首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Neural crest cells destined to form craniofacial primordia initially are "seeded" into and subsequently migrate through the extracellular matrix (ECM) of a cell free space (CFS) between the surface ectoderm and the underlying mesoderm. Utilizing histochemical procedures for polyanionic compounds, we have demonstrated that both sulfated and nonsulfated glycosaminoglycans (GAG) are present in the CFS of the cephalic region of the chick embryo and that their distribution and structural organization vary with the passage of neural crest or mesodermally derived (MD) mesenchymal cells through it. In stages 7 and 8 embryos a predominance of fine filamentous strands composed primarily on nonsulfated, carboxyl-rich GAG is seen spanning intercellular spaces between adjacent tissues and MD mesenchymal cells. In older embryos (stages 9 and 10) much of the filamentous material is replaced by coarse fibrillar strands or amorphous material which coats the surfaces of MD mesenchymal and neural crest cells as they invade the CFS. Using enzymatic digestions (Streptomyces and testicular hyaluronidase) and the critical electrolyte concentration procedure, data suggest that the fine filamentous matrix onto which the neural crest cells migrate consists mainly of hyaluronate with lesser amounts of chondroitin and some sulfated GAG present. The coarse fibrillar matrix that appears after passage of either neural crest or MD mesenchymal cells through the original CFS contains strongly sulfated polyanionic material, predominantly chondroitin sulfates A, C. Since GAG is located ubiquitously within the ECM of embryos at various stages, the role of GAG, if any, in the transfer of developmental information may be of a general nature (ie. stimulus of motility) rather than of specific morphogenetic cues (for specific differentiation into craniofacial primordia).  相似文献   

2.
Cephalic neural crest (NC) cells enter a cell-free space (CFS) that contains an abundant extracellular matrix (ECM). Numerous in vitro investigations have shown that extracellular matrices can influence cellular activities including NC cell migration. However, little is known about the actual ECM composition of the CFS in vivo, how the components are distributed, or the nature of NC cell interactions with the CFS matrix. Using ultrastructural, autoradiographic, and histochemical techniques we analyzed the composition and spatial organization of the ECM found in the CFS and its interaction with mesencephalic NC cells. We have found that a specific distribution of glycoproteins and sulfated polyanions existed within the CFS prior to the translocation of NC cells and that this ECM was modified in areas occupied by NC. The interaction between the ECM components and the NC cells was not the same for all NC cells in the population. Subpopulations of the NC cell sheet became associated with ECM of the ectoderm (basal lamina) while other NC cells became associated with the ECM of the CFS. Trailing NC cells (NC cells that emerge after the initial appearance of NC cells) encountered a modified ECM due to extensive matrix modifications by the passage of the initial NC cell population.  相似文献   

3.
One of the common histopathologic features of pleomorphic adenoma (PA) and adenoid cystic carcinoma (ACC) of the salivary gland is the abundant accumulation of glycosaminoglycans (GAGs). To study a relationship between the histologic distribution of GAGs and the morphologic pattern of salivary gland tumors, we carried out immunohistochemical and biochemical analyses of GAGs on 16 cases of PA and three cases of ACC. Immunohistochemically, several GAG fractions such as chondroitin-6-sulfate, unsulfated chondroitin sulfate, and keratan sulfate were seen mainly at the plasma membrane of both PA and ACC cells and of myoepithelial cells of normal salivary glands. Most of these GAG-positive cells were distributed in solid and chondromyxoid parts of PA and in the cellular part of ACC. Biochemical GAG analysis of both PA and ACC, separated into nonsulfated and sulfated fractions by two-dimensional electrophoresis, revealed high concentrations of chondroitin sulfate in both neoplasms, but the concentration of hyaluronic acid, was significantly higher in PA than in ACC. The results show that the concentration of hyaluronic acid, a major nonsulfated GAG fraction, was significantly higher in PA than in ACC and, therefore, this difference may be useful in the differentiation of the two neoplasms.  相似文献   

