首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Enteropathogenic Escherichia coli (EPEC) is a human pathogen that attaches to intestinal epithelial cells and causes chronic watery diarrhea. A close relative, enterohemorrhagic E. coli (EHEC), causes severe bloody diarrhea and hemolytic-uremic syndrome. Both pathogens insert a protein, Tir, into the host cell plasma membrane where it binds intimin, the outer membrane ligand of EPEC and EHEC. This interaction triggers a cascade of signaling events within the host cell and ultimately leads to the formation of an actin-rich pedestal upon which the pathogen resides. Pedestal formation is critical in mediating EPEC- and EHEC-induced diarrhea, yet very little is known about its composition and organization. In EPEC, pedestal formation requires Tir tyrosine 474 phosphorylation. In EHEC Tir is not tyrosine phosphorylated, yet the pedestals appear similar. The composition of the EPEC and EHEC pedestals was analyzed by examining numerous cytoskeletal, signaling, and adapter proteins. Of the 25 proteins examined, only two, calpactin and CD44, were recruited to the site of bacterial attachment independently of Tir. Several others, including ezrin, talin, gelsolin, and tropomyosin, were recruited to the site of EPEC attachment independently of Tir tyrosine 474 phosphorylation but required Tir in the host membrane. The remaining proteins were recruited to the pedestal in a manner dependent on Tir tyrosine phosphorylation or were not recruited at all. Differences were also found between the EPEC and EHEC pedestals: the adapter proteins Grb2 and CrkII were recruited to the EPEC pedestal but were absent in the EHEC pedestal. These results demonstrate that although EPEC and EHEC recruit similar cytoskeletal proteins, there are also significant differences in pedestal composition.  相似文献   

2.
Intimate attachment to the host cell leading to the formation of attaching and effacing (A/E) lesions is an essential feature of enterohemorrhagic Escherichia coli (EHEC) O157:H7 pathogenesis. In a related pathogen, enteropathogenic E. coli (EPEC), this activity is dependent upon translocation of the intimin receptor, Tir, which becomes tyrosine phosphorylated within the host cell membrane. In contrast, the accumulation of tyrosine-phosphorylated proteins beneath adherent EHEC bacteria does not occur, leading to questions about whether EHEC uses a Tir-based mechanism for adherence and A/E lesion formation. In this report, we demonstrate that EHEC produces a functional Tir that is inserted into host cell membranes, where it serves as an intimin receptor. However, unlike in EPEC, in EHEC Tir is not tyrosine phosphorylated yet plays a key role in both bacterial adherence to epithelial cells and pedestal formation. EHEC, but not EPEC, was unable to synthesize Tir in Luria-Bertani medium but was able to secrete Tir into M9 medium, suggesting that Tir synthesis and secretion may be regulated differently in these two pathogens. EHEC Tir and EPEC Tir both bind intimin and focus cytoskeletal rearrangements, indicating that tyrosine phosphorylation is not needed for pedestal formation. EHEC and EPEC intimins are functionally interchangeable, but EHEC Tir shows a much greater affinity for EHEC intimin than for EPEC intimin. These findings highlight some of the differences and similarities between EHEC and EPEC virulence mechanisms, which can be exploited to further define the molecular basis of pedestal formation.  相似文献   

