首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9?±?6.7?nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T1 and T2 relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865?mM?1 s?1 and 24.863?mM?1 s?1 at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T1 weight time was lasting for 4.5?h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.  相似文献   

2.
The development of novel theranostic agents with outstanding diagnostic and therapeutic performances is still strongly desired in the treatment of hepatocellular carcinoma(HCC). Here, a fucoidan-modified mesoporous polydopamine nanoparticle dual-loaded with gadolinium iron and doxorubicin(FMPDA/Gd3+/DOX) was prepared as an effective theranostic agent for magnetic resonance imaging(MRI)-guided chemo-photothermal therapy of HCC. It was found that FMPDA/Gd3+/DOX had a high pho...  相似文献   

3.
The aim of this work was to evaluate a tumor-targeting porphyrin-based gadolinium complex (Gd-TDAP) for use as an MR/optical imaging agent and potential therapeutic agent. Gd-TDAP had higher longitudinal relaxivity (11.8 mM–1 s–1) than a commercial MRI contrast agent (Omniscan; 3.7 mM–1 s–1) in HSA solution (0.67 mM) at 3 T. The tumor-targeting characteristics were confirmed by T1-weighted MR imaging and optical imaging using an orthotopic brain tumor mouse model, which showed 1.3-fold higher uptake in tumor compared to normal brain tissues. The cell fraction data using U87MG glioblastoma cells indicated the potential for gadolinium neutron capture therapy (Gd-NCT), which requires gadolinium to be inside the cell nucleus. In addition, porphyrin derivatives can be used for photodynamic therapy (PDT), and the results demonstrated that Gd-TDAP has great potential not only as a bimodal imaging agent but also for treatment.  相似文献   

4.
Tissue specific T1/T2 dual contrast abilities for magnetic resonance imaging (MRI) have great significance in initial detection of cancer lesions. Herein, we developed a novel kind of Magnus nano-bullets (Mn-DTPA-F-MSNs) distinguished by magnetic (Fe3O4-NPs) head combined with mesoporous (SiO2) persist body, respectively. Subsequently, modify mesoporous SiO2 group and finally loaded with Mn2+. These Magnus nano-bullets have relaxivity value (r1?=?5.12?mM?1?s?1) and relaxivity value (r2?=?265.32?mM?1?s?1); they were?>?2 folds in comparison to control at 3.0?T. Meanwhile, Magnus nano-bullets also offered significant enhancements for the detection of Glutathione (GSH), a biomarker that has been showed a redox responsive T1-weighted MRI effect in vitro and in vivo evaluations with good biocompatibility. Therefore, our finding endorses that Magnus nano-bullets offer a “smart” and tremendous strategy for greater GSH responsive T1/T2 dual MRI image probes for future biomedical applications.  相似文献   

5.

Purpose

To develop a multi-functional theranostic nanoplatform with increased tumor retention, improving antitumor efficacy and decreased side effects of chemotherapy drugs.

Methods

GO@Gd nanocomposites was synthesized via decorating gadolinium (Gd) nanoparticles (GdNP) onto graphene oxide (GO), and then functionalized by polyethylene glycol (PEG2000), folic acid (FA), a widely used tumor targeting molecule, was linked to GO@Gd-PEG, finally, doxorubicin (DOX) was loaded onto GO@Gd-PEG-FA and obtained a tumor-targeting drug delivery system (GO@Gd-PEG-FA/DOX). GO@Gd-PEG-FA/DOX was characterized and explored its theranostic applications both in a cultured MCF-7 cells and tumor-bearing mice.

Results

GO@Gd-PEG-FA/DOX could efficiently cross the cell membranes, lead to more apoptosis and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 7.6-fold higher DOX uptake of tumor than DOX. Besides, GO@Gd-PEG-FA/DOX also served as a powerful photothermal therapy (PTT) agent for thermal ablation of tumor and a strong T1-weighted contrast agent for tumor MRI diagnosis. The multi-functional nanoplatform also could selectively kill cancer cells in highly localized regions via the excellent tumor-targeting and MRI guided PTT abilities.

