolic acid using isocratic HPLC, a refractive index detector, and a Waters fast fruit juice analytical column. 相似文献
3.
4.
W H Porter P W Rutter B A Bush A A Pappas J E Dunnington 《Journal of toxicology. Clinical toxicology》2001,39(6):607-615
OBJECTIVE: To correlate serum glycolic acid levels with clinical severity and outcome in ethylene glycol poisoning and to determine if glycolic acid levels are predictive of renal failure and the need for hemodialysis. METHODS: We measured serum ethylene glycol and glycolic acid levels by gas chromatography/mass spectrometry for 41 admissions (39 patients) for ethylene glycol ingestion and performed retrospective chart reviews. RESULTS: Eight patients died, all of whom developed acute renal failure. Of the survivors, 15 also developed acute renal failure, whereas 18 did not. Of those with normal renal function, 8 had glycolic acid levels below detection limits (< 0.13 mmol/L) despite ethylene glycol levels as high as 710 mg/dL; 7 of these patients coingested ethanol. Pertinent initial laboratory data for each group are as follows (mean; range): Deceased: pH 6.99 (6.82-7.22); bicarbonate, 4.8 mmol/L (2-9); anion gap, 28.6 mmol/L (24-40); glycolic acid, 23.5 mmol/L (13.8-38.0); ethylene glycol, 136.5 mg/dL (6-272). Survived/acute renal failure: pH 7.07 (6.75-7.32); bicarbonate, 5.6 mmol/L (1-12); anion gap, 28.7 mmol/L (18-41); glycolic acid, 20.2 mmol/L (10.0-30.0); ethylene glycol, 238.8 mg/dL (12-810). No acute renal failure with glycolic acid > 1.0 mmol/L: pH 7.29 (7.12-7.46); bicarbonate, 14.7 mmol/L (4-23); anion gap, 16.5 mmol/L (10-26); glycolic acid, 6.8 mmol/L (2.6-17.0); ethylene glycol, 269.1 mg/dL (6-675). No acute renal failure with glycolic acid < 1.0 mmol/L: pH 7.41 (7.38-7.47); bicarbonate, 23.4 mmol/L (17-25); anion gap, 11.8 mmol/L (8-18); glycolic acid, 0.1 mmol/L (0-0.66); ethylene glycol, 211 mg/dL (8-710). The mean time postingestion to admission generally correlated with severity as follows: deceased, > or = 10.4 h; survived/acute renal failure, > or = 9.9 h; no acute renal failure with glycolic acid > 1.0 mmol/L, > or = 6.2 h; no acute renal failure with glycolic acid < 1.0 mmol/L, > or = 3.7 h. Hematuria was more prevalent than oxaluria (86% and 41%, respectively), but neither was individually predictive of acute renal failure. Good correlations were found between glycolic acid levels and anion gap (r2 = 0.7724), pH (r2 = 0.7921), and bicarbonate (r2 = 0.6579); poor correlations (r2 < 0.0023) occurred between ethylene glycol levels and glycolic acid, pH, anion gap, and bicarbonate. Measured ethylene glycol values were highly correlated with ethylene glycol values calculated from the osmolal gap (r2 = 0.9339), but the latter overestimates the true value by about 7%, on average. An initial glycolic acid level > or = 10 mmol/L predicts acute renal failure with a sensitivity of 100%, a specificity of 94.4%, and an efficiency of 97.6%. Ethylene glycol levels are not predictive of acute renal failure or central nervous system manifestations of toxicity. If only ethylene glycol values are available (measured or calculated), an initial anion gap > 20 mmol/L is 95.6% sensitive and 94.4% specific for acute renal failure when ethylene glycol is present. Likewise, initial pH < 7.30 is 100% sensitive and 88.5% specific for acute renal failure. CONCLUSION: We propose glycolic acid > 8 mmol/L as a criterion for the initiation of hemodialysis in ethylene glycol ingestion. Patients with glycolic acid < 8 mmol/L probably do not need dialysis, regardless of the ethylene glycol concentration, when metabolism of ethylene glycol is therapeutically inhibited. In the absence of glycolic acid values, an anion gap > 20 mmol/L or pH < 7.30 predicts acute renal failure. 相似文献
5.
