首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease with no approved targeted therapy. Curcumin has shown therapeutic potential against TNBC, but it shows low bioavailability and low efficacy when administered as a free drug. Here we describe a novel vehicle for in vivo delivery of curcumin based on the phosphorylated calixarene POCA4C6. Curcumin-loaded POCA4C6 micelles (CPM) were prepared using the thin-film method and they showed a unilamellar structure with an average particle size of 3.86?nm. The micelles showed high curcumin encapsulation efficiency and loading was based on liquid chromatography-tandem mass spectrometry. Studies with cell cultures suggest that CPM can sustainably release curcumin in a pH-dependent manner. The micelles efficiently inhibited proliferation, invasion, migration and tumor spheroid formation by BT-549 human breast cancer cells. These effects involved increased apoptosis and reduced levels of nuclear β-catenin and androgen receptor. After injection into tumor xenografts, CPM persisted in the tumor tissue and efficiently inhibited tumor growth without causing obvious systemic toxicity. CPM also significantly reduced levels of CD44+/CD133+ breast cancer stem cells. Our results highlight the potential of CPM as an effective therapy against TNBC.  相似文献   

2.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based combination therapy and gene therapy are new strategies to potentially overcome the limitations of TRAIL, however, the lack of efficient and low toxic vectors remains the major obstacle. In this study, we developed a hyaluronic acid (HA)-decorated polyethylenimine-poly(d,l-lactide-co-glycolide) (PEI-PLGA) nanoparticle (NP) system for targeted co-delivery of TRAIL plasmid (pTRAIL) and gambogic acid (GA) in triple-negative breast cancer (TNBC) therapy. GA was encapsulated into the core of the PEI-PLGA NPs while pTRAIL was adsorbed onto the positive NP surface via charge adsorption. The coating of HA on PEI-PLGA NPs functions as a targeting ligand by binding to CD44 receptor of TNBC cells and a shell to neutralize the excess positive charge of inner NPs. The resultant pTRAIL and GA co-loaded HA-coated PEI-PLGA NPs exhibited spherical shape (121.5?nm) and could promote the internalization of loaded cargoes into TNBC cells through the CD44-dependent endocytic pathway. The dual drug-loaded NPs significantly augmented apoptotic cell death in vitro and inhibited TNBC tumor growth in vivo. This multifunctional NP system efficiently co-delivered GA and pTRAIL, thus representing a promising strategy to treat TNBC and bringing forth a platform strategy for co-delivery of therapeutic DNA and chemotherapeutic agents in combinatorial TNBC therapy.  相似文献   

3.
Betulinic acid (BA) is a natural pentacyclic triterpenoid with broad-spectrum anticancer activity, which has great development potential as an anti-cancer drug. In this study, a novel hyaluronic acid (HA)-modified BA liposome (BA-L) was developed for use in targeted liver cancer therapy. The size, polymer dispersity index (PDI), zeta potential, and entrapment efficiency were measured. Cell viability, cell migration and clonogenicity, cellular uptake, immunohistochemistry of CD44, and protein expression of ROCK1/IP3/RAS were also investigated. BA, BA-L, and HA-BA-L had no inhibitory effect on the activity of LO2 normal hepatocytes, but they inhibited the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner, with HA-BA-L exhibiting the most prominent inhibitory effect. Compared with the BA-L group, the expression of CD44 in HepG2 cells in the HA-BA-L group was decreased. The results of WB showed that BA, BA-L, and HA-BA-L downregulated the expression of ROCK1, IP3, and RAS in HepG2 cells, and the expression level in the HA-BA-L group was significantly decreased. The easily prepared HA-BA-L was demonstrated to be an excellent CD44-mediated intracellular delivery system capable of targeting effects. Further mechanistic research revealed that the inhibition of HA-BA-L on HepG2 cells may be mediated by blocking the ROCK1/IP3/RAS signaling pathways.  相似文献   

4.
The superparamagnetic iron oxide nanoparticle (SPIO) 'theranostics', which contain imaging probes for tumor diagnosis and therapeutic compounds for therapy in a single nanoparticle, might provide significant benefits compared with exiting tumor imaging and therapeutic strategies. In this review, we summarize the progress of SPIO 'theranostics' that integrate tumor targeting, multimodality imaging, and gene delivery or targeted drug and prodrug delivery. This review describes various methods of SPIO synthesis, surface coating and characterization. Different tumor-targeting strategies, such as antibody fragments, nucleotides and receptor ligands, are discussed to improve SPIO delivery for multimodality imaging. We also examine the utility of SPIOs for gene delivery, siRNA delivery and imaging. Several methods for drug encapsulation and conjugation onto SPIOs are compared for targeted drug delivery, site-specific release and imaging-guided drug delivery. Finally, we also review the pharmacokinetics (including biodistribution) of SPIOs based on their characteristics.  相似文献   

