首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a chemically new type of aldose reductase inhibitor, ADN-138, on delayed motor nerve conduction velocity (MNCV) and sciatic nerve sorbitol, fructose and myo-inositol levels were studied in streptozotocin-diabetic rats. MNCV in rats was significantly delayed after 3 weeks of diabetes and ADN-138 treatment was started at this point. Treatment of diabetics with ADN-138 at 5 and 20 but not 1 mg/kg/d for 3 weeks resulted in a significant increase in MNCV and reduced sorbitol levels to or below those of nondiabetic controls. However, fructose, though decreased in a dose-dependent manner, was not normalized. The reference drug, Sorbinil, showed similar effects on them. After the 3 weeks of ADN-138(20 mg/kg/d) treatment, diabetics were left on ADN-138 or continued further to be treated with it for 3 weeks. The withdrawal of ADN-138 prevented a further increase in MNCV and restored sorbitol and fructose to nontreated diabetic levels, and myo-inositol levels declined. In contrast, the ADN-138-continued group kept improving its MNCV and normalized sorbitol and myo-inositol. These results suggest that polyol accumulation is responsible for delayed MNCV and that the action of ADN-138 on MNCV reflected reversibility of metabolic function in diabetics.  相似文献   

2.
Na+,K(+)-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K(+)-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K(+)-ATPase activity was strongly related to blood C-peptide levels in non-insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene. A polymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K(+)-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K(+)-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K(+)-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K(+)-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K(+)-ATPase activity. This impairment in Na+,K(+)-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetes-induced decrease in Na+,K(+)-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K(+)-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K(+)-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K(+)-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

3.
Bovine brain gangliosides have been shown to prevent decay in Na+,K(+)-ATPase activity in sciatic and optic nerves of alloxan- and streptozotocin-diabetic rats. In the search for a drug with greater bioavailability and increased incorporation into neural tissue, ganglioside inner ester derivatives (AGF1) were recently developed. We evaluated the effect of AGF1 treatment on Na+,K(+)-ATPase activity in homogenates of vagus nerve from alloxan-diabetic rats (100 mg/kg s.c.). Animals were treated with AGF1: 10 mg/kg 6 days/week i.p., or 30 mg/kg biweekly i.p. Treatment began 10 d post-alloxan and continued for 8 consecutive weeks. Normal age- and sex-matched rats were used as controls. Alloxan intoxication produced a 39% decrease in Na+,K(+)-ATPase activity of the vagus nerve, which was completely restored (96-97% recovery) by both AGF1 regimes. Results suggest that ganglioside inner ester derivatives may be used in the clinical setting for the management of diabetic autonomic neuropathy.  相似文献   

4.
The effects of a new aldose reductase inhibitor (ARI), (2S,4S)-6-fluoro-2',5'-dioxospiro[chroman-4,4'-imidazolidine]-2-ca rboxamide (SNK-860), on the slowing of motor nerve conduction velocity (MNCV) and metabolic abnormalities in sciatic nerve were investigated in acute streptozotocin (STZ)-induced diabetic rats. MNCV in the diabetic rats was significantly slower 2 weeks after STZ injection. In the following 2 weeks, treatment with SNK-860 improved MNCV in a dose-dependent manner. The efficacy of 1 mg/kg SNK-860 was equipotent to that of 20 mg/kg sorbinil. Four weeks after STZ injection, increases in sorbitol levels, decreases in myo-inositol levels, and reductions in Na+, K(+)-adenosine triphosphatase (ATPase) activity were observed in sciatic nerves of diabetic rats. Administration of SNK-860 for 14 days beginning 2 weeks after the induction of diabetes inhibited these metabolic abnormalities in a dose-dependent manner. SNK-860 restored all of these parameters to normal levels at a dose of 2 mg/kg. In addition, close correlations were observed between MNCV and sorbitol levels (r = -.95) and between MNCV and myo-inositol levels (r = .93) in the sciatic nerve; a close correlation was also observed between sorbitol and myo-inositol levels in the sciatic nerve (r = -.86). Therefore, it is suggested that the effect of SNK-860 on the slowing of MNCV results from normalizing the above-mentioned metabolic abnormalities in the sciatic nerve of diabetics. Thus, SNK-860 may be useful in the treatment of diabetic neuropathy.  相似文献   