We describe a gas chromatographic-mass spectrometric (GC-MS) procedure for the simultaneous determination of ethylene glycol (EG) and its major toxic metabolite, glycolic acid (GA), in serum. In this method, serum (50 microL) is treated with 150 microL of glacial acetic acid/acetonitrile (1:10, v/v; contains internal standard, 1,3-propanediol, 15 mg/dL) to precipitate protein. After centrifugation, 10 microL of supernate is treated with 500 microL of 2,2-dimethoxypropane/dimethylformamide (80:20, v/v) to convert water to methanol, and the volume is then reduced to < 100 microL of dimethylformamide (but not to dryness). After formation of tertbutyldimethylsilyl derivatives, analysis is performed by capillary column GC-MS in selected ion mode. The method gives a linear response to 1000 mg/L each EG and GA (16.1 mmol/L and 13.2 mmol/L, respectively) and has a lower limit of detection and a lower limit of quantitation of 10 mg/L each EG and GA (0.16 mmol/L and 0.13 mmol/L, respectively). Total assay imprecision is CV < or = 6.4% (200 and 800 mg/L EG and GA [3.2 and 12.9 mmol/L EG; 2.6 and 10.5 mmol/L GA, respectively]). Absolute recovery from human serum was 91.1% for EG and 77.6% for GA. The procedure is free from any known interference. A complete analysis set (three calibrators, patient serum neat, patient serum diluted 1:5 (v/v), and two controls) may be completed in about 2 h. A preliminary result, based on a single calibrator and patient serum diluted 1:5 (v/v), is complete in about 1 h. The method has been used to aid the diagnosis and management in 34 cases of EG intoxication. Selected cases are briefly reviewed. 相似文献
6.
This study sought to determine the relative roles of glycolic acid (GA), a toxicologically important metabolite of ethylene glycol (EG), and metabolic acidosis in causing developmental toxicity in Sprague-Dawley rats. To tease apart these two interrelated factors, we developed an experimental approach in which high blood glycolate levels could be achieved, in either the presence or absence of metabolic acidosis. Initially, rats previously implanted with a carotid artery cannula were given, on gestation day (gd) 10, 40.3 mmol/kg (2500 mg/kg) of EG via gavage, 8.5 mmol/kg (650 mg/kg) of GA via gavage, 8.5 mmol/kg (833 mg/kg) of sodium glycolate (NaG; pH 7.4) via subcutaneous (sc) injection, or distilled water via gavage (control). Peak serum glycolate was nearly identical (8.4-8.8 mM) in the EG, GA, and NaG groups and, as expected, EG and GA caused a metabolic acidosis, but acid base balance was normal with NaG. Subsequently, these treatments were given on gd 6-15 to groups of 25 time-mated rats, followed by fetal evaluation on gd 21. EG and GA decreased fetal body weights and caused a similar spectrum of developmental effects, including numerous axial skeleton malformations. NaG treatment also caused slight decreases in fetal body weight, increases in skeletal variations, and totally malformed fetuses. These results indicate that glycolate, in the absence of metabolic acidosis, can cause the most sensitive of EG's developmental effects, whereas metabolic acidosis appears to interact with glycolate at very high doses to markedly enhance teratogenesis. These results support previous studies, which indicated that glycolate is the proximate developmental toxicant for EG, and that GA toxicokinetic parameters can be used to define a quantitative, physiologically based threshold for EG-induced developmental effects. 相似文献
7.
W C Randall K B Streeter E L Cresson H Schwam S R Michelson P S Anderson E J Cragoe H W Williams E Eichler C S Rooney 《Journal of medicinal chemistry》1979,22(6):608-614
The enzyme glycolic acid oxidase oxidizes glycolate to glyoxylate and glyoxylate to oxalate. Three series of compounds related to the natural substrates, substituted glycolic, oxyacetic, and glyoxylic acids, have been investigated as inhibitors of this enzyme using the techniques of regression analysis and quantitative structure-activity relationships. The best overall correlation with inhibitory potencies was found with the Hansch hydrophobic parameter pi. The classical electronic parameters sigmap, sigmam, F, and R performed poorly. For the substituted glyoxylic acids, a dummy parameter relating to the presence of a nucleophilic group in close proximity to the alpha-carbonyl of the glyoxylate group was found to be highly significant. The syntheses of six novel glycolic and glyoxylic acids are described. 相似文献
8.