5.
The superparamagnetic iron oxide nanoparticle (SPIO) ‘theranostics’, which contain imaging probes for tumor diagnosis and therapeutic compounds for therapy in a single nanoparticle, might provide significant benefits compared with exiting tumor imaging and therapeutic strategies. In this review, we summarize the progress of SPIO ‘theranostics’ that integrate tumor targeting, multimodality imaging, and gene delivery or targeted drug and prodrug delivery. This review describes various methods of SPIO synthesis, surface coating and characterization. Different tumor-targeting strategies, such as antibody fragments, nucleotides and receptor ligands, are discussed to improve SPIO delivery for multimodality imaging. We also examine the utility of SPIOs for gene delivery, siRNA delivery and imaging. Several methods for drug encapsulation and conjugation onto SPIOs are compared for targeted drug delivery, site-specific release and imaging-guided drug delivery. Finally, we also review the pharmacokinetics (including biodistribution) of SPIOs based on their characteristics.  相似文献   

6.
The complex system involved in the synthesis, degradation and binding of the high molecular weight glycosaminoglycan hyaluronic acid (hyaluronan or HA) provides a variety of structures that can be exploited for targeted cancer therapy. In many cancers of epithelial origin there is an upregulation of CD44, a receptor that binds HA. In other cancers, HA in the tumor matrix is overexpressed. Both CD44 on cancer cells and HA in the matrix have been targets for anticancer therapy. Even though CD44 is expressed in normal epithelial cells and HA is part of the matrix of normal tissues, selective targeting to cancer is possible. This is because macromolecular carriers predominantly extravasate into the tumor and not normal tissue; thus CD44-HA targeted carriers administered intravenously localize preferentially into tumors. Anti-CD44 antibodies have been used in patients to deliver radioisotopes or mertansine for treatment of CD44 expressing tumors. In early phase clinical trials, patients with breast or head and neck tumors treated with anti-CD44 conjugates experienced stabilized disease. A dose-limiting toxicity was associated with distribution of the antibody-drug conjugate to the skin, a site in the body with a high level of CD44. HA has been used as a drug carrier and a ligand on liposomes or nanoparticles to target drugs to CD44 overexpressing cells. Drugs can be attached to HA via the carboxylate on the glucuronic acid residue, the hydroxyl on the N-acetylglucosamine or the reducing end which are located on a repeating disaccharide. Drugs delivered in HA-modified liposomes exhibited excellent antitumor activity both in vitro and in murine tumor models. The HA matrix is also a potential target for anticancer therapies. By manipulating the interaction of HA with cell surface receptors, either by degrading it with hyaluronidase or by interfering with CD44-HA interactions using soluble CD44 proteins, tumor progression was blocked. Finally, cytotoxic drugs or prodrug converting enzymes can be attached to the HA matrix to generate a cytotoxic fence around the tumor. This review describes how the complex interplay among cancer biology, the CD44-HA interaction, drug carriers and drug targeting has been used to improve anticancer therapies. As these approaches evolve, they hold forth the prospect of significantly improved targeted anticancer treatments.  相似文献   

7.
《药学学报(英文版)》2023,13(5):2176-2187
Intelligent responsive drug delivery system opens up new avenues for realizing safer and more effective combination immunotherapy. Herein, a kind of tumor cascade-targeted responsive liposome (NLG919@Lip-pep1) is developed by conjugating polypeptide inhibitor of PD-1 signal pathway (AUNP-12), which is also a targeted peptide that conjugated with liposome carrier through matrix metalloproteinase-2 (MMP-2) cleavable peptide (GPLGVRGD). This targeted liposome is prepared through a mature preparation process, and indoleamine-2,3-dioxygenase (IDO) inhibitor NLG919 was encapsulated into it. Moreover, mediated by the enhanced permeability and retention effect (EPR effect) and AUNP-12, NLG919@Lip-pep1 first targets the cells that highly express PD-L1 in tumor tissues. At the same time, the over-expressed MMP-2 in the tumor site triggers the dissociation of AUNP-12, thus realizing the precise block of PD-1 signal pathway, and restoring the activity of T cells. The exposure of secondary targeting module II VRGDC-NLG919@Lip mediated tumor cells targeting, and further relieved the immunosuppressive microenvironment. Overall, this study offers a potentially appealing paradigm of a high efficiency, low toxicity, and simple intelligent responsive drug delivery system for targeted drug delivery in breast cancer, which can effectively rescue and activate the body's anti-tumor immune response and furthermore achieve effective treatment of metastatic breast cancer.  相似文献   

