首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Waardenburg syndrome (WS) is a genetic disorder characterized by hearing loss and pigmentary abnormalities with variable penetrance. Though heterozygous mutations in MITF are a major cause for Waardenburg syndrome type 2 (WS2), homozygous mutations in this gene and the associated phenotype have been rarely characterized. In this study, we identified a novel p.R223H mutation in MITF in a Chinese Han family with variable WS features. Both parents carried a heterozygous p.R223H mutation. They had normal hearing, and premature greying of the hair is their only pigmentary abnormality. In contrast, their two children both carried a homozygous p.R223H mutation and had classic WS features including profound hearing loss, heterochromia irides and marked pigmentary abnormalities in hair and skin. Interestingly, the two affected children also have persistent chronic constipation since the neonatal period, symptoms suggestive of Waardenburg syndrome type 4 (WS4). Our study revealed a likely association between homozygous mutations in MITF and WS4, which implies a dosage effect for the underlying pathogenesis mechanism.  相似文献   

3.
Waardenburg syndrome (WS) is a disorder of neural crest cell migration characterized by auditory and pigmentary abnormalities. We investigated a cohort of 14 families (16 subjects) either by targeted sequencing or whole-exome sequencing. Thirteen of these families were clinically diagnosed with WS and one family with isolated non-syndromic hearing loss (NSHL). Intra-familial phenotypic variability and non-penetrance were observed in families diagnosed with WS1, WS2 and WS4 with pathogenic variants in PAX3, MITF and EDNRB, respectively. We observed gonosomal mosaicism for a variant in PAX3 in an asymptomatic father of two affected siblings. For the first time, we report a biallelic pathogenic variant in MITF in a subject with WS2 and a biallelic variant in EDNRB was noted in a subject with WS2. An individual with isolated NSHL carried a pathogenic variant in MITF. Blended phenotype of NSHL and albinism was observed in a subject clinically diagnosed to have WS2. A phenocopy of WS1 was observed in a subject with a reported pathogenic variant in GJB2, known to cause isolated NSHL. These novel and infrequently reported observations exemplify the allelic and genetic heterogeneity and show phenotypic diversity of WS.  相似文献   

4.
5.
BACKGROUND—Hereditary forms of hearing loss are classified as syndromic, when deafness is associated with other clinical features, or non-syndromic, when deafness occurs without other clinical features. Many types of syndromic deafness have been described, some of which have been mapped to specific chromosomal regions.
METHODS—Here we describe a family with progressive sensorineural hearing loss, cognitive impairment, facial dysmorphism, and variable other features, transmitted by apparent X linked recessive inheritance. Haplotype analysis of PCR products spanning the X chromosome and direct sequencing of candidate genes were used to begin characterising the molecular basis of features transmitted in this family. Comparison to known syndromes involving deafness, mental retardation, facial dysmorphism, and other clinical features was performed by review of published reports and personal discussions.
RESULTS—Genetic mapping places the candidate locus for this syndrome within a 48 cM region on Xq1-21. Candidate genes including COL4A5, DIAPH, and POU3F4 were excluded by clinical and molecular analyses.
CONCLUSIONS—The constellation of clinical findings in this family (deafness, cognitive impairment, facial dysmorphism, variable renal and genitourinary abnormalities, and late onset pancytopenia), along with a shared haplotype on Xq1-21, suggests that this represents a new form of syndromic deafness. We discuss our findings in comparison to several other syndromic and non-syndromic deafness loci that have been mapped to the X chromosome.