5.
Nerve polyol content and (Na+,K+)-adenosine triphosphatase (ATPase) activity of nerve homogenates were studied in a colony of rats fed diets containing either 0%, 10%, 20%, or 40% galactose for 4 months. Nerve water and dulcitol content exhibited dose-dependent increases, whereas nerve myo-inositol content declined with increasing dietary galactose. Homogenate (Na+,K+)-ATPase activity increased with increasing galactose consumption of up to 20% dietary intake and thereafter remained consistently elevated at twice the activity of 0% galactose-fed values. Nerves of rats fed 40% galactose were also examined at the light microscope level and showed evidence of both edema and myelin splitting. These data demonstrate that increased nerve water content, dulcitol accumulation, and myo-inositol depletion parallel the previously reported dose-related increase of endoneurial fluid sodium and chloride in nerves of galactose-fed rats and suggest that elevated nerve homogenate (Na+,K+)-ATPase activity may be related to one or more of these consequences of exaggerated polyol pathway flux.  相似文献   

6.
Na+,K(+)-ATPase is a major determinant of myocyte homeostasis and excitation-contraction. Cardiac glycosides such as digitalis and ouabain increase the inotropic state of the heart through the inhibition of Na+,K(+)-ATPase. While cardiac glycosides are commonly used in the setting of congestive heart failure, optimal therapy would depend upon an intact Na+,K(+)-ATPase system. Changes in Na+,K(+)-ATPase activity and glycoside receptor density with the development of cardiomyopathy have not been well defined. Accordingly, left ventricular (LV) function and Na+,K(+)-ATPase activity and glycoside binding were examined in 7 pigs with dilated cardiomyopathy and in 7 controls. Dilated cardiomyopathy was produced by pacing induced supraventricular tachycardia (SVT) for 3 weeks at 240 bpm. Left ventricular function was examined by simultaneous echocardiography and catheterization. Left ventricular fractional shortening significantly decreased with SVT (34 +/- 2 vs. 10 +/- 2%, P less than 0.05) and LV diastolic dimension and pressure significantly increased (3.8 +/- 0.3 vs. 5.1 +/- 0.4 cm, and 8 +/- 2 vs. 27 +/- 2 mmHg, respectively, P less than 0.05) as compared to controls. Na+,K(+)-ATPase activity was assayed as potassium dependent p-nitrophenol-phosphatase activity. Glycoside receptor density (Bmax) and affinity (KD) was determined using [3H]-ouabain binding assays. Na+,K(+)-ATPase activity, Bmax, and KD all significantly fell from control values with SVT induced cardiomyopathy (0.64 +/- 0.06 vs. 0.45 +/- 0.12 micrograms pNP/mg/h, 5.5 +/- 0.4 vs. 1.9 +/- 0.4 pmol/mg, and 15 +/- 3 vs. 9 +/- 3 nM, respectively, P less than 0.05). The distribution of Na+,K(+)-ATPase in LV sections taken from control and SVT hearts were examined using immunohistochemical techniques. A patchy distribution of Na+,K(+)-ATPase along the sarcolemma in SVT sections was observed as opposed to a more uniform distribution in control myocytes. There was no observable change in the relative content and distribution of the Na+,K(+)-ATPase isoforms alpha 2 and alpha 3 in the SVT sections as compared to controls. In an additional set of experiments, changes in LV as well as isolated myocyte responsiveness to ouabain were examined. Left ventricular fractional shortening and peak dP/dt were measured following administration of 20-60 micrograms/Kg of ouabain in control (n = 3) and SVT (n = 3) pigs. In the control group, 40 micrograms/Kg caused a 25% in LV fractional shortening and a 60% increase in peak dP/dt from baseline. Cumulative doses of 60 micrograms/Kg in the control pigs resulted in over a 75% increase in peak dP/dt from baseline values.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effect of insulin treatment on the renal hypertrophy and elevated renal Na+,K+-ATPase activity in rats with streptozotocin (STZ)-induced diabetes was examined. Rats with STZ-diabetes of 6- to 8-week duration had significantly lower body weights, higher plasma and urinary glucose concentrations, greater urinary volumes, increased kidney weights, and increased kidney/body weights and protein/kidney weight ratios compared to those in saline-citrate-injected controls. Specific Na+,K+-ATPase activity per mg protein in both cortical and outer medullary kidney homogenates was significantly elevated in diabetic vs. control animals, as was total renal Na+,K+-ATPase activity. One week of insulin treatment returned elevated plasma glucose, urinary volume, the protein/kidney weight ratio, and cortical and outer medullary Na+,K+-ATPase activity per mg protein to control values. Kidney weights and kidney/body weight ratios of diabetic animals remained elevated, as did absolute total renal Na+,K+-ATPase activity. After 3 weeks of insulin treatment, kidney weight and total renal Na+,K+-ATPase activity in diabetic animals returned to control values, but body weights remained lower than those in the controls, resulting in continued elevation of kidney/body weight ratios in the diabetic animals. The concurrent regression of both renal hypertrophy and elevated Na+,K+-ATPase activity to normal levels after insulin treatment of STZ-diabetic animals implicates renal growth rather than a direct effect of insulin as the primary factor controlling elevation and regression of Na+,K+-ATPase activity in the diabetic kidney. This finding demonstrates that the effect of renal hypertrophy can outweigh the intrinsic effects of insulin on an important renal transport system and that this effect may be as important as lack of hormone in determining the renal physiological responses in the disease. It is suggested that the increased renal tubular Na+,K+-ATPase activity is a key component of the renal hypertrophy and hyperfunction seen in diabetes.  相似文献   