Conclusions

GO@Gd-PEG-FA/DOX exhibited excellent photothermal-chemotherapeutic efficacy, tumor-targeting property and tumor diagnostic ability.
  相似文献   

6.
In this report, a novel T1/T2 dual modal nanoprobe based on highly efficient and bioinspired melanin dots (M-dots) with directly loading gadolinium (Gd-M-dots) for magnetic resonance imaging (MRI) is described. In vitro and in vivo investigations have revealed that Gd-M-dots showed nontoxicity and good biocompatibilitity. Gd-M-dots relaxivity values on 3 T were determined to be r1?=?23.4 and r2?=?123.3 mM?1 s?1, which were much higher than both Gd-DTPA (r1?=?5.1, r2?=?6.2 mM?1 s?1) and Fe-M-dots (r1?=?1.2, r2?=?2.1 mM?1 s?1). For in vivo MRI, after injection of Gd-M-dots, simultaneous T1 and T2 contrast enhancement have been observed in the MRI of mice abdomen and mice bearing U87MG tumors. Furthermore, all the veins showed high signal intensity on T1-weighted MRI and remained for 2 h. Overall, in vitro and in vivo studies indicate that Gd-M-dot with high r1 relaxivity and r2 relaxivity has high potential to be a promising nanoprobe for MR venography and molecular imaging.  相似文献   

7.
An aspargine-glycine-arginine (NGR) peptide modified single-walled carbon nanotubes (SWCNTs) system, developed by a simple non-covalent approach, could be loaded with the anticancer drug doxorubicin (DOX) and magnetic resonance imaging (MRI) contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). This DOX- and Gd-DTPA-loaded NGR functionalized SWCNTs (DOX/NGR-SWCNTs/Gd-DPTA) retained both cytotoxicity of DOX and MRI contrast effect of Gd-DPTA. This drug delivery system showed excellent stability in physiological solutions. This DOX/NGR-SWCNTs/Gd-DPTA system could accumulate in tumors and enter into tumor cells, which facilitated combination chemotherapy with diagnosis of tumor in one system. An excellent in vitro anti-tumor effect was shown in MCF-7 cells treated by DOX/NGR-SWCNTs/Gd-DPTA, compared with DOX solution, DOX/SWCNTs and DOX/SWCNTs/Gd-DPTA. In vivo data of DOX/NGR-SWCNTs/Gd-DPTA group in tumor-bearing mice further confirmed that this system performed much higher tumor targeting capacity and anti-tumor efficacy than other control groups.  相似文献   

8.
Herein, we report on development of a two-dimensional nanomaterial graphene oxide (GO)-based T1 magnetic resonance imaging (MRI) contrast agent (CA) for in vitro and in vivo labeling of human mesenchymal stem cells (hMSCs). The CA was synthesized by PEGylation of ultrasmall GO, followed by conjugation with a chelating agent DOTA and then gadolinium(III) to form GO-DOTA-Gd complexes. Thus-prepared GO-DOTA-Gd complexes exhibited significantly improved T1 relaxivity, and the r1 value was 14.2 mM?1 s?1 at 11.7 T, approximately three times higher than Magnevist, a commercially available CA. hMSCs can be effectively labeled by GO-DOTA-Gd, leading to remarkably enhanced cellular MRI effect without obvious adverse effects on proliferation and differentiation of hMSCs. More importantly, in vivo experiment revealed that intracranial detection of 5 × 105 hMSCs labeled with GO-DOTA-Gd is achieved. The current work demonstrates the feasibility of the GO-based T1 MRI CA for stem cell labeling, which may find potential applications in regenerative medicine.  相似文献   

9.
This study aimed to synthesize and characterize L-epigallocatechin gallate (EGCG) complexed Mn2+ nanoparticle (L-EGCG-Mn), a proof-of-concept pH-sensitive manganese core nanoparticle (NP), and compare its magnetic resonance (MR) properties with those of Gd-DTPA, both in vitro and in vivo. Reverse microemulsion was used to obtain the L-EGCG-Mn NPs. The physicochemical properties of L-EGCG-Mn were characterized using dynamic light scattering, transmission electron microscopy, and near-infrared fluorescence small animal live imaging. The in vitro relaxivity of L-EGCG-Mn incubated with different pH buffer solutions (pH = 7.4, 6.8, 5.5) was evaluated. The T1-weighted MR imaging (MRI) properties were evaluated in vitro using hypoxic H22 cells as well as in H22 tumor-bearing mice. Cytotoxicity tests and histological analysis were performed to evaluate the safety of L-EGCG-Mn. L-EGCG-Mn showed good biocompatibility, stability, pH sensitivity, and tumor-targeting ability. Moreover, when the pH was decreased from 7.4 to 5.5, the r1 relaxivity of L-EGCG-Mn was shown to gradually increase from 1.79 to 6.43 mM−1·s−1. Furthermore, after incubation with L-EGCG-Mn for 4 h, the T1 relaxation time of hypoxic H22 cells was significantly lower than that of normoxic H22 cells (1788 ± 89 vs. 1982 ± 68 ms, p=.041). The in vivo analysis showed that after injection, L-EGCG-Mn exhibited a higher MRI signal compared to Gd-DTPA in H22 tumor-bearing mice (p < .05). Furthermore, L-EGCG-Mn was found to have a good safety profile via cytotoxicity tests and histological analysis. L-EGCG-Mn has a good safety profile and pH sensitivity and may thus serve as a potential MRI contrast agent.  相似文献   