8.
Hyaluronan (HA) is a biocompatible and biodegradable linear polysaccharide which is of interest for tumor targeting through cell surface CD44 receptors. HA binds with high affinity to CD44 receptors, which are overexpressed in many tumors and involved in cancer metastasis. In the present study, we investigated the impact of HA molecular weight (MW), grafting density, and CD44 receptor density on endocytosis of HA-grafted liposomes (HA-liposomes) by cancer cells. Additionally, the intracellular localization of the HA-liposomes was determined. HAs of different MWs (5-8, 10-12, 175-350, and 1600 kDa) were conjugated to liposomes with varying degrees of grafting density. HA surface density was quantified using the hexadecyltrimethylammonium bromide turbidimetric method. Cellular uptake and subcellular localization of HA-liposomes were evaluated by flow cytometry and fluorescence microscopy. Mean particle sizes of HA-liposomes ranged from 120 to 180 nm and increased with increasing size of HA. HA-liposome uptake correlated with HA MW (5-8 < 10-12 < 175-350 kDa), grafting density, and CD44 receptor density and exceeded that obtained with unconjugated plain liposomes. HA-liposomes were taken up into cells via lipid raft-mediated endocytosis, which is both energy- and cholesterol-dependent. Once within cells, HA-liposomes localized primarily to endosomes and lysosomes. The results demonstrate that cellular targeting efficiency of HA-liposomes depends strongly upon HA MW, grafting density, and cell surface receptor CD44 density. The results support a role of HA-liposomes for targeted drug delivery.  相似文献   

9.
The key for better antitumor efficacy is to improve the specificity of antitumor drugs for tumor cells and diminish their cytotoxicity to normal tissues. Targeted nanoparticles as antitumor drug delivery system can resolve this problem. In this study, we prepared folate and TAT (arginine-rich cell-penetrating peptide) modified N-PEG-N′-octyl-chitosan to form the folate/TAT-PEG-OC micelles. Then, the molecular structure, morphology, size distribution and bio-safety of the micelles were characterized. In order to investigate the drug-loading capacity of folate/TAT-PEG-OC micelles, doxorubicin (DOX) was used as model drug to prepare DOX-loaded chitosan micelles. Here, the confocal microscopy was used to evaluate the cellular uptake of DOX/folate/TAT-PEG-OC micelles, while the self-built NIR imaging system was used to evaluate the dynamic behavior of ICG-Der-01/folate/TAT-PEG-OC micelles in vivo. Our results demonstrate that the dual-modified PEG-OC micelles not only have good morphology, uniform size distribution and excellent drug loading capacity, but also show a strong capability for the efficient intracellular uptake and enhanced targeting behaviors in a folate receptor positive tumor model (Bel-7402 human hepatocellular cells). All these results suggest the potential application of folate/TAT-PEG-OC micelles in the targeted diagnosis and therapy to different kinds of folate receptor positive tumors.  相似文献   

10.
The present patent discloses the identification of small-molecule fluorescent probes constituted by pteroic acid moiety connected to near-infrared (NIR) dye via amino acids. These folate receptor (FR) targeted conjugates were shown to have high affinity for tumors that overexpress FRs. A selected compound from this new class, pteroyl-L-tyrosine-S0456 (OTL-0038), displays high affinity and specificity for FRs and was shown (i) to accumulate in vivo in tumor cells expressing FRs, and (ii) to be non-toxic in mice at clinical dose x 1000. This compound holds considerable promise for the location and detection of tumoral cells in the context of fluorescence guided surgery.  相似文献   

11.
Lipid-based nanocarriers have proven successful in the delivery of mainly chemotherapeutic agents, and currently they are being applied clinically in the treatment of various types of cancer. These drug delivery systems achieve increased therapeutic efficacy by altering the pharmacokinetics and biodistribution of encapsulated drugs, resulting in decreased drug toxicity and enhanced accumulation in tumor tissue. This increased accumulation is due to the relatively leaky immature vasculature of a tumor. After the clinical relevance of such drug delivery systems was demonstrated, research in this area focused on optimization, both by cell specific targeting and including controlled and triggered release concepts within the carrier. These more advanced targeted nanocarriers in general have clearly shown their potential in various animal tumor models and await clinical application. The development of targeted nanocarriers in which therapeutic and imaging agents are merged into a single carrier will certainly be of importance in the near future. Indeed, scientists active in the field of imaging (e.g. nuclear and magnetic resonance imaging) have already started to exploit nanocarriers for molecular imaging. Image-guided drug delivery using these multifunctional nanocarriers, containing therapeutic and imaging agents, will ultimately allow for online monitoring of tumor location, tumor targeting levels, intratumoral localization and drug release kinetics prior and during radio- and/or chemotherapeutic treatment. This review describes the current status and challenges in the field of nanocarrier-aided drug delivery and drug targeting and discusses the opportunities of combining imaging probes with these drug carriers and the potential of these multifunctional lipid-based nanocarriers within image-guided drug delivery.  相似文献   