8.
Recently, a beta subunit for the rat gastric H+,K(+)-ATPase (HK beta), which is structurally similar to the beta subunit of Na+, K(+)-ATPase, has been cloned and characterized. Using heterologous expression in yeast, we have tested the specificity of beta subunit assembly with different isoforms of the alpha subunit of Na+, K(+)-ATPase. Coexpression in yeast cells of the HK beta with both the sheep alpha 1 subunit and the rat alpha 3 subunit isoforms of Na+, K(+)-ATPase (alpha 1 and alpha 3, respectively) leads to the appearance of high-affinity ouabain-binding sites in yeast membranes. These ouabain-binding sites (alpha 1 plus HK beta, alpha 3 plus HK beta) have a high affinity for ouabain (Kd, 5-10 nM) and are expressed at levels similar to those formed with the rat beta 1 subunit of Na+, K(+)-ATPase (beta 1) (alpha 1 plus beta 1 or alpha 3 plus beta 1). Potassium acts as a specific antagonist of ouabain binding by alpha 1 plus HK beta and alpha 3 plus HK beta just like sodium pumps formed with beta 1. Sodium pumps formed with the HK beta, however, show quantitative differences in their affinity for ouabain and in the antagonism of K+ for ouabain binding. These data suggest that the structure of the beta subunit may play a role in sodium pump function.  相似文献   

9.
The alpha-adrenergic agonist oxymetazoline increased Na+,K(+)-ATPase activity of single proximal convoluted tubules dissected from rat kidney. Activation of the enzyme by oxymetazoline was prevented by either the alpha 1-adrenergic antagonist prazosin or the alpha 2-adrenergic antagonist yohimbine and was mimicked by the calcium ionophore A23187. The effect of oxymetazoline on Na+,K(+)-ATPase activity was prevented by a specific peptide inhibitor of calcineurin, as well as by FK 506, an immunosuppressant agent known to inhibit calcineurin; these results indicate that the action of oxymetazoline is mediated via activation of calcineurin (a calcium/calmodulin-dependent protein phosphatase). Activation of the Na+,K(+)-ATPase by either oxymetazoline or A23187 was associated with a greater than 2-fold increase in its affinity for Na+. The results provide a biochemical mechanism by which norepinephrine, released from renal nerve terminals, stimulates Na+ retention.  相似文献   

10.
L M Krug  B C Berk 《Hypertension》1992,20(2):144-150
Vascular smooth muscle cell hypertrophy is a normal compensatory state that may play a pathogenic role in hypertension. Angiotensin II stimulates a hypertrophic response in cultured vascular smooth muscle cells. As part of the growth response, angiotensin II rapidly activates the Na(+)-H+ exchanger, increasing Na+ influx. Because Na+, K(+)-ATPase is the major cellular mechanism for regulating intracellular Na+, we studied the effects of angiotensin II-induced hypertrophy on Na+, K(+)-ATPase expression and activity. Angiotensin II caused rapid increases in both steady-state Na+, K(+)-ATPase activity (ouabain-sensitive 86Rb uptake) and intracellular [Na+]. Angiotensin II also caused a sustained increase in Na+, K(+)-ATPase at 24 hours with a 73% increase in maximal 86Rb uptake per milligram protein and a fourfold increase in Na+, K(+)-ATPase alpha-1 messenger RNA levels. Thus, angiotensin II hypertrophy was associated with rapid increases in Na+, K(+)-ATPase activity due to increased Na+ entry and sustained increases due to a specific increase in Na+, K(+)-ATPase expression. These data demonstrate dynamic regulation of Na+, K(+)-ATPase at the functional and molecular level and suggest that similar compensatory mechanisms should be present in vivo. Alterations in such compensatory pathways may be fundamental to the pathogenesis of hypertension.  相似文献   