10.
The aim of this study is to develop co-encapsulation of quercetin (QCT) and superparamagnetic iron oxide nanoparticles (SPIONs) into methoxy-poly(ethylene glycol)-b-oligo(?-caprolactone), mPEG750-b-OCL-Bz micelles (QCT-SPION-loaded micelles) for inhibition of hepatitis B virus-transfected hepatocellular carcinoma (HepG2.2.15) cell growth. QCT-SPION-loaded micelles were prepared using film hydration method. They were spherical in shape with an average size of 22-55 nm. The best QCT-SPION-loaded micelles showed entrapment efficiency and loading capacity of QCT at 70% and 3.5%, respectively, and of SPIONs at 15% and 0.8%, respectively. Transverse (T2) relaxivity of SPIONs was 137 mM?1s?1. SPION clusters present inside the core of QCT-SPION-loaded micelles increased T2 relaxivity value (246 mM?1s?1) indicating the good magnetic resonance imaging sensitivity of QCT-SPION-loaded micelles in comparison with SPIONs. QCT-SPION-loaded micelles could be taken up by HepG2.2.15 cells and showed higher cytotoxicity than QCT. Furthermore, these cells were arrested by QCT-SPION-loaded micelles at the G0/G1 phase of cell cycle. QCT-SPION-loaded micelles accumulated in the vicinity of Neodymium Iron Boron (NdFeB) magnetic disc, resulting in the potent inhibition of cancer cell growth at the strong magnetic field strength. In conclusion, mPEG750-b-OCL-Bz micelles are a promising multi-functional vehicle for co-delivery of QCT and SPIONs for disease monitoring and therapies of hepatocellular carcinoma.  相似文献   

11.
Non-invasive in vivo tracking of T-cells by magnetic resonance imaging (MRI) can lead to a better understanding of many pathophysiological situations, including AIDS, cancer, diabetes, graft rejection. However, an efficient MRI contrast agent and a reliable technique to track non-phagocytic T-cells are needed. We report a novel superparamagnetic nano-sized iron-oxide particle, IOPC-NH2 series particles, coated with polyethylene glycol (PEG), with high transverse relaxivity (250 s?1 mM?1), thus useful for MRI studies. IOPC-NH2 particles are the first reported magnetic particles that can label rat and human T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation. IOPC-NH2 particles do not cause any measurable effects on T-cell properties. Infiltration of IOPC-NH2?labeled T-cells can be detected in a rat model of heart-lung transplantation by in vivo MRI. IOPC-NH2 is potentially valuable contrast agents for labeling a variety of cells for basic and clinical cellular MRI studies, e.g., cellular therapy.From the Clinical EditorIn this study, a novel PEG coated superparamagnetic nano-sized iron-oxide particle was investigated as a T-cell labeling agent for MRI studies. The reported particles can label T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation, therefore may enable more convenient preclinical call labeling studies.  相似文献   

12.
Dextran-ferrite (DF) nanoparticles were synthesized and the related DF sol was successfully tested in vivo as a negative contrast agent for enhancing early magnetic resonance imaging (MRI) detection of tumor, capsule, and tumor-feeding vessels. Intravenous injection of DF in combination with Magnevist and subsequent T2,T2*-weighted 3D scanning gave enhanced MRI images that defined the arrangement and functional state of surface and other vessels feeding capsule and tumor in C57Bl/6j mice with a mammary adenocarcinoma (Ac755) model.  相似文献   

