共查询到9条相似文献,搜索用时 15 毫秒
1.
Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate 总被引:20,自引:0,他引:20
Dell'Eva R Pfeffer U Vené R Anfosso L Forlani A Albini A Efferth T 《Biochemical pharmacology》2004,68(12):2359-2366
Artesunate (ART) is a semi-synthetic derivative of the sesquiterpene artemisinin used for the second line therapy of malaria infections with Plasmodium falciparum. ART also inhibits growth of many transformed cell lines. In the present investigation, we show that ART inhibited the growth of normal human umbilical endothelial cells and of KS-IMM cells that we have established from a Kaposi's sarcoma lesion obtained from a renal transplant patient. The growth inhibitory activity correlated with the induction of apoptosis in KS-IMM cells. Apoptosis was not observed in normal endothelial cells, which, however, showed drastically increased cell doubling times upon ART treatment. ART strongly reduced angiogenesis in vivo in terms of vascularization of Matrigel plugs injected subcutaneously into syngenic mice. We conclude that ART represents a promising candidate drug for the treatment of the highly angiogenic Kaposi's sarcoma. As a low-cost drug, it might be of particular interest for areas of Kaposi's sarcoma endemics. ART could be useful for the prevention of tumor angiogenesis. 相似文献
2.
Niering P Michels G Wätjen W Ohler S Steffan B Chovolou Y Kampkötter A Proksch P Kahl R 《Toxicology and applied pharmacology》2005,209(2):114-122
Flavonoids are ubiquitous substances in fruits and vegetables. Among them, the flavonol kaempferol contributes up to 30% of total dietary flavonoid intake. Flavonoids are assumed to exert beneficial effects on human health, e.g., anticancer properties. For this reason, they are used in food supplements at high doses. The aim of this project was to determine the effects of kaempferol on oxidative stress and apoptosis in H4IIE rat hepatoma cells over a broad concentration range. Kaempferol is rapidly taken up and glucuronidated by H4IIE cells. The results demonstrate that kaempferol protects against H2O2-induced cellular damage at concentrations which lead to cell death and DNA strand breaks in the absence of H2O2-mediated oxidative stress. Preincubation with 50 microM kaempferol exerts protection against the loss of cell viability induced by 500 microM H2O2 (2 h) while the same concentration of kaempferol reduces cell viability by 50% in the absence of H2O2 (24 h). Preincubation with 50 microM kaempferol ameliorates the strong DNA damage induced by 500 microM H2O2 while 50 microM kaempferol leads to a significant increase of DNA breakage in the absence of H2O2. Preincubation with 50 microM kaempferol reduces H2O2-mediated caspase-3 activity by 40% (4 h) while the same concentration of kaempferol leads to the formation of a DNA ladder in the absence of H2O2 (24 h). It is concluded that the intake of high dose kaempferol in food supplements may not be advisable because in our cellular model protective kaempferol concentrations can also induce DNA damage and apoptosis by themselves. 相似文献
3.
Human-amniotic WISH cells express the lysophosphatidic acid (LPA) receptor, LPA(1), LPA(2) but not LPA(3). When WISH cells were stimulated with LPA, phospholipase D (PLD) activation was dramatically induced via a cytosolic calcium increase and protein kinase C activation. We also found that LPA stimulated two kinds of mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and p38 kinase via PLD-dependent signaling pathways in WISH cells. In terms of the LPA-mediated functional modulation of WISH cells, we observed that LPA stimulates the induction of two early genes (c-Jun and c-Fos) and cellular proliferation in WISH cells. We examined the signaling pathways involved in LPA-mediated cellular responses. LPA-induced early gene induction was completely blocked by normal butanol (n-butanol) but not by t-butanol, suggesting that PLD activity is essentially required for the process. PD98059 (2'-amino-3'-methoxyflavone) but not SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole) also significantly blocked LPA-induced early gene induction, suggesting a crucial role for ERK. Pertussis toxin (PTX) did not affect on the LPA-induced early gene induction and ERK activation, ruling out the role of Gi/o protein(s) in the process. The cellular proliferation of WISH cells was also dramatically inhibited by n-butanol or PD98059. This study demonstrates the physiological role of LPA on the modulation of early gene induction and on WISH cell proliferation, and the crucial role played by PLD in the process. 相似文献
4.