The developmental toxicity of ethylene glycol in rats and mice 总被引:3,自引:0,他引:3
Timed-pregnant CD rats and CD-1 mice were dosed by gavage with ethylene glycol (EG) in distilled water on gestational days (gd) 6 through 15 (0, 1250, 2500, or 5000 mg kg-1 day-1 for rats; and 0, 750, 1500, or 3000 mg kg-1 day-1 for mice). Females were observed daily during treatment, but no maternal deaths or distinctive clinical signs were noted. Dose-related decreases in maternal weight gain during treatment were significant at all doses in rats and at the mid and high doses in mice. Gravid uterine weight was reduced in both species at the mid and high doses, and corrected maternal gestational weight gain showed a significant decreasing trend. At termination (gd 20, rats; gd 17, mice), the status of uterine implantation sites was recorded, and live fetuses were weighed and examined for external, visceral, and skeletal malformations. Dose-related increases in postimplantation loss per litter were observed in both species with the high dose significantly above controls only in rats. Fetal body weight per litter was significantly reduced at the mid and high doses in rats and at all doses in mice. The percentage of malformed live fetuses per litter and/or the percentage of litters with malformed fetuses was significantly elevated in all EG dose groups and greater than 95% of litters were affected at the high dose for each species. A wide variety of malformations were observed; the most common in both species were craniofacial and neural tube closure defects and axial skeletal dysplasia. EG produced severe developmental toxicity in two rodent species at doses that apparently failed to produce any serious maternal effects. 相似文献
9.
Corley RA Saghir SA Bartels MJ Hansen SC Creim J McMartin KE Snellings WM 《Toxicology and applied pharmacology》2011,250(3):229-244
A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m3. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures. 相似文献
10.
Toxicity and irritation of ethylene chlorohydrin and ethylene glycol were assessed in rabbit eyes following multiple topical or multiple intraocular (anterior chamber) administrations. Ethylene glycol was nontoxic and nonirritating at 0.4% concentration following topical and intraocular administration. Ocular toxicity at higher test concentrations consisted of conjunctival redness, chemosis, flare, and iritis. Ethylene chlorohydrin was nontoxic and nonirritating at 1.0% and 0.5% concentrations following topical and intraocular administration, respectively. Ocular toxicity at higher test concentrations consisted of conjunctival redness, chemosis, discharge, flare, iritis, pannus, transient corneal opacity (topical route), nontransient corneal opacity (intraocular route), lens capsule rupture, and opaque lens. 相似文献
11.
J C Lamb R R Maronpot D K Gulati V S Russell L Hommel-Barnes P S Sabharwal 《Toxicology and applied pharmacology》1985,81(1):100-112
The effects of ethylene glycol on reproduction of CD-1 mice were tested in a protocol which permitted continuous breeding during a specified interval. The dosage amounts of 0, 0.25, 0.5, or 1% ethylene glycol by continuous administration in drinking water for male and female mice were selected from the general toxic responses observed in a 14-day pilot study. After the first week of administration, begun at 11 weeks of age, the animals were housed one male and one female per cage for 14 weeks during which time any offspring were examined, sexed, weighted, and killed to allow continuous mating of the first generation. At the end of the 14-week cohabitation period, the males and females were separated and any litters delivered after that time were kept until weaning. Those second-generation animals were mated at about 70 days of age. Slight, but statistically significant, decreases were found in the numbers of litters per fertile pair and live pups per litter in the 1% dose group and live pup weight at the 1% dose groups compared to control F0 mice. Facial anomalies were noted in a number of offspring of high-dose-treated mice and an examination for skeletal defects demonstrated a pattern including reduction in the size of bones in the skull, fused ribs, and abnormally shaped sternebrae and vertebrae in the high-dose-treated, but not the untreated, mice. Neither the 0.25 nor 0.5% dose groups were significantly affected. No clinical signs of toxicity or significant adverse effects on body weight or water consumption were seen at the doses used, but two deaths occurred at the 0.5% quantity which may have been related to oxalate crystal deposition in the kidney. 相似文献
12.
A review of the comparative mammalian toxicity of ethylene glycol and propylene glycol. 总被引:4,自引:0,他引:4
The purpose of this article is to review and interpret the scientific literature on the mammalian toxicity of ethylene glycol (EG) and propylene glycol (PG), with the goal of comparing the toxicity of the two chemicals. This type of review may serve as the basis for risk management decision-making. Because EG is not a GRAS (generally recognized as safe) chemical, its uses are restricted when compared with PG; thus, certain routes of exposure are not relevant here for toxicological comparison (e.g., subcutaneous, intramuscular, and intravenous). Therefore, this review is focused on the oral, inhalation, and dermal routes of exposure. However, where toxicological data derived from an alternative route of exposure serve to eludicate mechanisms of toxicity, data from these routes are considered. Based on the review provided herein, the following conclusions can be drawn. From the standpoint of lethality, acute effects, and reproductive, developmental, and kidney toxicity, the toxicity of EG exceeds that of PG. Further, localized dermal effects from EG and PG are both mild, with data suggesting that PG may have a skin contact sensitization potential. Finally, PG exposure in laboratory animals has been associated with reversible hematological changes; no data were located for EG from which to draw a toxicological comparison. 相似文献
13.
