首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have established the pancreatic B-cell hormone amylin as an important anorectic peptide affecting meal-ending satiety. In the present study, we investigated the effect of a chronic infusion of the amylin antagonist AC 187 on food intake. The studies were performed using obese Zucker fa/fa rats, which are hyperamylinemic but have a defective leptin and insulin signaling system. A chronic intraperitoneal infusion of the amylin antagonist AC 187 (10 microg/kg/h) significantly increased dark phase and total food intake in Zucker but not in lean control rats. During the 8-day infusion experiment, AC 187 had no clear effect on body weight gain in either group. After acute administration, amylin and its agonist salmon calcitonin (sCT) equally reduced food intake in Zucker and lean control rats while cholecystokinin's (CCK) anorectic effect was weaker in the Zucker rats. We provide evidence for amylin being a potential long-term regulator of food intake because AC 187 increased food intake in obese fa/fa rats but not in lean control animals, which have low baseline amylin levels. Amylin may play some role as lipostatic feedback signal similar to leptin and insulin at least when the leptin and insulin feedback signaling systems are deficient. Despite basal hyperamylinemia in the Zucker rats, they do not seem to be less sensitive to the anorectic effects of amylin or its agonist sCT than respective controls. This contrasts with CCK whose anorectic action is reduced in Zucker rats when compared with lean controls.  相似文献   

2.
As the incidence of obesity continues to increase, adequate animal models acquire increased importance for the investigation of energy homeostatic mechanisms. Understanding the central mechanism of action of the adiposity hormones, insulin and leptin, has become particularly important as researchers examine ways to treat or prevent obesity. Although the intra-3rd-ventricular (i3vt) administration of insulin reduces food intake in several species, its effects on food intake and body weight have not been previously been assessed in mice. Male C57BL/6J mice were administered insulin i3vt (0.05, 0.1 or 0.4 microU) or leptin i3vt (5 microg/1 microl) as a positive control. As it occurs in other species, i3vt insulin dose-dependently reduced 24-h food intake and body weight, and increased hypothalamic proopiomelanocortin (POMC) mRNA. Hence, genetic manipulations that influence brain insulin sensitivity in mice can now more easily be integrated with the broader literature on energy homeostasis.  相似文献   

3.
Amylinergic control of food intake   总被引:5,自引:0,他引:5  
Amylin is a pancreatic B-cell hormone that plays an important role in the regulation of nutrient fluxes. As such, amylin reduces food intake in laboratory animals and man, slows gastric emptying and it reduces postprandial glucagon secretion. Amylin deficiency which occurs concomitantly to insulin deficiency in diabetes mellitus, may therefore contribute to some of the major derangements associated with this disorder (hyperphagia, excessive glucagon secretion, accelerated rate of gastric emptying). The described actions of amylin all seem to depend on a direct effect of amylin on the area postrema (AP). As to amylin's satiating effect, the physiological relevance of this action is underlined by studies involving specific amylin antagonists and amylin-deficient mice. In the AP, amylin seems to modulate the anorectic signal elicited by CCK. Subsequent to AP activation, the amylin signal is conveyed to the forebrain via distinct relay stations. Within the lateral hypothalamic area, amylin diminishes the expression of orexigenic neuropeptides such as orexin and MCH. Whether these effects contribute to amylin's short term satiating action remains to be determined. Recent studies suggest that amylin may also play a role as a long-term, lipostatic signal, especially when other feedback systems to the brain are deficient. Obese, leptin-resistant Zucker rats which are hyperinsulinemic and hyperamylinemic, were chronically infused with the amylin antagonist AC 187. AC 187 significantly elevated food intake in obese Zucker rats while having no effect in lean controls. This indicates that at least under certain conditions, chronic blockade of endogenous amylin action may lead to an increase in food intake and/or body weight. As mentioned, the site and mechanism of action for peripheral amylin to reduce food intake seems to be well established. It is less clear how centrally administered amylin reduces food intake although it is well known that 3rd ventricular administration of amylin produces a very strong and long-lasting anorectic action. Amylin receptors have been described in various hypothalamic nuclei but the endogenous ligand of these receptors remains to be investigated. The same holds true as to the physiological relevance of the anorectic effect seen after central amylin administration.  相似文献   