13.
We report the construction and characterization of polyethylenimine (PEI)-entrapped gold nanoparticles (AuNPs) chelated with gadolinium (Gd) ions for targeted dual mode tumor CT/MR imaging in vivo. In this work, polyethylene glycol (PEG) monomethyl ether-modified PEI was sequentially modified with Gd chelator and folic acid (FA)-linked PEG (FA-PEG) was used as a template to synthesize AuNPs, followed by Gd(III) chelation and acetylation of the remaining PEI surface amines. The formed FA-targeted PEI-entrapped AuNPs loaded with Gd (FA-Gd-Au PENPs) were well characterized in terms of structure, composition, morphology, and size distribution. We show that the FA-Gd-Au PENPs with an Au core size of 3.0?nm are water dispersible, colloidally stable, and noncytotoxic in a given concentration range. Thanks to the coexistence of Au and Gd elements within one nanoparticulate system, the FA-Gd-Au PENPs display a better X-ray attenuation property than clinical iodinated contrast agent (e.g. Omnipaque) and reasonable r1 relaxivity (1.1?mM?1s?1). These properties allow the FA-targeted particles to be used as an efficient nanoprobe for dual mode CT/MR imaging of tumors with excellent FA-mediated targeting specificity. With the demonstrated organ biocompatibility, the designed FA-Gd-Au PENPs may hold a great promise to be used as a nanoprobe for CT/MR dual mode imaging of different FA receptor-overexpressing tumors.  相似文献   

14.
A novel polymer, i.e. galactosylated O-carboxymethyl chitosan-graft-stearic acid (Gal-OCMC-g-SA) was synthesized for liver targeting delivery of doxorubicin. The chemical structure was characterized by FT-IR, 1H NMR and elemental analysis. Gal-OCMC-g-SA could self-assemble into nanoparticles with diameter of 160 nm by probe sonication in aqueous medium and exhibited a low critical aggregation concentration of 0.047 mg/mL. The DOX-loaded Gal-OCMC-g-SA (Gal-OCMC-g-SA/DOX) self-assembled nanoparticles were almost spherical in shape with an average diameter of less than 200 nm and zeta potential of around −10 mV. In vitro release revealed that the Gal-OCMC-g-SA/DOX nanoparticles exhibited a sustained and pH-dependent drug release manner. Furthermore, the hemolysis test demonstrated the good safety of Gal-OCMC-g-SA in blood-contacting applications. These results indicated that Gal-OCMC-g-SA/DOX nanoparticles were highly potential to be applied in cancer therapy.  相似文献   

15.
Purpose  To investigate the efficacy of polydisulfide-based biodegradable macromolecular contrast agents of different degradability and molecular weight for tumor characterization based on angiogenesis using dynamic contrast enhanced MRI (DCE-MRI). Methods  Biodegradable macromolecular MRI contrast agents, Gd-DTPA cystamine copolymers (GDCC) and Gd-DTPA cystine copolymers (GDCP), with molecular weight of 20 and 70 KDa were evaluated for tumor characterization. Gd(DTPA-BMA) and a prototype of macromolecular contrast agent, albumin-(Gd-DTPA), were used as controls. The DCE-MRI studies were performed in nude mice bearing MDA PCa 2b and PC-3 human prostate tumor xenografts. Tumor angiogenic kinetic parameters including endothelium transfer coefficient (Ktrans) and fractional tumor plasma volume (fPV) were calculated from the DCE-MRI data using a two-compartment model and compared between the two different tumor models for each contrast agent. Results  There was no significant difference in the fPV values between two tumor models estimated with the same agent except for GDCC-70. The Ktrans values in both tumor models decreased with the increase of molecular weight of contrast agents. With the same high molecular weight (70 KDa), GDCC-70 showed a higher Ktrans values than GDCP-70 due to high degradability of the former in both tumor models (p < 0.05). The Ktrans values of MDA PCa 2b tumors were significantly higher than those of PC-3 tumors estimated by Gd(DTPA-BMA), GDCC-20, GDCC-70, GDCP-70, and albumin-(Gd-DTPA) (p < 0.05). Conclusions  The polydisulfide-based biodegradable macromolecular MRI contrast agents are promising in tumor characterization and differentiation with dynamic contrast enhanced MRI. Xueming Wu and Yi Feng made equal contribution in this work.  相似文献   

16.
Context: The effective treatment of skin carcinoma is warranted for targeting the chemotherapeutic agents into tumor cells and avoiding unwanted systemic absorption.

Objective: This work was dedicated to the purpose of engineering highly penetrating shell-enriched nanoparticles that were loaded with a hydrophilic chemotherapeutic agent, 5-fluorouracil (5-FU).