11.
Catecholamines have pronounced effects on the renal handling of sodium and water, dopamine-promoting sodium and water excretion, and norepinephrine-promoting sodium and water retention. In the present study, using isolated permeabilized renal tubule cells and intact rats, we have shown that these effects can be attributed to opposing actions of these transmitters on renal tubular Na+,K(+)-ATPase activity. The ability of each of these catecholamines to regulate Na+,K(+)-ATPase activity is affected by the concentration of Na+ as well as by the absence or presence of the opposing catecholamine.  相似文献   

12.
The ability of cortisol to increase gill Na+,K(+)-ATPase activity was examined in several salmonid species during development. Coho salmon (Oncorhynchus kisutch) parr were unresponsive to cortisol in vitro (10 micrograms/ml for 2 days) in November. Responsiveness was significant from January to March, peaking in January just prior to seasonal increases in gill Na+,K(+)-ATPase activity. Gill tissue became unresponsive to in vitro cortisol in April when in vivo gill Na+,K(+)-ATPase activity peaked. The ability of cortisol to stimulate gill, Na+,K(+)-ATPase activity in postemergent fry (2-3 months after hatching) was examined in chum (O. keta), chinook (O. tschawytscha), coho, and Atlantic salmon (Salmo salar). Initial levels of gill Na+,K(+)-ATPase activity were elevated in chum salmon, which normally migrate as fry. Cortisol (10 micrograms/ml for 4 days in vitro) increased gill Na+,K(+)-ATPase activity in chum salmon fry (48% above initial levels), had a limited but significant effect in chinook salmon fry, and had no effect in coho and Atlantic salmon fry. In an in vivo experiment, Atlantic salmon previously exposed to simulated natural photoperiod (SNP) and continuous light (L24) received four cortisol injections of 2 micrograms.g-1 every third day. SNP fish responded with increased gill Na+,K(+)-ATPase activity (+66%), whereas L24 fish were not affected. Atlantic salmon presmolts with initially low levels of gill Na+,K(+)-ATPase activity responded to cortisol in vitro, whereas smolts with initially high levels of gill Na+,K(+)-ATPase activity were unresponsive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37 degrees C) resulted in a time-dependent decrease in specific (+)-[3H]amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-[3H]amphetamine binding, whereas incubation with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-[3H]amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-[3H]amphetamine binding, suggesting the involvement of Na+,K+-ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na+,K+-ATPase activity and the number of specific "high-affinity" binding sites for [3H]ouabain, and a good correlation was observed (r = 0.89; P less than 0.02) between the glucose-stimulated increase in (+)-[3H]amphetamine and [3H]ouabain binding. Similar increases in (+)-[3H]amphetamine binding, [3H]ouabain binding, and Na+,K+-ATPase activity were observed in the hypothalamus after parenteral administration of glucose to rats. The administration of anorectic doses of amphetamine (0.1-5.0 mg/kg of body weight) also increased Na+,K+-ATPase activity in the hypothalamus. These data suggest that the (+)-[3H]amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na+,K+-ATPase activity, and the latter may be involved in the "glucostatic" regulation of appetite.  相似文献   