4.
5.
Relatively little is known concerning the interaction of psychostimulants with hypothalamic neuropeptide systems or metabolic hormones implicated in regulation of energy balance. The present studies tested whether methamphetamine alters the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP), two important orexigenic neuropeptides, or proopiomelanocortin (POMC), the precursor for the anorexigenic peptide alpha-melanocyte-stimulating hormone, or the secretion of leptin, insulin and ghrelin, concomitant with inhibition of food intake. Female rats were either fed ad libitum (AL) or placed on a scheduled feeding (SF) regimen, with access to food limited to 4 h/day. Administration of (+/-)-methamphetamine (7.5 mg/kg, i.p.) 2 h prior to food presentation significantly inhibited food intake in SF animals, but did not affect intake in AL animals. In a separate study, AL and SF animals were killed just prior to expected food presentation, and expression of NPY, AgRP and POMC mRNAs in hypothalamus was determined using in situ hybridisation; concentrations of leptin, insulin and ghrelin in serum were determined with radioimmunoassays. In saline-treated, SF controls, NPY and AgRP mRNA expression in arcuate nucleus and serum ghrelin were significantly elevated, and serum leptin and insulin were significantly reduced. Methamphetamine reversed the up-regulation of NPY mRNA expression observed in the SF condition, without affecting AgRP mRNA or the serum concentrations of metabolic hormones. However, in AL animals, NPY mRNA expression in arcuate and dorsomedial nuclei was significantly increased by methamphetamine, which also reduced serum leptin and insulin and increased serum ghrelin concentrations. These findings suggest that the inhibition of NPY expression in SF animals may be a mechanism underlying the anorexigenic effect of methamphetamine seen in this condition. The increase in NPY expression produced by methamphetamine in AL animals may be mediated by the ability of this drug to decrease secretion of leptin and insulin and increase secretion of ghrelin.  相似文献   

6.
We have previously identified that peripherally administered cholecystokinin (CCK) exerts an anorexigenic action via the vagal afferent, and subsequently the brain melanocortin- and corticotropin-releasing hormone-neuronal pathways in goldfish. N-Methyl-d-aspartate (NMDA) receptors have been shown to be involved in the regulations of locomotor activity and food intake in mammals. Although several neuropeptides and other factors exert similar effects in fish and mammals, the role of NMDA receptor in the control of locomotor activity and feeding behavior in fish is still unclear. In the present study, we examined the effect of the NMDA receptor antagonist, MK-801, on locomotor activity and food intake in the goldfish. Intraperitoneal (IP) injection of MK-801 at 0.15 nmol/g body weight (BW) increased locomotor activity, but did not affect food consumption. IP injection of MK-801 at same dose attenuated peripheral CCK (100 pmol/g BW)-induced anorexigenic, but not peripheral acyl ghrelin (10 pmol/g BW)-induced orexigenic actions. These data show for the first time that the NMDA receptor-signaling pathway is involved in the regulation of locomotor activity and feeding behavior through modulation of the peripheral CCK-induced satiety signal, but not the orexigenic effect of ghrelin.  相似文献   

7.
Cholecystokinin (CCK) acutely synergizes with amylin to suppress food intake in lean mice. To extend on these findings, the present studies sought to identify neural correlates for the interaction of amylin and CCK, as well as further understand the therapeutic potential of CCK-based combinations in obesity. First, c-Fos activation was assessed in various brain nuclei after a single intraperitoneal injection of amylin (5 µg/kg) and/or CCK (5 µg/kg). Amylin and CCK additively increased c-Fos within the area postrema (AP), predominantly in noradrenergic (e.g., dopamine-β-hydroxylase-containing) cells. Next, amylin (100 or 300 μg/kg/d) and/or CCK (100 or 300 μg/kg/d) were subcutaneously infused for 7 days in diet-induced obese (DIO) rats. Amylin treatment of DIO rats for 7 days induced significant body weight loss. CCK, while ineffective alone, significantly enhanced body weight loss when co-administered with the higher dose of amylin. Finally, the addition of CCK (300 μg/kg/d) to leptin (125 µg/kg/d), and to the combination of amylin (50 μg/kg/d) and leptin (125 μg/kg/d), was also explored in DIO rats via sustained subcutaneous infusion for 14 days. Infusion of amylin/leptin/CCK for 14 days exerted significantly greater body weight loss, inhibition of food intake, and reduction in adiposity compared to amylin/leptin treatment alone in DIO rats. However, co-infusion of CCK and leptin was an ineffective weight loss regimen in this model. Whereas CCK agonism alone is ineffective at eliciting or maintaining weight loss, it durably augmented the food intake and body weight-lowering effects of amylin and amylin/leptin in a relevant disease model, and when combined with amylin, cooperatively activated neurons within the caudal brainstem.  相似文献   