4.
Impaired development of the thymic primordium after neural crest ablation   总被引:1,自引:0,他引:1  
Impaired thymic development as a result of ablation of neural crest has been observed in embryos late in development. The present study was initiated to determine what changes are effected early in thymic development by neural crest ablation. The epithelial primordia of the thymus were studied in chick embryos on the sixth day of incubation. Embryos with neural crest ablations were compared with sham-operated and untreated controls. Neural crest ablation inhibited formation of epithelial thymic primordia. Primordia in experimental embryos were fewer in number and were smaller than in shams and untreated controls. When primordia from shams and controls were transplanted to the chorioallantoic membrane of chick hosts, they were able to develop into organs with the typical features of embryonic thymus. Similar transplantation from neural crest-ablated animals, on the other hand, led to small, predominantly epithelial structures with meager lymphoid development. These findings are consistent with the hypothesis that mesenchyme derived from cranial neural crest is critical in initiating and sustaining the development from pharyngeal pouches of epithelial structures competent to attract and support the proliferation and differentiation of lymphoid stem cells.  相似文献   

5.
6.
A L Mescher  S I Munaim 《The Anatomical record》1986,214(4):424-31, 394-5
The extracellular matrix (ECM) of the distal tissues in a newt limb stump is completely reorganized in the 2-3-week period following amputation. In view of numerous in vitro studies showing that extracellular material influences cellular migration and proliferation, it is likely that the changes in the limb's ECM are important activities in the process leading to regeneration of such limbs. Using biochemical, autoradiographic, and histochemical techniques we studied temporal and spatial differences in the synthesis of glycosaminoglycans (GAGs) during the early, nerve-dependent phase of limb regeneration. Hyaluronic acid synthesis began with the onset of tissue dedifferentiation, became maximal within 1 weeks, and continued throughout the period of active cell proliferation. Chondroitin sulfate synthesis began somewhat later, increased steadily, and reached very high levels during chondrogenesis. During the first 10 days after amputation, distributions of sulfated and nonsulfated GAGs were both uniform throughout dedifferentiating tissues, except for a heavier localization near the bone. Since nerves are necessary to promote the regenerative process, we examined the neural influence on synthesis and accumulation of extracellular GAGs. Denervation decreased GAG production in all parts of the limb stump by approximately 50%. Newt dorsal root ganglia and brain-derived fibroblast growth factor each produced twofold stimulation of GAG synthesis in cultured 7-day regenerates. The latter effect was primarily on synthesis of hyaluronic acid. The results indicate that the trophic action of nerves on amphibian limb regeneration includes a positive influence on synthesis and extracellular accumulation of GAGs. Since the ECM exerts a major influence on cellular proliferation and migration, the effect of nerves on GAG metabolism may have considerable importance for growth and development of the early regenerate.  相似文献   

7.
Vertebrate carotid bodies and related structures (branchial arch oxygen chemoreceptors in fishes, carotid labyrinth in amphibians, chemoreceptors in the wall of the common carotid and its branches in birds) develop in embryos when neural crest cells, blood vessels, and nerve fibers from sympathetic and cranial nerve ganglia invade mesenchymal primordia in the wall of the 3rd branchial arch. This review focuses on literature published since the 1970s investigating similarities and differences in the embryological development of 3rd arch oxygen chemoreceptors, especially between mammals and birds, but also considering reptiles, amphibians and fishes.  相似文献   

8.
When articular chondrocytes from rabbits 2 to 3 months old were transferred from confluent monolayer to spinner culture, they ceased to proliferate but deposited large quantities of metachromatic extracellular material. Return of the suspended cells to monolayer conditions resulted in renewal of DNA and marked depression of sulfated glycosaminoglycan (GAG) synthesis. The GAG of rabbit articular cartilage were heterogeneous and included 4.9% hyaluronate, 11.6% unsulfated chondroitin, 18.7%, disulfated chondroitin and 2.4% dermatan sulfate in addition to chondroitin sulfates 4 and 6. Monolayer cultured chondrocytes produced higher levels of sulfated GAG but much smaller quantities of hyaluronate than did dermal fibrocytes. The GAG synthesized by chondrocytes in spinner culture closely resembled those of whole cartilage or synthesized by whole cartilage in organ culture.  相似文献   

9.
Cranial neural crest cells are a multipotent, migratory population that generates most of the cartilage, bone, connective tissue and peripheral nervous system in the vertebrate head. Proper neural crest cell patterning is essential for normal craniofacial morphogenesis and is highly conserved among vertebrates. Neural crest cell patterning is intimately connected to the early segmentation of the neural tube, such that neural crest cells migrate in discrete segregated streams. Recent advances in live embryo imaging have begun to reveal the complex behaviour of neural crest cells which involve intricate cell-cell and cell-environment interactions. Despite the overall similarity in neural crest cell migration between distinct vertebrates species there are important mechanistic differences. Apoptosis for example, is important for neural crest cell patterning in chick embryos but not in mouse, frog or fish embryos. In this paper we highlight the potential evolutionary significance of such interspecies differences in jaw development and evolution. Developmental Dynamics 229:14-29, 2004.  相似文献   