Touil YS Auzeil N Boulinguez F Saighi H Regazzetti A Scherman D Chabot GG 《Biochemical pharmacology》2011,(11):1731-1739
Although the natural flavonoid fisetin (3,3′,4′,7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice, the maximum fisetin concentration reached 2.5 μg/ml at 15 min and the plasma concentration declined biphasically with a rapid half-life of 0.09 h and a terminal half-life of 3.1 h. Three metabolites were detected, one of which was a glucuronide of fisetin (M1), whereas another glucuronide (M2) was a glucuronide of a previously unknown fisetin metabolite (M3). HPLC–MS/MS analysis indicated that M3 was a methoxylated metabolite of fisetin (MW = 300 Da). The UV spectrum of M3 was identical to that of fisetin and standard 3,4′,7-trihydroxy-3′-methoxyflavone (geraldol). In addition, because M3 co-eluted with standard geraldol in 4 different chromatographic ternary gradient conditions, M3 was therefore assigned to geraldol. Of interest, this metabolite was shown to achieve higher concentrations than fisetin in Lewis lung tumors. We also compared the cytotoxic and antiangiogenic activities of fisetin and geraldol in vitro and it was found that the latter was more cytotoxic than the parent compound toward tumor cells, and that it could also inhibit endothelial cells migration and proliferation. In conclusion, these results suggest that fisetin metabolism plays an important role in its in vivo anticancer activities. 相似文献
5.
6.
Pietsch EC Hurley AL Scott EE Duckworth BP Welker ME Leone-Kabler S Townsend AJ Torti FM Torti SV 《Biochemical pharmacology》2003,65(8):1261-1269
Compounds that induce the synthesis of cytoprotective phase II enzymes have shown promise as cancer chemopreventive agents. Although chemically diverse, phase II enzyme inducers are capable of participating in Michael reaction chemistry. We have synthesized a novel class of organosulfur compounds, termed oxathiolene oxides (OTEOs). Based on their chemical properties, we hypothesized that these compounds could function as phase II enzyme inducers. Northern blot analysis showed that oxathiolene oxides induce the phase II enzymes glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), and ferritin H and L mRNA in a concentration-dependent fashion in a normal embryonic mouse liver cell line, BNLCL.2. OTEO-562 (3-cyclohexenyl-4-methyl-1,2-oxathiol-3-ene-2-oxide) was the strongest inducer. Western blot analysis demonstrated that GST-alpha and ferritin H protein levels were also induced in cells treated with OTEO-562, as was total GST and NQO1 enzyme activity. Further, induction of NQO1 activity by OTEO-562 was equivalent in aromatic hydrocarbon (Ah) receptor wild-type and Ah receptor mutant cell lines, suggesting that oxathiolene oxides activate phase II enzymes by an Ah receptor-independent mechanism. Consistent with this observation, OTEO-562 failed to induce cytochrome P450 1A1 mRNA. These results suggest that oxathiolene oxides may merit further investigation as candidate chemopreventive agents. 相似文献
7.