8.
Ghrelin is mainly secreted during fasting. While an orexigenic effect of peripherally injected ghrelin has been reported, reproducing this effect has often proven difficult. Here, we hypothesized that ghrelin's effect to increase food intake may depend on the experimental conditions (e.g., age of animals). We therefore investigated the effect of an IP ghrelin injection (100 microg/kg) on food intake in rats of different age and at different times during the light-dark cycle, i.e. with different levels of baseline food intake. Ghrelin injected at dark onset in ad libitum fed young rats (body weight [BW] 92 g) slightly increased feeding while no such effect was observed in 12 h food deprived rats (BW 150 g). In the middle of the light phase, ghrelin significantly increased feeding up to 2 h after injection in ad libitum fed rats (BW 130 g; food intake 1 h after injection: NaCl 0.4 +/- 0.2 g versus ghrelin 1.2 +/- 0.3 g [p < 0.05]). In various subsequent experiments, older rats (BW 300-490 g) tested under the same conditions did not respond to a single ghrelin injection. However repeated ghrelin injection (15 microg/kg/day once daily at light onset) over 10 days significantly increased food intake in rats (BW 400-460 g) starting from day 4 of the experiment (24 h food intake: NaCl approx. 19.5 g, ghrelin 22.5 g). Interestingly, the latter effect was completely abolished in rats lesioned in the area postrema (AP). Cumulative food intake was also increased in SHAM but not in AP-X animals (e.g., after 7 days: SHAM/NaCl 135.1 +/- 5.3 g versus SHAM/ghrelin 149.7 +/- 3.5 g [p < 0.05], AP-X/NaCl 127.2 +/- 16.4 versus AP-X/ghrelin 127.9 +/- 5.3). We conclude that ghrelin's effect to increase food intake can best be demonstrated when basal food intake is low. Ghrelin increases feeding mainly in young, fast growing animals. Ghrelin may therefore link the high energy needs to body growth in young individuals. In older animals, peripheral ghrelin increased feeding when injected repeatedly over several days. At least under these conditions, ghrelin's effect was mediated by the AP/NTS region. Using repeated administration, ghrelin might be an interesting tool to increase feeding in patients suffering from wasting diseases such as cancer anorexia.  相似文献   

9.
The acute effect of amylin and salmon calcitonin on energy expenditure   总被引:2,自引:0,他引:2  
The pancreatic B-cell hormone amylin is known to be involved in the regulation of meal ending satiation and it also shares typical features of adiposity signals. Chronic amylin administration has recently been shown to increase energy expenditure under certain conditions. Here we investigate the acute effect of peripheral administration of amylin or its agonist salmon calcitonin (sCT) on energy expenditure and respiratory quotient (RQ). First, rats were injected with amylin (5 microg/kg IP) or saline just before dark onset. Despite significantly decreased food intake in amylin-treated rats compared to control until 2 h post-injection (p<0.05), amylin did not influence energy expenditure or RQ. Reduced food intake, which reduces energy expenditure, may have confounded a stimulatory effect of amylin on energy expenditure. Therefore, in the second experiment, amylin (1, 5 and 10 microg/kg IP) or saline was injected in the middle of the light phase (t=0 h) without access to food during 3 h post-injection. Amylin had no significant effects on energy expenditure or RQ. In a similar paradigm, the effect of sCT (0.1, 1.0 and 5.0 microg/kg IP) was tested. During food restriction, 5.0 microg/kg sCT significantly stimulated energy expenditure compared to control (p<0.05). Subsequent to refeeding at t=3 h, energy expenditure was decreased compared to control at t=8 h and t=10 h after 5.0 microg/kg sCT, probably due to sCT's strong anorectic action. Thus amylin may prevent the compensatory decrease in energy expenditure normally seen in animals that eat less. The longer acting sCT stimulated energy expenditure in animals without food access.  相似文献   

10.
According to previous studies, the area postrema (AP) of the hindbrain may play an important role in mediating the anorectic effect of the pancreatic hormone amylin. Peripheral amylin has been suggested to directly act on AP neurons to bring about its anorectic effect. Cyclic GMP may act as second messenger in this regard. In the present study, we wanted to further delineate the role of the AP in amylin's effect and to find out whether endogenous amylin might reduce feeding via the AP. Rats with chronic cannulas aiming at the AP were infused with various doses of amylin, its agonist salmon calcitonin (sCT) or a cyclic guanosine monophosphate (cGMP) analogue. Amylin and sCT inhibited food intake for about 2 h after food presentation, mainly by reducing meal size when infused into the AP [e.g., 1 h food intake after amylin (0.4 microg/rat) infusion in 12-h deprived rats: NaCl 4.0+/-0.5 vs. amylin 2.4+/-0.5, P<.05]. The effect was comparable in ad libitum fed and 12-h food-deprived rats with a minimal effective dose of 0.04 microg/rat. Similar to amylin and sCT, the cGMP analogue 8-Br-cGMP (200 nmol/rat) also reduced food intake and meal size. Infusion of the amylin antagonist AC 187 (30 microg) into the AP significantly reduced the anorectic effect induced by an intraperitoneal injection of amylin (5 microg/kg). Furthermore, AC 187 alone increased feeding when infused into the AP. This study is in line with previous work pointing to an important role of the AP in mediating the anorectic effect of amylin. Furthermore, we provide evidence for a physiological role of endogenous amylin to reduce food intake. This may also involve an action via the AP.  相似文献   