3.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, Tir(EHEC O157) is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspF(U), which mimics the function of Nck. tccP is carried on prophage CP-933U/Sp14 (TccP). Typical isolates of EHEC O157:H7 harbor a pseudo-tccP gene that is carried on prophage CP-933 M/Sp4 (tccP2). Here we report that atypical, beta-glucuronidase-positive and sorbitol-fermenting, strains of EHEC O157 harbor intact tccP and tccP2 genes, both of which are secreted by the LEE-encoded type III secretion system. Non-O157 EHEC strains, including O26, O103, O111, and O145, are typically tccP negative and translocate a Tir protein that encompasses an Nck binding site. Unexpectedly, we found that most clinical non-O157 EHEC isolates carry a functional tccP2 gene that encodes a secreted protein that can complement an EHEC O157:H7 DeltatccP mutant. Using discriminatory, allele-specific PCR, we have demonstrated that over 90% of tccP2-positive non-O157 EHEC strains contain a Tir protein that can be tyrosine phosphorylated. These results suggest that the TccP pathway can be used by both O157 and non-O157 EHEC and that non-O157 EHEC can also trigger actin polymerization via the Nck pathway.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) strains are extracellular pathogens that generate actin-rich structures (pedestals) beneath the adherent bacteria as part of their virulence strategy. Pedestals are hallmarks of EPEC infections, and their efficient formation in vitro routinely requires phosphorylation of the EPEC effector protein Tir at tyrosine 474 (Y474). This phosphorylation results in the recruitment and direct attachment of the host adaptor protein Nck to Tir at Y474, which is utilized for actin nucleation through a downstream N-WASP-Arp2/3-based mechanism. Recently, the endocytic protein clathrin was demonstrated to be involved in EPEC pedestal formation. Here we examine the organization of clathrin in pedestals and report that CD2AP, an endocytosis-associated and cortactin-binding protein, is a novel and important component of EPEC pedestal formation that also utilizes Y474 phosphorylation of EPEC Tir. We also demonstrate the successive recruitment of Nck and then clathrin prior to actin polymerization at pedestals during the Nck-dependent pathway of pedestal formation. This study further demonstrates that endocytic proteins are key components of EPEC pedestals and suggests a novel endocytosis subversion strategy employed by these extracellular bacteria.The extracellular bacterial pathogen enteropathogenic Escherichia coli (EPEC) causes serious diarrheal disease in humans and is a prevalent microbe involved in childhood mortality in the developing world. This microbe is part of a larger family of bacteria called the attaching and effacing (A/E) pathogens that also includes the human-specific pathogen enterohemorrhagic E. coli (EHEC) and the murine disease-causing bacterium Citrobacter rodentium. These bacteria attach to intestinal epithelial cells and use a type III secretion system to directly deliver effector proteins from the bacterial cytosol into the cytoplasm of host cells. Among other functions, these effectors harness the host cell''s cytoskeleton (4) to generate actin-rich pedestals that are hallmarks of virulence for this class of pathogens (14). One of these effectors, the translocated intimin receptor (Tir), is key to pedestal formation. Following translocation into the host cell, Tir becomes embedded in the host cell plasma membrane, where its extracellular domain acts to firmly anchor the pathogen to the epithelial cell. In cultured cells, the intracellular cytoplasmic domain of EPEC Tir can become phosphorylated at tyrosine 474 (Y474) (6), where it recruits the adaptor protein Nck (7). These events all occur prior to actin filament polymerization beneath the attached bacteria via an N-WASP- and Arp2/3-based mechanism (7, 11). Although this is the prominent strategy used by EPEC to recruit actin to pedestals, a Y474-independent strategy also exists, but it occurs at a much lower frequency. During such instances, EPEC Tir becomes phosphorylated at Y454 and actin recruitment is independent of Nck (1).Previous work highlighted a role for clathrin during some bacterial infections (19, 20). Although the role of clathrin during enteropathogenic E. coli infections was not investigated until recently (20), the finding of clathrin at the tips of EPEC pedestals, coupled with the discovery of dynamin-2, another protein known to be involved in endocytosis, associated within the actin stalk of EPEC pedestals (18), suggests a possible role for additional endocytosis-associated proteins and indicates that a unique mechanism is employed by EPEC to remain extracellular despite the presence of these endocytic components. Other proteins, including the actin-associated protein cortactin, are also prominent at these structures. Cortactin is found throughout EPEC pedestals as well as pedestals formed by other attaching and effacing pathogens (2, 3). Thus, in order to further examine other endocytosis-associated proteins during EPEC pedestal formation, we opted to immunolocalize the endocytosis-related protein CD2AP (CD-2-associated protein) during these infections. CD2AP is a clathrin-associated endocytosis protein that directly associates with cortactin in other systems (12, 17).We discovered that CD2AP is present at EPEC pedestals and is a crucial component for their formation. Through the use of various host cell modification strategies, we subsequently explored the recruitment of the endocytosis-associated proteins at EPEC pedestals and found that during Nck-dependent pedestal formation, EPEC sequentially recruits Nck, clathrin, cortactin, and then CD2AP at the pedestal tip prior to the actin filament polymerization machinery at these sites.  相似文献   