Methods: Varying ratios of lecithin and poloxamer188 were used to produce shell-enriched nanoparticles by enabling the formation of reversed micelles within this region of the SLN. The localization of 5-FU within the shell region of the SLN, was confirmed using 5-FU nanogold particles as a tracer. SLN were introduced within sodium carboxy methylcellulose hydrogel, and then applied onto the skin of mice-bearing Ehrlich’s ascites carcinoma. The mice were treated with the gel twice daily for 6 weeks.

Results: The transmission electron microscope (TEM) revealed the formation of uniform nanoparticles, which captured reversed micelles within their shell region. The SLNs’ had particle size that ranged from 137?±?5.5?nm to 800?±?53.6, zeta potential of ?19.70?±?0.40?mV and entrapment efficiency of 47.92?±?2.34%. The diffusion of the drug-loaded SLN (269.37?±?10.92?μg/cm2) was doubled when compared with the free drug (122?±?3.09?μg/cm2) when both diffused through a hydrophobic membrane. SLN-treated mice exhibited reduced inflammatory reactions, with reduced degrees of keratosis, in addition to reduced symptoms of angiogenesis compared to 5-FU-treated mice.

Conclusion: SLN possesses the capacity to be manipulated to entrap and release hydrophilic antitumor drugs with ease.  相似文献   

17.
18.
Abstract

Context: Doxorubicin (DOX)-loaded folate-targeted poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] nanoparticles [DOX/FA-PEG-P(HB-HO) NPs] have potential application in clinical treatments for cervical cancer due to specific affinity of folate and folate receptor in HeLa cells.

Objective: The aim of this study was to develop an optimized formulation for DOX/FA-PEG-P(HB-HO) NPs, and investigate the targeting and efficacies of the nanoparticles.

Materials and methods: DOX/FA-PEG-P(HB-HO) NPs were prepared by W1/O/W2 solvent extraction/evaporation method, and an orthogonal experimental design [L9 (34)] was applied to establish the optimum conditions. The physico–chemical characteristics, microscopic observation and in vivo antitumor study of the nanoparticles were evaluated.

Results: The optimum formulation was obtained with DOX 10% (w/v), FA-PEG-P(HB-HO) 6.5% (w/v), PVA 3%(w/v) and oil phase/internal water phase volume ratio of 3/1. The size distribution, drug loading and encapsulation efficiency of the optimized nanoparticles were 150–350?nm, 29.6?±?2.9% and 83.5?±?5.7%, respectively. In vitro release study demonstrated that 80% of the drug could release from the nanoparticles within 11 days. Furthermore, in vitro microscopic observation and in vivo antitumor study showed that DOX/FA-PEG-P(HB-HO) NPs could inhibit HeLa cells effectively, and the tumor inhibition rate (TIR) in vivo was 76.91%.

Discussion and conclusions: DOX/FA-PEG-P(HB-HO) NPs have been successfully developed and optimized. In vitro drug release study suggested a sustained release profile. Moreover, DOX/FA-PEG-P(HB-HO) NPs could effectively inhibit HeLa cells with satisfying targeting, and reduce side effects and toxicity to normal tissues. DOX/FA-PEG-P(HB-HO) NPs were superior in terms of inhibiting HeLa tumor over non-targeted formulations therapy.  相似文献   

19.
20.
《药学学报(英文版)》2021,11(11):3608-3621
Drug transportation is impeded by various barriers in the hypoxic solid tumor, resulting in compromised anticancer efficacy. Herein, a solid lipid monostearin (MS)-coated CaO2/MnO2 nanocarrier was designed to optimize doxorubicin (DOX) transportation comprehensively for chemotherapy enhancement. The MS shell of nanoparticles could be destroyed selectively by highly-expressed lipase within cancer cells, exposing water-sensitive cores to release DOX and produce O2. After the cancer cell death, the core-exposed nanoparticles could be further liberated and continue to react with water in the tumor extracellular matrix (ECM) and thoroughly release O2 and DOX, which exhibited cytotoxicity to neighboring cells. Small DOX molecules could readily diffuse through ECM, in which the collagen deposition was decreased by O2-mediated hypoxia-inducible factor-1 inhibition, leading to synergistically improved drug penetration. Concurrently, DOX-efflux-associated P-glycoprotein was also inhibited by O2, prolonging drug retention in cancer cells. Overall, the DOX transporting processes from nanoparticles to deep tumor cells including drug release, penetration, and retention were optimized comprehensively, which significantly boosted antitumor benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号