10.
11.
Folic acid is essential for many cellular reactions, including synthesis of nucleotides and regulation of cell cycle. Folic acid-binding protein one (Folbp1), a membrane-bounded protein, is the primary mediator of folic acid transport. Mice deficient in Folbp1 gene die in utero with multiple malformations, including severe exencephaly and craniofacial defects. Fusion of the neural tube and craniofacies require precisely regulated interactions of apoptosis, cell proliferation, and differentiation. To understand the role of Folbp1 in regulating the fusions of these primordia, levels of dead and proliferating precursor cells from Folbp1 embryos were quantified before the fusion processes. Massive apoptosis was detected in the Folbp1-/- defective tissues, with Bax and activated caspase-3 distributed evenly across the apico-basal axis of the lateral neural plate. 5-Bromodeoxyuridine (BrdU) and PCNA labeling assays revealed a reduced cell proliferation as well. However, telomerase activity was unaltered, arguing against telomere shortening and consequently, chromosomal instability, as the cause of the apoptosis. Notably, Islet-1 and 2H3 immunohistochemistry demonstrated the presence of differentiating neuronal cells, albeit in decreased numbers. Interestingly, Folbp1-/- embryos also elaborated novel neural structures that sprouted orthogonally from the embryonic neuraxis. Assays on the defective craniofacies exhibited similar phenomena, suggesting the neural crest precursor population that gives rise to both these structures is selectively vulnerable to Folbp1 inactivation. The results demonstrate a prominent role of Folbp1 in the regional regulation of apoptosis and cell proliferation that underlies the aberrant neural tube and craniofacial defects.  相似文献   

12.
Whether neural crest cells from the avian embryo are determined for chondrogenesis before they begin their migration away from the neural tube (i.e., before H. H. stages 8.5--9) was investigated by establishing neural folds from embryos of H. H. stages 5--11 either in organ culture, or as grafts to the chorioallantoic membranes of host embryos. Cartilage differentiated from neural folds taken from embryos of H. H. stages 5--7 but not from those taken from older embryos. This stage specific pattern was reversed when the tissue adjacent to the neural tube was grafted to the chorioallantoic membrane. Cartilage only formed from tissues isolated later than H. H. stage 8; i.e., when these adjacent tissues contain neural crest cells. We concluded that neural crest cells are determined for chondrogenesis while still in the neural tube and before their migration to the face and head. This is in contrast to the situation in the only other group which has been examined, the urodele amphibians.  相似文献   

13.
Neural crest stem cells (NCSCs), a population of multipotent cells that migrate extensively and give rise to diverse derivatives, including peripheral and enteric neurons and glia, craniofacial cartilage and bone, melanocytes and smooth muscle, have great potential for regenerative medicine. Non-human primates provide optimal models for the development of stem cell therapies. Here, we describe the first derivation of NCSCs from cynomolgus monkey embryonic stem cells (CmESCs) at the neural rosette stage. CmESC-derived neurospheres replated on polyornithine/laminin-coated dishes migrated onto the substrate and showed characteristic expression of NCSC markers, including Sox10, AP2α, Slug, Nestin, p75, and HNK1. CmNCSCs were capable of propagating in an undifferentiated state in vitro as adherent or suspension cultures, and could be subsequently induced to differentiate towards peripheral nervous system lineages (peripheral sympathetic neurons, sensory neurons, and Schwann cells) and mesenchymal lineages (osteoblasts, adipocytes, chondrocytes, and smooth muscle cells). CmNCSCs transplanted into developing chick embryos or fetal brains of cynomolgus macaques survived, migrated, and differentiated into progeny consistent with a neural crest identity. Our studies demonstrate that CmNCSCs offer a new tool for investigating neural crest development and neural crest-associated human disease and suggest that this non-human primate model may facilitate tissue engineering and regenerative medicine efforts.  相似文献   