11.
Age-related decreases in energy expenditure have been associated with the loss of skeletal muscle and decline of food intake, possibly through a mechanism involving changes of growth hormone (GH) secretion and feeding behavior. Age-related declines of growth hormone secretion and food intake have been termed the somatopause and anorexia of ageing, respectively. Ghrelin, a 28-amino-acid peptide, was isolated from human and rat stomachs as an endogenous ligand of growth hormone secretagogue receptor. Ghrelin stimulates growth hormone release and food intake when peripherally administered to rodents and humans. Here, we investigate the relationship between age-related decline of growth hormone secretion and/or food intake and ghrelin function. Ghrelin (10 nmol/kg body weight) was administered intravenously to male 3-, 12-, 24-and 27-month-old Long-Evans rats, after which growth hormone concentrations and 2 h food intake were measured. An intravenous administration of ghrelin to rats increased food intake in all generations. In addition, to orexigenic effect by ghrelin, intravenous administration of ghrelin elicited a marked increase in plasma GH levels, with the peak occurring 15 min after administration. These findings suggest that the aged rats maintain the reactivity to administered exogenous ghrelin.  相似文献   

12.
The pancreatic B-cell hormone amylin has been proposed to be both a satiation signal and an adiposity signal. The effects of peripheral amylin on energy balance are well investigated, but the effects of central amylin are less clear. We determined the effects of low doses of amylin administered into the 3rd cerebral ventricle (i3vt) on food intake, body weight and other indices of energy balance. Amylin (2 pmol/h) significantly lowered body weight compared to saline after 2 weeks of infusion, independent of whether prior body weight was decreased by fasting, increased by voluntary overfeeding or unmanipulated. A bolus injection of amylin (10 pmol, i3vt) increased energy expenditure and body temperature, whereas chronic i3vt amylin infusion had no effect on energy expenditure above that of control rats even though body temperature was increased. Chronic amylin also reduced RQ, implying a preferential oxidation of fat. Overall, the data provide new evidence that amylin is an adiposity signal that acts within the brain, and informing the brain about the status of peripheral energy stores.  相似文献   

13.
The ingestion of food activates mechanisms leading to inhibition of food intake and gastric emptying mediated by the release of regulatory peptides, for example cholecystokinin (CCK), and lipid amides, e.g. oleylethanolamide from the gut. In addition, there are both peptides (e.g. ghrelin) and lipid amides (e.g. anandamide) that appear to signal the absence of food in the gut and that are associated with the stimulation of food intake. Vagal afferent neurones are a common target for both types of signal. Remarkably, the neurochemical phenotype of these neurones itself depends on nutritional status. CCK acting at CCK1 receptors on vagal afferent neurones stimulates expression in these neurones of Y2-receptors and the neuropeptide CART, both of which are associated with the inhibition of food intake. Conversely, in fasted rats when plasma CCK is low, these neurones express cannabinoid (CB)-1 and melanin concentrating hormone (MCH)-1 receptors, and MCH, and this is inhibited by exogenous CCK or endogenous CCK released by refeeding. The stimulation of CART expression by CCK is mediated by the activation of CREB and EGR1; ghrelin inhibits the action of CCK by promoting nuclear exclusion of CREB and leptin potentiates the action of CCK by the stimulation of EGR1 expression. Vagal afferent neurones therefore constitute a level of integration outside the CNS for nutrient-derived signals that control energy intake and that are capable of encoding recent nutrient ingestion.  相似文献   