5.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a clinically important bacterial enteropathogen that manipulates a variety of host cell signal transduction cascades to establish infection. However, the effect of EHEC O157:H7 on Jak/Stat signaling is unknown. To define the effect of EHEC infection on epithelial gamma interferon (IFN-gamma)-Stat1 signaling, human T84 and HEp-2 epithelial cells were infected with EHEC O157:H7 and then stimulated with recombinant human IFN-gamma. Cells were also infected with different EHEC strains, heat-killed EHEC, enteropathogenic E. coli (EPEC) O127:H6, and the commensal strain E. coli HB101. Nuclear and whole-cell protein extracts were prepared and were assayed by an electrophoretic mobility shift assay (EMSA) and by Western blotting, respectively. Cells were also processed for immunofluorescence to detect the subcellular localization of Stat1. The EMSA revealed inducible, but not constitutive, Stat1 activation upon IFN-gamma treatment of both cell lines. The EMSA also showed that 6 h of EHEC O157:H7 infection, but not 30 min of EHEC O157:H7 infection, prevented subsequent Stat1 DNA binding induced by IFN-gamma, whereas infection with EPEC did not. Immunoblotting showed that infection with EHEC, but not infection with EPEC, eliminated IFN-gamma-induced Stat1 tyrosine phosphorylation in both dose- and time-dependent fashions and disrupted inducible protein expression of the Stat1-dependent gene interferon regulatory factor 1. Immunofluorescence revealed that EHEC infection did not prevent nuclear accumulation of Stat1 after IFN-gamma treatment. Also, Stat1 tyrosine phosphorylation was suppressed by different EHEC isolates, including intimin-, type III secretion- and plasmid-deficient strains, but not by HB101 and heat-killed EHEC. These findings indicate the novel disruption of host cell signaling caused by EHEC infection but not by EPEC infection.  相似文献   

6.
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, >10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.  相似文献   

7.
Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.  相似文献   

8.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspFU. Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.  相似文献   

9.
The human pathogens enteropathogenic Escherichia coli (EPEC) and vaccinia virus trigger actin assembly in host cells by activating the host adaptor Nck and the actin nucleation promoter neural Wiskott-Aldrich syndrome protein (N-WASP). EPEC translocates effector molecules into host cells via type III secretion, and the interaction between the translocated intimin receptor (Tir) and the bacterial membrane protein intimin stimulates Nck and N-WASP recruitment, leading to the formation of actin pedestals beneath adherent bacteria. Vaccinia virus also recruits Nck and N-WASP to generate actin tails that promote cell-to-cell spread of the virus. In addition to Nck and N-WASP, WASP-interacting protein (WIP) localizes to vaccinia virus tails, and inhibition of actin tail formation upon ectopic expression of WIP mutants led to the suggestion that WIP is required for this process. Similar studies of WIP mutants, however, did not affect the ability of EPEC to form actin pedestals, arguing against an essential role for WIP in EPEC-induced actin assembly. In this study, we demonstrate that Nck and N-WASP are normally recruited by vaccinia virus and EPEC in the absence of WIP, and neither WIP nor the WIP family members CR16 and WIRE/WICH are essential for pathogen induced actin assembly. In addition, although Nck binds EPEC Tir directly, N-WASP is required for its localization during pedestal formation. Overall, these data highlight similar pathogenic strategies shared by EPEC and vaccinia virus by demonstrating a requirement for both Nck and N-WASP, but not WIP or WIP family members in pathogen-induced actin assembly.  相似文献   

10.
Cortactin and the translocated intimin receptor, Tir, interacted with each other in pedestal formation in HeLa cells infected with enteropathogenic Escherichia coli (EPEC). Cortactin is shown to be necessary for organizing actin pedestals in response to EPEC, based on the expression of green fluorescent protein-fused cortactin derivatives in HeLa cells.  相似文献   