14.
Whether neural crest cells from the avian embryo are determined for chondrogenesis before they begin their migration away from the neural tube (i.e., before H. H. stages 8.5-9) was investigated by establishing neural folds from embryos of H. H. stages 5-11 either in organ culture, or as grafts to the chorioallantoic membranes of host embryos. Cartilage differentiated from neural folds taken from embryos of H. H. stages 5-7 but not from those taken from older embryos. This stage specific pattern was reversed when the tissue adjacent to the neural tube was grafted to the chorioallantoic membrane. Cartilage only formed from tissues isolated later than H. H. stage 8; i.e., when these adjacent tissues contain neural crest cells. We concluded that neural crest cells are determined for chondrogenesis while still in the neural tube and before their migration to the face and head. This is in contrast to the situation in the only other group which has been examined, the urodele amphibians.  相似文献   

15.
A key feature of vertebrate development is the formation of the neural crest. In the trunk, neural crest cells delaminate from the neural tube shortly after the fusion of the neural folds and migrate ventrally along specific pathways to form the neurons and glia of the peripheral nervous system. As neural crest cells leave the neural tube during the initial stages of their migration, they express the extracellular matrix glycoprotein tenascin-C, which is also found in the stroma of many tumors. We have studied the possible role for tenascin-C during neural crest morphogenesis in vivo by microinjecting tenascin-C morpholino antisense oligonucleotides into the lumen of the avian neural tube in ovo and electroporating the morpholino antisense oligonucleotides into the precursors of the neural crest. After 24 hr, tenascin-C immunostaining is reduced around the dorsal neural tube in the experimental microinjected embryos (12 of 13) but not in embryos microinjected with control morpholino antisense oligonucleotides (n = 3) or subjected to electroporation only (n = 2). In each of the 12 tenascin-C knockdown embryos neural crest cells are seen ectopically in the lumen of the neural tube and in the neuroepithelium; cells that do leave the neural tube after the microinjection fail to disperse laterally from the surface of the neural tube into the somites. The observation that neural crest cells must express tenascin-C to migrate normally is consistent with a role for this glycoprotein in contributing to the invasive behavior of neural crest cells.  相似文献   

16.
The Hox code in the neural crest cells plays an important role in the development of the complex craniofacial structures that are characteristic of vertebrates. Previously, 3' AmphiHox1 flanking region has been shown to drive gene expression in neural tubes and neural crest cells in a retinoic acid (RA)-dependent manner. In the present study, we found that the DR5-type RA response elements located at the 3' AmphiHox1 flanking region of Branchiostoma floridae are necessary and sufficient to express reporter genes in both the neural tube and neural crest cells of chick embryos, specifically at the post-otic level. The DR5 at the 3' flanking region of chick Hoxb1 is also capable of driving the same expression in chick embryos. We found that AmphiHox3 possesses a DR5-type RARE in its 5' flanking region, and this drives an expression pattern similar to the RARE element found in the 3' flanking region of AmphiHox1. Therefore, the location of these DR5-type RAREs is conserved in amphioxus and vertebrate Hox clusters. Our findings demonstrate that conserved RAREs mediate RA-dependent regulation of Hox genes in amphioxus and vertebrates, and in vertebrates this drives expression of Hox genes in both neural crest and neural tube. This suggests that Hox expression in vertebrate neural crest cells has evolved via the co-option of a pre-existing regulatory pathway that primitively regulated neural tube (and possibly epidermal) Hox expression.  相似文献   

17.
18.
19.
The differentiation and morphogenesis of craniofacial muscles.   总被引:1,自引:0,他引:1  
Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.  相似文献   

20.
Human cleft lip and/or palate (CLP) are immediately recognizable congenital abnormalities of the face. Lip and palate develop from facial primordia through the coordinated activities of ectodermal epithelium and neural crest cells (NCCs) derived from ectomesenchyme tissue. Subtle changes in the regulatory mechanisms of NCC or ectodermal epithelial cells can result in CLP. Genetic and environmental contributions or a combination of both play a significant role in the progression of CLP. Model organisms provide us with a wealth of information in understanding the pathophysiology and genetic etiology of this complex disease. Small teleost, zebrafish (Danio rerio) is one of the popular model in craniofacial developmental biology. The short generation time and large number of optically transparent, easily manipulated embryos increase the value of zebrafish to identify novel candidate genes and gene regulatory networks underlying craniofacial development. In addition, it is widely used to identify the mechanisms of environmental teratogens and in therapeutic drug screening. Here, we discuss the value of zebrafish as a model to understand epithelial and NCC induced ectomesenchymal cell activities during early palate morphogenesis and robustness of the zebrafish in modern research on identifying the genetic and environmental etiological factors of CLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号