14.
Ghrelin and the short- and long-term regulation of appetite and body weight   总被引:15,自引:0,他引:15  
Ghrelin, an acylated upper gastrointestinal peptide, is the only known orexigenic hormone. Considerable evidence implicates ghrelin in mealtime hunger and meal initiation. Circulating levels decrease with feeding and increase before meals, achieving concentrations sufficient to stimulate hunger and food intake. Preprandial ghrelin surges occur before every meal on various fixed feeding schedules and also among individuals initiating meals voluntarily without time- or food-related cues. Ghrelin injections stimulate food intake rapidly and transiently, primarily by increasing appetitive feeding behaviors and the number of meals. Preprandial ghrelin surges are probably triggered by sympathetic nervous output. Postprandial suppression is not mediated by nutrients in the stomach or duodenum, where most ghrelin is produced. Rather, it results from post-ingestive increases in lower intestinal osmolarity (information probably relayed to the foregut via enteric nervous signaling), as well as from insulin surges. Consequently, ingested lipids suppress ghrelin poorly compared with other macronutrients. Beyond a probable role in meal initiation, ghrelin also fulfills established criteria for an adiposity-related hormone involved in long-term body-weight regulation. Ghrelin levels circulate in relation to energy stores and manifest compensatory changes in response to body-weight alterations. Ghrelin crosses the blood-brain barrier and stimulates food intake by acting on several classical body-weight regulatory centers, including the hypothalamus, hindbrain, and mesolimbic reward system. Chronic ghrelin administration increases body weight via diverse, concerted actions on food intake, energy expenditure, and fuel utilization. Congenital ablation of the ghrelin or ghrelin-receptor gene causes resistance to diet-induced obesity, and pharmacologic ghrelin blockade reduces food intake and body weight. Ghrelin levels are high in Prader-Willi syndrome and low after gastric bypass surgery, possibly contributing to body-weight alterations in these settings. Extant evidence favors roles for ghrelin in both short-term meal initiation and long-term energy homeostasis, making it an attractive target for drugs to treat obesity and/or wasting disorders.  相似文献   

15.
Leptin, which is produced in proportion to adiposity, has been reported to regulate feeding behaviors. Previous researchers reported that inhibition of nitric oxide (NO) synthase (NOS) decreased food intake, while L-arginine attenuated this effect. Recently, studies showed that NO plays an important role as a mediator of feeding behavior induced by a variety of neuropeptides. We investigated whether the anorectic effect of leptin is mediated by nitric oxide in broilers and Leghorns. In the first experiment, leptin was intracerebroventricularly (ICV) administered into the right lateral ventricle of broilers and food intake monitored at 15-min intervals through 180 min postinjection. L-arginine attenuated the decrease in food intake induced by leptin. In the second experiment, leptin was coinjected ICV with NG-nitro-arginine methyl ester HC1 (L-NNA), a NOS inhibitor. In the following study, we investigated whether the decreased feeding induced by leptin (10 microg/l0 microl) is mediated by nitric oxide in chickens. Three week old chickens were administered two levels of leptin (A=aCSF, B=10 microg/l0 microl) into the right lateral ventricle, and nitrate and nitrite (nitric oxide metabolites) were monitored 30-min postinjection. The results showed leptin decreased NO formation significantly compared with the control group. These results suggest that NO interacts with leptin in the central nervous system to modulate feeding behavior in the chicken.  相似文献   

16.
17.
18.
19.
Circulating and tissue levels of the proinflammatory cytokine tumor necrosis factor α (TNFα) are elevated in obesity. TNFα interferes with insulin signaling in many tissues and also plays a causal role in the anorexia that accompanies severe challenges to the immune system. The interactions between TNFα and insulin in the control of eating are less well known. The present study evaluated the role of TNFα in the central nervous system control of food intake by insulin in adult male Long Evans rats. We first determined the ability of several doses of TNFα injected into the 3rd cerebral ventricle (i3vt) to reduce food intake in male rats. Subsequently, we assessed the ability of a subthreshold dose of TNFα to modulate the effect of i3vt insulin on food intake in male rats fed a low-fat chow or a high-fat (HF) diet. TNFα administered i3vt dose-dependently reduced food intake in rats fed a standard low-fat chow diet. Moreover, a low, sub-threshold dose of TNFα diminished the reduction in food intake by insulin in rats maintained on a chow diet, but enhanced insulin action in rats maintained on a HF diet. These data suggest that the interaction of TNFα with central insulin varies with nutritional and/or dietary conditions.  相似文献   

20.
Dopamine signaling has been implicated in the control of food intake and body weight. In particular, dopamine is important in the control of meal size and number and is thought to mediate the response to metabolic deprivation states. In the present experiments, the authors assessed the role of the dopamine-3 receptor (D3R) in the feeding responses to 2-deoxy-D-glucose, mercaptoacetate, and peripheral insulin. All 3 compounds increased food intake in wild-type mice, but the hyperphagic responses were blunted in D3R-/- mice. In other experiments, D3R-/- mice were hyperresponsive to the administration of amylin and leptin relative to wild-type mice. These results support the hypothesis that D3Rs chronically inhibit the effects of adiposity hormones, thereby contributing to a net anabolic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号