12.
Triple-negative breast cancer (TNBC) is a highly malignant tumor that does not express the estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2). As molecular approaches to these targets have limited clinical utility in TNBC, novel strategies for the treatment of TNBC are urgently needed. MUC16 (Mucin-16) is a glycoprotein involved in cell proliferation and apoptosis and is overexpressed in breast cancer. To develop a clinically available strategy for TNBC treatment, we synthesized a MUC16 targeted peptide (EVQ)-grafted lipid derivative, EVQ-(SG)5-lipid, and prepared EVQ-(SG)5/PEGylated liposomes of 100 nm by size and a slightly negative ζ-potential value. Thus, we aimed at investigating the association between EVQ-(SG)5/PEGylated and TNBC cell lines by interacting with MUC16 using an in vitro model. In addition, we aimed at exploring the intracellular distribution and cellular uptake pathway of EVQ-(SG)5/PEGylated liposomes as novel drug delivery carriers for TNBC.  相似文献   

13.
This study aimed to design an effective formulation for enhancing the tumor-targeted delivery of sorafenib. Three sorafenib-loaded liposomal formulations including uncoated liposome (SF-Lip), hyaluronic acid-coated liposome (HA-SF-Lip), and PEGylated hyaluronic acid-coated liposome (PEG-HA-SF-Lip) were developed with narrow size distribution and high encapsulation efficiency. The cellular uptake and cytotoxicity of HA-SF-Lip and PEG-HA-SF-Lip were greater than those of SF-Lip in MDA-MB-231 cells overexpressing CD44, whereas there were no significant differences in MCF-7 cells with low CD44 expression, indicating the CD44-mediated cellular uptake of coated liposomes. In comparison with sorafenib solution, PEG-HA-SF-Lip increased the systemic exposure and plasma half-life in rats by 3-fold and 2-fold, respectively. Consistently, PEG-HA-SF-Lip was the most effective for tumor growth inhibition through CD44 targeting in the MDA-MB-231 tumor xenograft mouse model. Taken together, the present study suggests that PEG-HA-SF-Lip might be effective for the tumor-targeted delivery of sorafenib with enhanced systemic exposure and longer blood circulation.  相似文献   

14.
15.
Indocyanine green (ICG) is a near-infrared (NIR) imaging agent and is also an ideal light absorber for laser-mediated photothermal therapy. This NIR dye could serve as a basis of a dual-functional probe with integrated optical imaging and photothermal therapy capabilities. However, applications of ICG remain limited by its concentration-dependent aggregation, poor aqueous stability, nonspecific binding to proteins and lack of target specificity. To overcome these limitations, a novel ICG-containing nanostructure is designed utilizing the noncovalent self-assembly chemistry between phospholipid-polyethylene glycol (PL-PEG) and ICG. The interactions between both amphiphilic ICG and PL-PEG were studied using absorption and fluorescence spectroscopy. The properties of ICG-PL-PEG nanoprobe, such as absorption and fluorescence spectra, stability, morphology and size distribution, were also investigated. Two representative targeting molecules, namely, a small molecule, folic acid (FA), and a large protein, integrin α(v)β? monoclonal antibody (mAb), were conjugated to the surface of ICG-PL-PEG nanoprobe, displaying the diversity of ligand conjugation. The target specificity was confirmed using three cell lines with different levels of available folate receptors (FRs) or integrin α(v)β? expression via laser scanning confocal microscope and flow cytometry. This targeting ICG-PL-PEG nanoprobe could be internalized into targeted cells via ligand-receptor mediated endocytosis pathway. Our in vitro experiments showed that internalized ICG-PL-PEG could be used for cell imaging and selective photothermal cell destruction. These results represent the first demonstration of the dual functionality of ICG-containing nanostructure for targeted optical imaging and photothermal therapy of cancerous cells. This novel ICG-PL-PEG nanostructure, when conjugated with other therapeutic and imaging agents, could become a multifunctional probe for cancer diagnosis and treatment.  相似文献   

