首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Effects of the dihydropyridine, nimodipine, an antagonist at L-type calcium channels, on the memory loss in rats caused by long term alcohol consumption were examined. Either a single dose of nimodipine or 2 weeks of repeated administration was given prior to withdrawal from 8 months of alcohol consumption. Memory was measured by the object recognition test and the T maze. Both nimodipine treatments prevented the memory deficits when these were measured between 1 and 2 months after alcohol withdrawal. At the end of the memory testing, 2 months after cessation of chronic alcohol consumption, glucocorticoid concentrations were increased in specific regions of rat brain without changes in plasma concentrations. Both nimodipine treatment schedules substantially reduced these rises in brain glucocorticoid. The data indicate that blockade of L-type calcium channels prior to alcohol withdrawal protects against the memory deficits caused by prolonged alcohol intake. This shows that specific drug treatments, such as nimodipine, given over the acute withdrawal phase, can prevented the neuronal changes responsible for subsequent adverse effects of long term consumption of alcohol. The results also suggest the possibility that regional brain glucocorticoid increases may be involved in the adverse effects of long term alcohol intake on memory. Such local changes in brain glucocorticoid levels would have major effects on neuronal function. The studies indicate that L-type calcium channels and brain glucocorticoid levels could form new targets for the treatment of cognitive deficits in alcoholics.  相似文献   

2.
In rats, dietary supplementation with the amino acid tyrosine (TYR) prevents depletion of central catecholamines observed during acute environmental stress. Concomitant changes in the animals' behavioral responses to stress suggest that TYR might have similar effects on central catecholamines and cognition in humans exposed to environmental stress. This study aimed to determine if severe cold exposure impairs human cognition and if dietary supplementation with TYR would ameliorate such deficits. Volunteers (N=19) completed three test sessions on different days (35 degrees C control/placebo, approximately 10 degrees C/placebo, approximately 10 degrees C/TYR) using a double-blind, within subjects design. During each session, volunteers completed two 90-minute water immersions and consumed a food bar (150 mg/kg TYR or placebo) before each immersion (total TYR 300 mg/kg). Cognitive performance, mood, and salivary cortisol were assessed. Cortisol was elevated in the cold (p<.01). Volunteers made fewer correct responses on a Match-to-Sample memory measure (p<.05) and reaction time (RT) and errors increased on a choice RT test (p<.01) in the cold. Self-reported tension (p<.01), depression (p<.05) and confusion (p<.01) also increased in the cold. When volunteers consumed TYR, correct responses increased on a Match-to-Sample memory measure (p<.05) and study time for the sample was shorter (p<.05), indicative of more rapid and accurate information processing. Finally, RT on the memory measure revealed a similar pattern across immersions for TYR and thermoneutral conditions, but not cold/placebo (p<.05). This study demonstrates cold exposure degrades cognitive performance and supplementation with TYR alleviates working memory decrements.  相似文献   

3.
4.
Age-related deficits in component processes of working memory   总被引:1,自引:0,他引:1  
Working memory deficits in normal aging have been well documented, and studies suggest that high memory load plus the presence of distraction negatively impacts successful memory performance to a greater degree in older individuals. However, characterization of the component processes that are impaired by these task manipulations is not clear. In this behavioral study, younger and older subjects were tested with a delayed-recognition and recall task in which the encoding and delay period were both manipulated. During the encoding period, the subjects were presented with either a single letter or multiple letters at their predetermined forward letter span, and the delay period was either uninterrupted or interrupted with a visual distraction. There was an age-related impairment of working memory recognition accuracy only in the combination of high memory load and distraction. These results suggest that when working memory maintenance systems are taxed, faulty recognition processes may underlie cognitive aging deficits in healthy older individuals.  相似文献   

5.
Functional imaging studies of sex effects in working memory (WMEM) are few, despite significant normal sex differences in brain regions implicated in WMEM. This functional MRI (fMRI) study tested for sex effects in an auditory verbal WMEM task in prefrontal, parietal, cingulate, and insula regions. Fourteen healthy, right-handed community subjects were comparable between the sexes, including on WMEM performance. Per statistical parametric mapping, women exhibited greater signal intensity changes in middle, inferior, and orbital prefrontal cortices than men (corrected for multiple comparisons). A test of mixed-sex groups, comparable on performance, showed no significant differences in the hypothesized regions, providing evidence for discriminant validity for significant sex differences. The findings suggest that combining men and women in fMRI studies of cognition may obscure or bias results.  相似文献   