11.
Infection of cultured HeLa epithelial cells with enteropathogenic Escherichia coli (EPEC) or enterohemorrhagic E. coli (EHEC) O157:H7 results in accumulation of cortactin under the adherent bacteria. Tyrosine phosphorylation of cortactin is not induced following HeLa cell infection with EHEC or EPEC, contrary to what has been reported to occur with Shigella flexneri.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) possess a filamentous type III secretion system (TTSS) employed to deliver effector proteins into host cells. EspA is a type III secreted protein which forms the filamentous extension to the TTSS and which interacts with host cells during early stages of attaching and effacing (A/E) lesion formation. By immunofluorescence, a polyclonal antibody previously raised to EspA from EPEC strain E2348/69 (O127:H6) stained approximately 12-nm-diameter EspA filaments produced by this strain but did not stain similar filaments produced by EHEC serotype O157:H7. Similarly, an antibody that we subsequently raised to EHEC strain 85-170 (O157:H7) EspA stained approximately 12-nm-diameter EspA filaments produced by strain 85-170 but did not stain E2348/69 EspA filaments. Given such heterogeneity between EPEC and EHEC EspA filaments, we examined polymorphisms of functional EspA filaments among different EPEC and EHEC serotypes. With use of the EPEC EspA antiserum, EspA filaments were observed only with EPEC serotypes O127:H6 and O55:H6, serotypes which encode an identical EspA protein. When stained with the EHEC EspA antiserum, EspA filaments were detected only on EHEC strains belonging to serotype O157:H7; the EHEC antiserum did, however, stain EspA filaments produced by the closely related EPEC serotype O55:H7 but not filaments of any other EPEC serotype tested. Such polymorphisms among functional EspA filaments of EPEC and EHEC would be expected to have important implications for the development of broad-range EspA-based vaccines.  相似文献   

13.
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathogens that colonize the gut through the formation of attaching and effacing lesions, which depend on the translocation of effector proteins via a locus of enterocyte effacement-encoded type III secretion system. Recently, two effector proteins, EspJ and TccP, which are encoded by adjacent genes on prophage CP-933U in EHEC O157:H7, have been identified. TccP consists of a unique N-terminus region and several proline-rich domains. In this project we determined the distribution of tccP in O157:H7, in non-O157 EHEC, and in typical and atypical EPEC isolates. All the EHEC O157:H7 strains tested were tccP(+). Unexpectedly, tccP was also found in non-O157 EHEC, and in typical and atypical EPEC isolates, particularly in strains belonging to serogroups O26 (EHEC), O119 (typical EPEC), and O55 (atypical EPEC). We recorded some variation in the length of tccP, which reflects diversity in the number of the proline-rich repeats. These results show the existence of a class of "attaching and effacing" pathogens which express a combination of EPEC and EHEC virulence determinants.  相似文献   

14.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) infections result in attaching and effacing lesions on intestinal epithelial cells. Secretion of extracellular proteins via a type III secretion apparatus is necessary for the formation of attaching and effacing lesions by EPEC. We now show that EHEC also secretes polypeptides via a putative type III secretion system. The secreted EHEC proteins are recognized by rabbit antiserum raised against the proteins secreted from EPEC and by human serum from a patient infected with an EHEC O157:H7 strain.  相似文献   

15.
Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.  相似文献   

16.
Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin “pedestals” is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment.  相似文献   

17.
Infection of humans with verotoxin-producing Escherichia coli (VTEC) O113:H21 is associated with clinical features comparable to those associated with infection with attaching and effacing VTEC strains including those of serotype O157:H7. We have shown previously that the adhesion phenotype of VTEC O157:H7 is influenced by the presence of a homolog of the chromosomal eaeA (for E. coli attaching and effacing) gene. In contrast, by colony blot hybridization, VTEC O113:H21 is negative for the eaeA gene. Therefore, the aim of this study was to define the adhesion phenotype of VTEC O113:H21 strain CL-15 to both cultured epithelial cells (HEp-2) and rabbit intestine in vivo. Under transmission electron microscopy, areas of microvillus effacement were observed in regions directly beneath the organism in CL-15-infected cells both in vitro and in vivo. However, F-actin adhesion pedestals on the host plasma membrane were absent. Failure of CL-15 to induce polymerization of actin was confirmed by using staining of F-actin with fluorescein-labeled phalloidin. Under indirect immunofluorescence microscopy, CL-15-infected HEp-2 cells also failed to demonstrate the recruitment of another cytoskeletal element, alpha-actinin, below foci of bacterial adhesion. In contrast, VTEC O157:H7 infection of HEp-2 cells was associated with increased alpha-actinin immunofluorescence. These findings suggest that bacterial factors distinct from those of EaeA are necessary for the adhesion phenotype of VTEC O113:H21.  相似文献   