16.
《药学学报(英文版)》2020,10(8):1549-1562
Although high-efficiency targeted delivery is investigated for years, the efficiency of tumor targeting seems still a hard core to smash. To overcome this problem, we design a three-step delivery strategy based on streptavidin–biotin interaction with the help of c(RGDfK), magnetic fields and lasers. The ultrasmall superparamagnetic iron oxide nanoparticles (USIONPs) modified with c(RGDfK) and biotin are delivered at step 1, followed by streptavidin and the doxorubicin (Dox) loaded nanosystems conjugated with biotin at steps 2 and 3, respectively. The delivery systems were proved to be efficient on A549 cells. The co-localization of signal for each step revealed the targeting mechanism. The external magnetic field could further amplify the endocytosis of USPIONs based on c(RGDfK), and magnify the uptake distinctions among different test groups. Based on photoacoustic imaging, laser-heating treatment could enhance the permeability of tumor venous blood vessels and change the insufficient blood flow in cancer. Then, it was noticed in vivo that only three-step delivery with laser-heating and magnetic fields realized the highest tumor distribution of nanosystem. Finally, the magnetism/laser-auxiliary cascaded delivery exhibited the best antitumor efficacy. Generally, this study demonstrated the necessity of combining physical, biological and chemical means of targeting.  相似文献   

17.
The high transfection efficiency and enhanced therapeutic effect of drug delivery systems developed in recent years imply that ligand-decorated nanocarriers are potentially targeted vectors for breast cancer treatment. Thioaptamer (TA)-modified nanoparticles (NPs) designed in this study mainly consisted of ligand TA and dendritic polyamidoamine (PAMAM). Knowing that TA can bind to CD44-receptors in breast cancer, this study was intended to validate the safety and feasibility of systemic miRNA delivery to breast cancer cells by TA-PEG-PAMAM/miRNA (polyethylene glycol – PEG), testify its tumor targeting efficiency in vitro, and observe its biodistribution when it was administered systemically to a xenograft mouse model of breast cancer. The in vivo and ex vivo imaging results in human breast cancer tumor-bearing mice showed that TA-modification was able to enhance the accumulation of NPs in the breast cancer tumor. Our data showed that TA-NPs did not induce functional impairment to normal tissues and vital organs. TA-NPs may prove to be a safe and effective miRNA deliver system for breast cancer treatment, and could be widely used in pre-clinical and eventually clinical arenas of breast cancer treatment.  相似文献   

18.
Hyaluronic acid (HA) is a biodegradable, biocompatible, nontoxic, and non-immunogenic glycosaminoglycan used for various biomedical applications. The interaction of HA with the CD44 receptor, whose expression is elevated on the surface of many types of tumor cells, makes this polymer a promising candidate for intracellular delivery of imaging and anticancer agents exploiting a receptor-mediated active targeting strategy. Therefore, HA and its derivatives have been most investigated for the development of several carrier systems intended for cancer diagnosis and therapy. Nonetheless, different and important delivery applications of the polysaccharide have also been described, including gene and peptide/protein drugs delivery. The aim of this review was to provide an overview of the existing recent literature on the use of HA and its derivatives for drug delivery and imaging. Notable attention is given to nanotheranostic systems obtained after conjugation of HA to nanocarriers as quantum dots, carbon nanotubes and graphene. Meanwhile, attention is also paid to some challenging aspects that need to be addressed in order to allow translation of preclinical models based on HA and its derivatives for drug delivery and imaging purposes to clinical testing and further their development.  相似文献   

19.
20.
In order to enhance the targeted delivery of anticancer drugs by polymeric micelles, folic acid (FA), the ligand of folate receptor (FR) over-expressed in the most cancer cells, modified pH-sensitive polymeric micelles were designed and fabricated to encapsulate doxorubicin (DOX) by combination of pH-sensitive amphiphilic polymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) with FA-conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide). The prepared micelles were characterized to have about 36 nm in diameter with narrow distribution, well-defined spherical shape observed under TEM and pH-responsive drug release behavior. Moreover, the tumor targeting ability of the FA-modified pH-sensitive polymeric micelles was demonstrated by the cellular uptake, in vitro cytotoxicity to FR-positive KB cells and in vivo real time near-infrared fluorescence imaging in KB tumor-bearing nude mice. The efficient drug delivery by the micelles was ascribed to the synergistic effects of FR-mediated targeting and pH-triggered drug release. In conclusion, the designed FR-targeted pH-sensitive polymeric micelles might be of great potential in tumor targeted delivery of water-insoluble anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号