The complete metabolic fate of the volatile anesthetic halothane is unclear since 2-chloro-1,1-diflurorethene (CDE), a reductive halothane metabolite, is known to readily release inorganic fluoride upon oxidation by cytochrome P-450. This study sought to clarify the metabolism of CDE by determining its metabolites and the roles of induce cytochrome P-450 forms in its metabolism. Upon incubation of [14C]CDE with rat hepatic microsomes, two major radioactive products were found which accounted for greater than 94% of the total metabolites. These compounds were determined to be the nonhalogenated compounds, glyoxylic and glycolic acids, which were formed in a ratio of approximately 1 to 2 of glyoxylic to glycolic acid. No other radioactive metabolites could be detected. Following incubation of CDE with hepatic microsomes isolated from rats treated with cytochrome P-450 inducers, measurement of fluoride release showed that phenobarbital induced CDE metabolism to the greatest degree at high CDE levels, isoniazid was the most effective inducer at low CDE concentrations, and beta-naphthoflavone was ineffective as an inducer. These results suggest that CDE biotransformation primarily involves the generation of an epoxide intermediate, which undergoes mechanisms of decay leading to total dehalogenation of the molecule, and that this metabolism is preferentially carried out by the phenobarbital- and ethanol-inducible forms of cytochrome P-450. 相似文献
14.
Booth ED Dofferhoff O Boogaard PJ Watson WP 《Xenobiotica; the fate of foreign compounds in biological systems》2004,34(1):31-48
1. The metabolism of [1,2-(14)C]-ethylene glycol and [1,2-(14)C]-glycolic acid was studied in vitro using precision-cut tissue slices prepared from the livers of female Sprague-Dawley rats, New Zealand white rabbits and humans. The time-course for production of metabolites formed from ethylene glycol at concentrations from 3 to 40 mM was determined to compare quantitatively the differences between species in the rates and amounts of formation of glycolic acid, the presumed developmental toxicant of ethylene glycol. The rates of metabolism of glycolic acid to glyoxylic acid at concentrations from 0.05 to 16 mM by liver tissue from the different species were also determined. The apparent V(max)/K(m) for the metabolic conversions of ethylene glycol to glycolic acid and for glycolic acid to glyoxylic acid in liver tissue from the different species were obtained. 2. There were qualitative differences in the metabolic profiles and quantitative differences in the formation of glycolic acid between the mammalian liver systems. There was an average of 10-fold less glycolic acid produced by liver slices from rabbits compared with rats. With the human liver, the formation of glycolic acid was not detectable using tissue from three of four human donors. A low level of glycolic acid was detected in one liver slice incubation from one of the four subjects, but only at one extended time point; glyoxylate was detected with liver slices from all four humans. 3. Liver slices prepared from female Sprague-Dawley rats, female New Zealand White rabbits and three female human subjects all metabolized glycolic acid to glyoxylic acid. Human liver tissue was the most effective at further metabolizing glycolic acid to glyoxylic acid. The ratios of V(max)/K(m), representing the relative clearance of glycolic acid from liver tissue, were approximately 14:9:1 for human, rat and rabbit liver, respectively. 4. Precision-cut liver slices maintained in dynamic organ culture are good predictors of metabolism by liver tissue in vivo. The results of the present study therefore indicate that levels of glycolic acid, if formed in vivo, following exposures to similar concentrations of ethylene glycol, would be lower in humans than in rabbits and rats. 相似文献
15.