18.
The EspF protein is secreted by the type III secretion system of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). EspF sequences differ between EHEC O157:H7, EHEC O26:H11, and EPEC O127:H6 in terms of the number of SH3-binding polyproline-rich repeats and specific residues in these regions, as well as residues in the amino domain involved in cellular localization. EspF(O127) is important for the inhibition of phagocytosis by EPEC and also limits EPEC translocation through antigen-sampling cells (M cells). EspF(O127) has been shown to have effects on cellular organelle function and interacts with several host proteins, including N-WASP and sorting nexin 9 (SNX9). In this study, we compared the capacities of different espF alleles to inhibit (i) bacterial phagocytosis by macrophages, (ii) translocation through an M-cell coculture system, and (iii) uptake by and translocation through cultured bovine epithelial cells. The espF gene from E. coli serotype O157 (espF(O157)) allele was significantly less effective at inhibiting phagocytosis and also had reduced capacity to inhibit E. coli translocation through a human-derived in vitro M-cell coculture system in comparison to espF(O127) and espF(O26). In contrast, espF(O157) was the most effective allele at restricting bacterial uptake into and translocation through primary epithelial cells cultured from the bovine terminal rectum, the predominant colonization site of EHEC O157 in cattle and a site containing M-like cells. Although LUMIER binding assays demonstrated differences in the interactions of the EspF variants with SNX9 and N-WASP, we propose that other, as-yet-uncharacterized interactions contribute to the host-based variation in EspF activity demonstrated here.  相似文献   

19.
For enterohemorrhagic Escherichia coli (EHEC) O157:H7 to adhere tightly to the intestinal epithelium and produce attach and efface (A/E) lesions, the organism must express the adhesin intimin and insert the bacterially encoded translocated intimin receptor Tir into the plasma membrane of the host enterocyte. Additionally, some reports based on tissue culture experiments indicate that intimin has affinity for the eucaryotic proteins nucleolin and beta1 integrin. To address the potential biological relevance of these eucaryotic proteins in the infection process in vivo, we sought to compare the proximity of Tir, nucleolin, and beta1 integrin to regions of EHEC O157:H7 attachment in intestinal sections from three different inoculated animals: piglets, neonatal calves, and mice. Piglets and neonatal calves were chosen because intimin-mediated adherence of EHEC O157:H7 and subsequent A/E lesion formation occur at high levels in these animals. Mice were selected because of their ease of manipulation but only after we first demonstrated that in competition with the normal mouse gut flora, an EHEC O157:H7 strain with a nonpolar deletion in the intimin gene was cleared faster than strains that produced wild-type or hybrid intimin. In all three animal species, we noted immunostained Tir beneath and stained nucleolin closely associated with adherent bacteria in intestinal sections. We also observed immunostained beta1 integrin clustered at locations of bacterial adherence in porcine and bovine tissue. These findings indicate that nucleolin and beta1 integrin are present on the luminal surface of intestinal epithelia and are potentially accessible as receptors for intimin during EHEC O157:H7 infection.  相似文献   

20.
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is an attaching and effacing pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome. Although this organism causes adhesion pedestals, the cellular signals responsible for the formation of these lesions have not been clearly defined. We have shown previously that STEC O157:H7 does not induce detectable tyrosine phosphorylation of host cell proteins upon binding to eukaryotic cells and is not internalized into nonphagocytic epithelial cells. In the present study, tyrosine-phosphorylated proteins were detected under adherent STEC O157:H7 when coincubated with the non-intimately adhering, intimin-deficient, enteropathogenic E. coli (EPEC) strain CVD206. The ability to be internalized into epithelial cells was also conferred on STEC O157:H7 when coincubated with CVD206 ([158 ± 21] % of control). Neither the ability to rearrange phosphotyrosine proteins nor that to be internalized into epithelial cells was evident following coincubation with another STEC O157:H7 strain or with the nonsignaling espB mutant of EPEC. E. coli JM101(pMH34/pSSS1C), which overproduces surface-localized O157 intimin, also rearranged tyrosine-phosphorylated and cytoskeletal proteins when coincubated with CVD206. In contrast, JM101(pMH34/pSSS1C) demonstrated rearrangement of cytoskeletal proteins, but not tyrosine-phosphorylated proteins, when coincubated with intimin-deficient STEC (strains CL8KO1 and CL15). These findings indicate that STEC O157:H7 forms adhesion pedestals by mechanisms that are distinct from those in attaching and effacing EPEC. Taken together, these findings point to diverging signal transduction responses to infection with attaching and effacing bacterial enteropathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号