14.
STUDY OBJECTIVE--The molecular and cellular mechanisms responsible for the dilated cardiomyopathy associated with chronic supraventricular tachycardia are not well understood. The purpose of this study was to examine Na+,K(+)-ATPase activity and distribution in a pacing induced model of dilated cardiomyopathy. DESIGN--Left ventricular function and Na+,K(+)-ATPase activity and distribution were examined in two groups of pigs: (1) atrially paced for 3 weeks (supraventricular tachycardia, 240 beats.min-1); (2) sham operated controls. SUBJECTS--10 Yorkshire male swine (23-25 kg) were randomly assigned to the control group or the supraventricular tachycardia group. MEASUREMENTS AND MAIN RESULTS--Left ventricular function was examined using simultaneous pressure echocardiography. Na+,K(+)-ATPase activity was determined in tissue homogenates by measuring the rate of p-nitrophenol-phosphate (pNPP) hydrolysis. Changes in content and distribution of Na+,K(+)-ATPase were examined immuno-histochemically in tissue sections. Left ventricular fractional shortening decreased significantly with supraventricular tachycardia as compared to controls, at 15 (SEM 3)% v 31(3)%, respectively p less than 0.05. Supraventricular tachycardia resulted in a significant increase in end diastolic dimension [5.0(0.3) cm v 3.5(0.2) cm, respectively p less than 0.05] and pressure [22(4)mm Hg v 6(2)mm Hg, respectively p less than 0.05]. Maximal Na+,K(+)-ATPase activity (microgram pNPP.mg-1 protein.h-1) was significantly lower with supraventricular tachycardia than in controls, at 0.45(0.12) v 0.64(0.06), respectively p less than 0.05. In the presence of 7 microM digitalis, Na+,K(+)-ATPase activity was inhibited by 68% in control and by 45% in supraventricular tachycardia homogenates (p less than 0.05). In control sections all left ventricular myocytes showed a uniform immunostaining pattern along the sarcolemma for Na+,K(+)-ATPase, whereas a focal loss of staining was observed in myocytes from the supraventricular tachycardia group. CONCLUSIONS--The congestive cardiomyopathy produced by supraventricular tachycardia was associated with a reduction in sarcolemmal Na+,K(+)-ATPase activity and changes in enzyme distribution. The findings also suggest a reduction in digitalis sensitivity with chronic supraventricular tachycardia. These alterations in Na+,K(+)-ATPase activity may be one potential mechanism responsible for the depressed left ventricular function associated with chronic supraventricular tachycardia.  相似文献   

15.
In view of the possible implication of multifactorial mechanisms in the pathogenesis of diabetic neuropathy, the aldose reductase inhibitor (ARI), Statil, which ameliorates abnormal sorbitol or myo-inositol metabolism in diabetic nerves, and the prostaglandin E1 (PGE1) analogue, OP1206.alpha CD (OP), which improves diabetic vascular derangements, were administered simultaneously for 2 months to streptozocin (STZ)-induced diabetic rats with 5 months' duration of diabetes, and the effects on sciatic motor nerve conduction velocity (MNCV), Na(+)-K(+)-adenosine triphosphatase (ATPase) activity, and morphology of myelinated nerve fibers (MNF) were compared with the effects of a monotherapy with OP. The combination regimen ameliorated abnormal nerve sorbitol and myo-inositol levels and normalized decreased MNCV and enzyme activity. In contrast, neither sorbitol nor myo-inositol metabolism was ameliorated, and only insufficient improvement of MNCV and morphology of MNF was obtained with a monotherapy with OP. In addition, the combination therapy reversed both a decrease in the percent of large MNF and an increase in the percent of small MNF in diabetic rats, whereas a monotherapy with OP reversed only a decrease in the percent of large MNF. The results might suggest that a multiple-drug therapy with different mechanisms of action has greater effects on diabetic neuropathy than a single-drug therapy and is worthy of clinical consideration.  相似文献   

16.
We have used immunoblotting and biochemical techniques to analyze expression of Na+,K(+)-ATPase alpha and beta subunits in rat pineal glands. Western blot analysis of pineal microsomal membrane fractions with antisera specific for each of the three rat alpha and two rat beta subunits revealed similar levels of expression of alpha 1 and alpha 3 subunits in pineal glands of 5-day-old rats. High levels of alpha 3 and beta 2 subunits and low levels of alpha 1 subunits were detected in adult glands. No alpha 2 or beta 1 subunits were detectable at either developmental stage. Examination of the enzymatic properties of the pineal gland alpha 3 isoform suggests that this enzyme is a ouabain-sensitive ATPase whose activity is dependent upon Na+ and K+. This ATPase exhibited a lower apparent Km for Na+ than the kidney alpha 1 isoenzyme and did not show positive cooperative Na+ activation. Our results suggest that the activity of the Na+,K(+)-ATPase alpha 3 isoenzyme may be adapted to function under conditions of hyperpolarizing transmembrane potentials.  相似文献   