E. D. Booth O. Dofferhoff P. J. Boogaard 《Xenobiotica; the fate of foreign compounds in biological systems》2013,43(1):31-48
1.?The metabolism of [1,2-14C]-ethylene glycol and [1,2-14C]-glycolic acid was studied in vitro using precision-cut tissue slices prepared from the livers of female Sprague—Dawley rats, New Zealand white rabbits and humans. The time-course for production of metabolites formed from ethylene glycol at concentrations from 3 to 40 mM was determined to compare quantitatively the differences between species in the rates and amounts of formation of glycolic acid, the presumed developmental toxicant of ethylene glycol. The rates of metabolism of glycolic acid to glyoxylic acid at concentrations from 0.05 to 16 mM by liver tissue from the different species were also determined. The apparent VmaJKm for the metabolic conversions of ethylene glycol to glycolic acid and for glycolic acid to glyoxylic acid in liver tissue from the different species were obtained.2.?There were qualitative differences in the metabolic profiles and quantitative differences in the formation of glycolic acid between the mammalian liver systems. There was an average of 10-fold less glycolic acid produced by liver slices from rabbits compared with rats. With the human liver, the formation of glycolic acid was not detectable using tissue from three of four human donors. A low level of glycolic acid was detected in one liver slice incubation from one of the four subjects, but only at one extended time point; glyoxylate was detected with liver slices from all four humans.3.?Liver slices prepared from female Sprague—Dawley rats, female New Zealand White rabbits and three female human subjects all metabolized glycolic acid to glyoxylic acid. Human liver tissue was the most effective at further metabolizing glycolic acid to glyoxylic acid. The ratios of F"max/-/Cm, representing the relative clearance of glycolic acid from liver tissue, were approximately 14:9:1 for human, rat and rabbit liver, respectively.4.?Precision-cut liver slices maintained in dynamic organ culture are good predictors of metabolism by liver tissue in vivo. The results of the present study therefore indicate that levels of glycolic acid, if formed in vivo, following exposures to similar concentrationsof ethylene glycol, would be lower in humans than in rabbits and rats. 相似文献
16.
17.
OBJECTIVE: To systematically review English-language articles on fomepizole administration in patients with ethylene glycol poisoning. DATA SOURCES: MEDLINE, EMBASE, Current Contents, and PubMed. Search terms were fomepizole, 4-methylpyrazole, and ethylene glycol. The search was supplemented with a bibliographic review of all relevant articles. STUDY SELECTION: All published reports of fomepizole administration in patients with ethylene glycol poisoning were reviewed, irrespective of study design. We identified one clinical trial and subsequent pharmacokinetic study, one case series, and 13 case reports. RESULTS: Fomepizole has been investigated in 70 patients in open, unblinded studies. Most patients received an intravenous loading dose, with subsequent variable maintenance doses every 12 hours until plasma ethylene glycol levels became undetectable. Additional hemodialysis treatment generally was administered when patients had renal insufficiency or ethylene glycol levels above 50 mg/dl. Many patients had detectable ethanol levels either because of coadministration or as a result of adjunctive treatment at a referring center. Poorer patient outcomes, such as death and renal insufficiency, were associated with later clinical presentation time after ingestion. At therapeutic fomepizole levels (> 8.6 mg/ml), the half-life of ethylene glycol was prolonged to over 19 hours. Fomepizole appeared to be well tolerated by most patients. CONCLUSION: Fomepizole is an effective alcohol dehydrogenase inhibitor that decreases production of ethylene glycol metabolites. Reduced mortality and morbidity are undetermined because of the small number of patients evaluated to date. Data on comparative efficacy of fomepizole versus ethanol and data on administration of fomepizole in children are limited. 相似文献
18.
19.
The developmental toxicity of glycolic acid was assessed in rats by orally administering solutions of the test material in water over days 7-21 of gestation (the day of copulation plug detection was defined as day 1 of gestation). Groups of 25 mated female Crl: CD BR rats were gavaged at daily dose levels of 0, 75, 150, 300 or 600 mg/kg. The dams were euthanized on day 22 and the offspring were weighed, sexed, and examined for external, visceral, and skeletal alterations. Clear evidence of maternal toxicity was demonstrated at 600 mg/kg; adverse clinical observations were statistically significantly increased (wheezing/lung noise, abnormal gait/staggering, lethargy). In addition, maternal body weights, weight changes, and food consumption were statistically significantly reduced at this dose level. Marginal evidence of maternal toxicity was demonstrated at 300 mg/kg; wheezing/lung noise similar to that seen at 600 mg/kg was observed in 2 of 25 dams. This increase approached statistical significance (p = 0.0553). There was marked evidence of developmental toxicity at 600 mg/kg. Mean fetal weight was statistically significantly reduced while the incidences of skeletal (ribs, vertebra, and sternebra) malformations and variations were statistically significantly increased. At 300 mg/kg/day, there was a slight (2 affected fetuses from 2 litters) increase in the incidence of two skeletal malformations: fused ribs and fused vertebra. Although these increases were not statistically significant (p = 0.0555), they were consistent with findings seen at 600 mg/kg/day and thus were considered relevant. There was no other evidence of developmental toxicity at 300 mg/kg/day nor was any developmental toxicity seen at 150 or 75 mg/kg/day. Thus, the maternal and developmental no-observed-effect level (NOEL) was considered 150 mg/kg. 相似文献