6.
The prefrontal cortex, a cortical area essential for working memory and higher cognitive functions, is modulated by a number of neurotransmitter systems, including acetylcholine; however, the impact of cholinergic transmission on prefrontal activity is not well understood. We relied on systemic administration of a muscarinic receptor antagonist, scopolamine, to investigate the role of acetylcholine on primate prefrontal neuronal activity during execution of working memory tasks and recorded neuronal activity with chronic electrode arrays and single electrodes. Our results indicated a dose-dependent decrease in behavioral performance after scopolamine administration in all the working memory tasks we tested. The effect could not be accounted for by deficits in visual processing, eye movement responses, or attention, because the animals performed a visually guided saccade task virtually error free, and errors to distracting stimuli were not increased. Performance degradation under scopolamine was accompanied by decreased firing rate of the same cortical sites during the delay period of the task and decreased selectivity for the spatial location of the stimuli. These results demonstrate that muscarinic blockade impairs performance in working memory tasks and prefrontal activity mediating working memory.  相似文献   

7.
8.
Previous studies have claimed that weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex that can be more pronounced than cortical modulation induced by transcranial magnetic stimulation, but there are no studies that have evaluated the effects of tDCS on working memory. Our aim was to determine whether anodal transcranial direct current stimulation, which enhances brain cortical excitability and activity, would modify performance in a sequential-letter working memory task when administered to the dorsolateral prefrontal cortex (DLPFC). Fifteen subjects underwent a three-back working memory task based on letters. This task was performed during sham and anodal stimulation applied over the left DLPFC. Moreover seven of these subjects performed the same task, but with inverse polarity (cathodal stimulation of the left DLPFC) and anodal stimulation of the primary motor cortex (M1). Our results indicate that only anodal stimulation of the left prefrontal cortex, but not cathodal stimulation of left DLPFC or anodal stimulation of M1, increases the accuracy of the task performance when compared to sham stimulation of the same area. This accuracy enhancement during active stimulation cannot be accounted for by slowed responses, as response times were not changed by stimulation. Our results indicate that left prefrontal anodal stimulation leads to an enhancement of working memory performance. Furthermore, this effect depends on the stimulation polarity and is specific to the site of stimulation. This result may be helpful to develop future interventions aiming at clinical benefits.Felipe Fregni and Paulo S. Boggio contributed equally to this work.  相似文献   

9.
We examined the relationship between acute stress and prefrontal-cortex (PFC) based working memory (WM) systems using behavioral (Experiment 1) and functional magnetic resonance imaging (fMRI; Experiment 2) paradigms. Subjects performed a delayed-response item-recognition task, with alternating blocks of high and low WM demand trials. During scanning, participants performed this task under three stress conditions: cold stress (induced by cold-water hand-immersion), a room temperature water control (induced by tepid-water hand-immersion), and no-water control (no hand-immersion). Performance was affected by WM demand, but not stress. Cold stress elicited greater salivary cortisol readings in behavioral subjects, and greater PFC signal change in fMRI subjects, than control conditions. These results suggest that, under stress, increases in PFC activity may be necessary to mediate cognitive processes that maintain behavioral organization.  相似文献   

10.
Many neuropsychological studies demonstrate impairment of working memory in patients with major depressive disorder (MDD). However, there are not enough functional neuroimaging studies of MDD patients seeking for the underlying brain activity relevant to working memory function. The objective of this study is to evaluate prefrontal hemodynamic response related to working memory function in patients with MDD. Twenty-four subjects with MDD and 26 age- and gender-matched healthy subjects were recruited for the present study. We measured hemoglobin concentration changes in the prefrontal and superior temporal cortical surface areas during the execution of working memory task (WM; 2-back, letter version) using 52-channel near-infrared spectroscopy (NIRS), which enables real-time monitoring of task-related changes in cerebral blood volumes in the cortical surface areas. MDD patients showed a smaller increase in lateral prefrontal and superior temporal cortex activation during the 2-back task and associated poorer task performance than healthy controls. The results coincided with previous findings in terms of working memory deficits and prefrontal cortex dysfunction in MDD patients, but contradicted with some previous fMRI studies that suggested increased cortical activity during the working memory task in patients with depression. The contradiction may, in part, be explained by a relatively low level of cognitive demand imposed on the subjects in the present study.  相似文献   