We present a label-free in vitro method for testing the toxic potentials of chemical substances using primary neuronal cells. The cells were prepared from 16-day-old NMRI mouse embryos and cultured on silicon chips (www.bionas.de) under the influence of different parathion concentrations with sensors for respiration (Clark-type oxygen electrodes), acidification (pH-ISFETs) and cell adhesion (interdigitated electrode structures, IDES). After 12 days in vitro, the sensor readouts were simultaneously recorded for 350 min in the presence of parathion applying a serial 1:3 dilution. The parathion-dependent data was fitted by logistic functions. IC50 values of approximately 105 μM, 65 μM, and 54 μM were found for respiration, acidification, and adhesion, respectively. An IC50 value of approximately 36 μM was determined from the intracellular ATP-levels of cells, which were detected by an ATP-luminescence assay using micro-well plates. While the intracellular ATP level and cell adhesion showed no deviation from a simple logistic decay, increases of approximately 29% in the respiration and 15% in the acidification rates above the control values were found at low parathion concentrations, indicating hormesis. These increases could be fitted by a modified logistic function. We believe that the label-free, continuous, multi-parametric monitoring of cell-metabolic processes may have applications in systems-biology and biomedical research, as well as in environmental monitoring. The parallel characterization of IC50 values and hormetic effects may provide new insights into the metabolic mechanisms of toxic challenges to the cell. 相似文献
8.
D Schmitt N Tran S Riefler J Jacoby D Merkel P Marone N Naouli 《Food and chemical toxicology》2008,46(3):1048-1054
Modified gum acacia, produced from acacia gum by a process analogous to the production of modified food starch, was tested for mutagenicity in the microbial reverse mutation assay. The assay employed a wide range of dose levels, both with and without metabolic activation. Test results gave no indication that modified gum acacia possessed any mutagenic potential. The acute oral toxicity of modified gum acacia was determined in two studies employing Sprague-Dawley rats, and the LD50 values were found to be >2000 mg/kg. The primary dermal irritation potential of modified gum acacia was evaluated in rabbits by the Draize method. Test results indicated that modified gum acacia was slightly irritating by the Environmental Protection Agency (EPA) classification but not a primary irritant by Consumer Product Safety Commission (CPSC) guidelines. The subchronic toxicity of modified gum acacia was examined in Sprague-Dawley rats fed diets containing 0%, 1%, 2.5%, and 5% modified gum acacia for 13 weeks. No dose-related effects on survival, growth, hematology, blood chemistry, organ weights, or pathologic lesions were observed. Results of these studies indicate that modified gum acacia does not possess mutagenic potential and that animals are not adversely affected by acute or subchronic exposure to modified gum acacia. 相似文献
9.
Raju Y. Prasad John K. McGee Micaela G. Killius Danielle A. Suarez Carl F. Blackman David M. DeMarini Steven O. Simmons 《Toxicology in vitro》2013,27(6):2013-2021
Silver nanoparticles (Ag NP) have been shown to generate reactive oxygen species; however, the association between physicochemical characteristics of nanoparticles and cellular stress responses elicited by exposure has not been elucidated. Here, we examined three key stress-responsive pathways activated by Nrf-2/ARE, NFκB, and AP1 during exposure to Ag NP of two distinct sizes (10 and 75 nm) and coatings (citrate and polyvinylpyrrolidone), as well as silver nitrate (AgNO3), and CeO2 nanoparticles. The in vitro assays assessed the cellular response in a battery of stable luciferase-reporter HepG2 cell lines. We further assessed the impact of Ag NP and AgNO3 exposure on cellular redox status by measuring glutathione depletion. Lastly, we determined intracellular Ag concentration by inductively coupled plasma mass spectroscopy (ICP-MS) and re-analyzed reporter-gene data using these values to estimate the relative potencies of the Ag NPs and AgNO3. Our results show activation of all three stress response pathways, with Nrf-2/ARE displaying the strongest response elicited by each Ag NP and AgNO3 evaluated here. The smaller (10-nm) Ag NPs were more potent than the larger (75-nm) Ag NPs in each stress-response pathway, and citrate-coated Ag NPs had higher intracellular silver concentrations compared with both PVP-coated Ag NP and AgNO3. The cellular stress response profiles after Ag NP exposure were similar to that of AgNO3, suggesting that the oxidative stress and inflammatory effects of Ag NP are likely due to the cytotoxicity of silver ions. 相似文献