  相似文献   

6.
7.
Waardenburg syndrome (WS) is a rare genetic disorder characterized by hearing loss (HL) and pigment disturbances of hair, skin and iris. Classifications exist based on phenotype and genotype. The auditory phenotype is inconsistently reported among the different Waardenburg types and causal genes, urging the need for an up‐to‐date literature overview on this particular topic. We performed a systematic review in search for articles describing auditory features in WS patients along with the associated genotype. Prevalences of HL were calculated and correlated with the different types and genes of WS. Seventy‐three articles were included, describing 417 individual patients. HL was found in 71.0% and was predominantly bilateral and sensorineural. Prevalence of HL among the different clinical types significantly differed (WS1: 52.3%, WS2: 91.6%, WS3: 57.1%, WS4: 83.5%). Mutations in SOX10 (96.5%), MITF (89.6%) and SNAI2 (100%) are more frequently associated with hearing impairment than other mutations. Of interest, the distinct disease‐causing genes are able to better predict the auditory phenotype compared with different clinical types of WS. Consequently, it is important to confirm the clinical diagnosis of WS with molecular analysis in order to optimally inform patients about the risk of HL.  相似文献   

8.
Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%–6% of WS2.  相似文献   

9.
Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA→TGA, Arg→STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg253→STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Am. J. Med. Genet. 87:69–71, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

10.
Waardenburg syndrome (WS) is caused by autosomal dominant mutations, and is characterised by pigmentary anomalies and various defects of neural crest derived tissues. It accounts for over 2% of congenital deafness. WS shows high variability in expressivity within families and differences in penetrance of clinical traits between families. While mutations in the gene PAX3 seem to be responsible for most, if not all, WS type 1, it is still not clear what accounts for the reduced penetrance of deafness. Stochastic events during development may be the factors that determine whether a person with a PAX3 mutation will be congenitally deaf or not. Alternatively, genetic background or non-random environmental factors or both may be significant. We compared the likelihoods for deafness in affected subjects from 24 families with reported PAX3 mutations, and in seven of the families originally described by Waardenburg. We found evidence that stochastic variation alone does not explain the differences in penetrances of deafness among WS families. Our analyses suggest that genetic background in combination with certain PAX3 alleles may be important factors in the aetiology of deafness in WS.  相似文献   

11.
12.
We report an African–American family that was identified after the proposita was referred for diagnostic evaluation at 4½ months with a history of Hirschsprung and dysmorphic features typical of Waardenburg syndrome (WS). Family evaluation revealed that the father had heterochromidia irides and hypertelorism supporting the clinical diagnosis of WS; however, examination of the mother revealed characteristic facial and digital features of Coffin–Lowry syndrome (CLS). Molecular testing of the mother identified a novel 2 bp deletion (c.865_866delCA) in codon 289 of RPS6KA3 leading to a frame-shift and premature termination of translation 5 codons downstream (NM_004586.2:p.Gln289ValfsX5). This deletion also was identified in the proposita and her three sisters with a clinical suspicion of CLS, all of whom as carriers for this X-linked disorder had very subtle manifestations. The molecular confirmation of WS type 4 (Shah-Waardenburg; WS4) was not as straightforward. To evaluate WS types 1–4, multiple sequential molecular tests were requested, including Sanger sequencing of all exons, and deletion/duplication analysis using MLPA for PAX3, MITF, SOX10, EDN3 and EDNRB. Although sequencing did not identify any disease causing variants, MLPA identified a heterozygous deletion of the entire EDNRB in the father. This deletion was also found in the proposita and the oldest child. Since the heterozygous deletion was the only change identified in EDNRB, this family represents one of the few cases of an autosomal dominant inheritance of WS4 involving the endothelin pathway. Altogether, clinical evaluation of the family revealed one child to be positive for WS4 and two positive for CLS, while two children were positive for both diseases simultaneously (including the proposita) while another pair test negative for either disease. This kinship is an example of the coincidence of two conditions co-segregating in one family, with variable phenotypes requiring molecular testing to confirm the clinical diagnoses.  相似文献   