11.
Mood has a substantial impact on cognitive functions. Although studies have shown that the interaction between mood and cognition is mediated by the prefrontal cortex (PFC), little is known about how naturalistic mood in everyday life is associated with PFC activity during cognitive tasks. We investigated whether inter-individual variation in perceived mood under current life situations (recent week) is related to PFC activity during working memory (WM) tasks in healthy adults. Levels of positive and negative moods were quantified with the Profile of Mood States (POMS) questionnaire. PFC activities during verbal and spatial WM tasks were measured by optical topography (OT), a non-invasive low-constraint neuroimaging tool, to minimize experimental intervention in participants' moods. Group-average analysis showed significant activations in the bilateral dorsolateral PFC in both WM tasks. Correlation analysis revealed that the participants reporting higher levels of negative moods showed lower levels of PFC activity during the verbal WM task but not during the spatial WM task. This relationship was significant even after controlling for possible confounding factors such as age, gender, and task performance. Our results suggest that verbal WM is linked with naturalistic negative mood and that the PFC is involved in the mood-cognition interaction in daily circumstances.  相似文献   

12.
目的 基于工作记忆事件中大鼠前额叶皮层神经元电活动的非负稀疏矩阵分解(NMFs),研究如何在更高的精度上表达神经元集群.方法 实验数据为工作记忆事件参考点前后5s 的神经元群体电活动.时间窗口为200ms,移动步长为50ms,从初始点开始,逐个移动窗口,计算每个窗口内的每个神经元发放个数,并进行归一,即为神经元电活动矩...  相似文献   

13.
Little is known about the neural correlates underlying the integration of working memory and emotion processing. We investigated the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left or right dorsolateral prefrontal cortex (DLPFC) on emotional working memory. In a sham-controlled crossover design, participants performed an emotional 3-back task (EMOBACK) at baseline and after stimulation (1 Hz, 15 min, 110 % of the resting motor threshold) in two subsequent sessions. Stimuli were words assigned to the distinct emotion categories fear and anger as well as neutral words. We found lateralized rTMS effects in the EMOBACK task accuracy for fear-related words, with enhanced performance after rTMS applied over the right DLPFC and impaired performance after rTMS applied over the left DLPFC. No significant stimulation effect could be found for anger-related and neutral words. Our findings are the first to demonstrate a causal role of the right DLPFC in working memory for negative, withdrawal-related words and provide further support for a hemispheric lateralization of emotion processing.  相似文献   

14.
15.
16.
Spatial working memory deficits associated with dorsolateral prefrontal dysfunction have been found in Caucasian samples of schizophrenia patients and their first‐degree relatives. This study evaluated spatial working memory function in affected and unaffected members of multiplex schizophrenia families from the Republic of Palau to determine whether the spatial working memory deficits associated with schizophrenia extend to this non‐Caucasian population. Palau is an isolated island nation in Micronesia with an elevated prevalence of schizophrenia and an aggregation of cases in large multigenerational families. Our objective was to evaluate the potential for spatial working memory function to serve as one of multiple endophenotypes in a genetic linkage study of these Palauan schizophrenia families. A spatial delayed response task requiring resistance to distraction and a sensorimotor control task were used to assess spatial working memory in 32 schizophrenia patients, 28 of their healthy first‐degree relatives, and 19 normal control subjects. Schizophrenia patients and their relatives were significantly less accurate than normal control subjects on the spatial delayed response task but not on the sensorimotor control task. On both tasks, patients and relatives were slower to respond than the normal controls. There were no age or gender effects on accuracy, and working memory performance in schizophrenia patients was not significantly correlated with medication dosage. In summary, spatial working memory deficits that have been found in Caucasian schizophrenia patients and relatives were confirmed in this isolated Pacific Island family sample. These results suggest that spatial working memory deficits may be a potentially useful addition to the endophenotypic characterization of family members to be used in a comprehensive genome wide linkage analysis of these Palauan families. © 2002 Wiley‐Liss, Inc.  相似文献   