17.
The aim of this study was to investigate Na+, K(+)-ATPase activity in cerebral cortex, hippocampus and hypothalamus of diabetic rats. The action of dietary soy protein on the effect produced by diabetes on this activity was also tested. Forty-nine-day-old Wistar were divided into two groups: diabetes streptozotocin (50 mg/kg body weight) and control (citrate solution). Rats were sacrificed 56 days later. In other set of experiments, rats received a dietary with casein (control) from day 21 to the 49 of postnatal-age and were subjected to diabetes or received citrate (control). One week later, rats received a special dietary with soy protein with isoflavones or casein (control) from day 56 to the 105 of postnatal-age. Results showed that diabetic rats presented a reduction ( approximately 40%) of Na+, K(+)-ATPase activity in all structures studied. Pretreatment with soy protein prevented the inhibitory effects of diabetes on the enzyme activity. Assuming the possibility that these effects might also occur in the human condition, our findings may be relevant to explain, at least in part, the neurologic dysfunction associated with diabetes and might support a novel therapeutic strategy (soy protein) to slow the progression of neurodegeneration in this disorder.  相似文献   

18.
The Na+,K(+)-ATPase alpha subunit has three known isoforms, alpha 1, alpha 2 and alpha 3, each encoded by a separate gene. This study was undertaken to determine the functional status of a fourth human alpha-like gene, ATP1AL2. Partial genomic sequence analysis revealed regions exhibiting sequence similarity with exons 3-6 of the Na+,K(+)-ATPase alpha isoform genes. ATP1AL2 cDNAs spanning the coding sequence of a novel P-type ATPase alpha subunit were isolated from a rat testis library. The predicted polypeptide is 1028 amino acids long and exhibits 76-78% identity with the rat Na+,K(+)-ATPase alpha 1, alpha 2 and alpha 3 isoforms, indicating that ATP1AL2 may encode a fourth Na+,K(+)-ATPase alpha isoform. A 3.9-kb mRNA is expressed abundantly in human and rat testis.  相似文献   

19.
We have examined two distinct protein kinases, cAMP-dependent protein kinase and protein kinase C, for their ability to phosphorylate and regulate the activity of three different types of Na+,K(+)-ATPase preparation. cAMP-dependent protein kinase phosphorylated purified shark rectal gland Na+,K(+)-ATPase to a stoichiometry of approximately 1 mol of phosphate per mol of alpha subunit. Protein kinase C phosphorylated purified shark rectal gland Na+,K(+)-ATPase to a stoichiometry of approximately 2 mol of phosphate per mol of alpha subunit. The phosphorylation by each of the kinases was associated with an inhibition of Na+,K(+)-ATPase activity of about 40-50%. These two protein kinases also inhibited the activity of a partially purified preparation of Na+,K(+)-ATPase from rat renal cortex and the activity of Na+,K(+)-ATPase present in preparations of basolateral membrane vesicles from rat renal cortex.  相似文献   

20.
Na+,K(+)-ATPase is involved in generating transmembrane ion gradients and the associated potential difference necessary for contraction of cardiac myocytes. It is possible that changes in the activity or membrane content of this enzyme may occur under ischemic conditions. To investigate this question, right ventricular (RV) ischemia was produced in closed chest pigs and the RV ejection fraction was measured using a fast response thermistor in the pulmonary artery. Sections of RV collected at 15, 30, 45, and 60 min of ischemia were assayed for changes in sarcolemmal Na+,K(+)-ATPase activity using an enzyme coupled histochemical reaction as well as a biochemical assay. Similar sections were examined for changes in the distribution and content of Na+,K(+)-ATPase using an immunocytochemical procedure. The RV ejection fraction fell significantly from baseline after 15 min of ischemia (62 +/- 3% vs 39 +/- 3% respectively, P less than 0.05, n = 10). A decrease in sarcolemmal Na+,K(+)-ATPase activity was first detected after 30 min of occlusion and a significant reduction in enzyme activity was present at 45 min of ischemia. In contrast no changes were detected in the distribution or content of immunoreactive Na+,K(+)-ATPase in the sarcolemma at any time point. In addition, the amount of Na+,K(+)-ATPase in tissue homogenates showed no significant changes after 45 min of ischemia. These findings show that acute ischemia results in the disruption of sarcolemmal Na+,K(+)-ATPase activity and suggests that the decrease in enzyme activity is not due to the loss or redistribution of sarcolemmal Na+,K(+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号