17.
Spatial working memory deficits associated with dorsolateral prefrontal dysfunction have been found in Caucasian samples of schizophrenia patients and their first-degree relatives. This study evaluated spatial working memory function in affected and unaffected members of multiplex schizophrenia families from the Republic of Palau to determine whether the spatial working memory deficits associated with schizophrenia extend to this non-Caucasian population. Palau is an isolated island nation in Micronesia with an elevated prevalence of schizophrenia and an aggregation of cases in large multigenerational families. Our objective was to evaluate the potential for spatial working memory function to serve as one of multiple endophenotypes in a genetic linkage study of these Palauan schizophrenia families. A spatial delayed response task requiring resistance to distraction and a sensorimotor control task were used to assess spatial working memory in 32 schizophrenia patients, 28 of their healthy first-degree relatives, and 19 normal control subjects. Schizophrenia patients and their relatives were significantly less accurate than normal control subjects on the spatial delayed response task but not on the sensorimotor control task. On both tasks, patients and relatives were slower to respond than the normal controls. There were no age or gender effects on accuracy, and working memory performance in schizophrenia patients was not significantly correlated with medication dosage. In summary, spatial working memory deficits that have been found in Caucasian schizophrenia patients and relatives were confirmed in this isolated Pacific Island family sample. These results suggest that spatial working memory deficits may be a potentially useful addition to the endophenotypic characterization of family members to be used in a comprehensive genome wide linkage analysis of these Palauan families.  相似文献   

18.
Young and aged female rats were tested on a water radial-arm maze designed to measure performance as working memory load increased, followed by brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin 3 (NT3) protein assessments in hippocampus and frontal cortex. Aged rats showed deficiencies in both working and reference memory. There were also profound age-related working memory load effects. Aged rats made more errors as working memory load increased and showed learning only during early trials when memory load was low, while young rats exhibited learning over all trials. Neurotrophin assessment showed that frontal cortex NGF and BDNF levels were positively, and hippocampal NT3 negatively, correlated with number of errors made during specific trials in aged animals. Comparison to untested rats showed that testing increased NT3, but not BDNF or NGF, protein levels in both age groups. Findings suggest that young rats learn to handle a higher working memory load as testing progresses, while aged rats do not, and that frontal cortex and hippocampal neurotrophin levels may relate to working memory proficiency in aged female rats.  相似文献   

19.
By using extracellular recordings of field potential, the exact pathway by which the endogenous ACh influencing the induction of long-term potentiation (LTP) in CA1 area was analysed in slices of rat hippocampus. The results showed that: (1) the application of (-) huperzine A, an AChE inhibitor extracted from Chinese herb Qian Ceng Ta (Huperzia Serrata), could enhance the induction of LTP, while this drug showed little effect on the second components of multiple population spikes that were recorded in Mg(2+)-free medium and had proven to be N-methyl-D-aspartate (NMDA) receptor-mediated response; and (2) scopolamine, a muscarinic receptor antagonist, could significantly suppressed the induction of LTP, while most of the suppressive effect of scopolamine was blocked when slices were pretreated by bicuculline, a gamma-aminobutyric acid (GABA(A)) receptor antagonist. These results suggest that endogenous ACh potentiates the induction of LTP through the inhibition of GABAergic interneurons that modulate pyramidal neurons, but not through the activation of NMDA receptors located on pyramidal neurons.  相似文献   

20.
The dorsolateral area of the prefrontal cortex (PFC) in primates is involved in visuospatial working memory, but the cellular basis of spatial working memory for auditory information is poorly understood. Here we examined dorsolateral PFC neurons using visual and auditory oculomotor delayed-response tasks. We found that the dorsolateral PFC contains two groups of neurons, each showing directional delay-period activity depending on the location of the visual or auditory cue, suggesting that parallel neuronal processes for visual and auditory spatial working memory occur in the dorsolateral PFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号