13.
14.
Angelman syndrome (AS) is a neurodevelopmental disorder characterised by severe mental retardation, absent speech, ataxia, sociable affect, and dysmorphic facial features. Eighty five percent of patients with AS have an identifiable genetic abnormality of chromosome 15q11-13. Mutations within the X linked MECP2 gene have been identified in patients with Rett syndrome (RTT), a neurodevelopmental disorder which affects females almost exclusively and which shares phenotypic overlap with AS. RTT is usually associated with normal development in infancy followed by loss of acquired skills and evolution of characteristic hand wringing movements and episodes of hyperventilation.
A panel of 25 female and 22 male patients with a clinical diagnosis of AS and no molecular abnormality of 15q11-13 were screened for MECP2 mutations and these were identified in four females and one male. Following the diagnosis, it was possible to elicit a history of regression in three of these patients, who by then were showing features suggestive of Rett syndrome. In the remaining two subjects the clinical phenotype was still considered to be Angelman-like.
These findings illustrate the phenotypic overlap between the two conditions and suggest that screening for MECP2 mutations should be considered in AS patients without a demonstrable molecular or cytogenetic abnormality of 15q11-13. Since MECP2 mutations almost always occur de novo, their identification will substantially affect genetic counselling for the families concerned.


Keywords: Angelman syndrome; Rett syndrome; MECP2 mutations  相似文献   

15.
16.
The Waardenburg syndrome (WS) consists of at least two distinct autosomal dominant hereditary disorders. WS Type I has been mapped to the distal part of chromosome 2q and the gene identified as PAX3. Other gene(s) are responsible for WS Type II. Mapping WS Type II requires accurate diagnosis within affected families. To establish diagnostic criteria for WS Type II, 81 individuals from 21 families with Type II WS were personally studied, and compared with 60 personally studied patients from 8 families with Type I and 253 cases of WS (Type I or II) from the literature. Sensorineural hearing loss (77%) and heterochromia iridum (47%) were the two most important diagnostic indicators for WS Type II. Both were more common in Type II than in Type I. Other clinical manifestations, such as white forelock and skin patches, were more frequent in Type I. We estimate the frequency of phenotypic traits and propose diagnostic criteria for WS Type II. In practice, a diagnosis of WS Type II can be made with confidence given a family history of congenital hearing loss and pigmentary disorders, where individuals have been accurately measured for ocular distances to exclude dystopia canthorum. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Mutations in the GJB2 gene encoding connexin26 (CX26) account for up to 50% of cases of autosomal recessive hearing loss. In contrast, only one GJB2 mutation has been reported to date in an autosomal dominant form of isolated prelingual hearing loss. We report here a novel heterozygous 605G→T mutation in GJB2 in all affected members of a large family with late childhood onset of autosomal dominant isolated hearing loss. The resulting C202F substitution, which lies in the fourth (M4) transmembrane domain of CX26, may impair connexin oligomerisation. Finally, our study suggests that GJB2 should be screened for heterozygous mutations in patients with autosomal dominant isolated hearing impairment, whatever the severity of the disease.


Keywords: C202F mutation; connexin26 gene (GJB2); autosomal dominant hearing loss  相似文献   

18.
Coeliac disease in Williams syndrome   总被引:1,自引:0,他引:1       下载免费PDF全文
BACKGROUND—Coeliac disease (CD) has been reported in several patients affected by chromosomal disorders, including Down syndrome (DS) and Turner syndrome (TS). CD has also been found in sporadic Williams syndrome (WS) patients. In this study, CD was evaluated in a consecutive series of patients with WS, in order to estimate if the prevalence of CD in WS patients is higher than in the general population.
METHODS AND RESULTS—A consecutive series of 63 Italian patients with WS was studied by analysing the dosage of antigliadin antibodies (AGA) IgA and antiendomisium antibodies (AEA). In patients with positive AGA and AEA, small bowel biopsy was performed. The prevalence of CD in our WS population was compared with that estimated in a published series of 17 201 Italian students. Seven WS patients were found to be positive for AGA IgA and AEA. Six of them underwent small bowel biopsy, which invariably disclosed villous atrophy consistent with CD. The prevalence of CD in the present series of WS patients was 9.5% (6/63), compared to 0.54% (1/184) in the Italian students (p<0.001).
CONCLUSION—The present results suggest that the prevalence of CD in WS is higher than in the general population and is comparable to that reported in DS and TS. AGA and AEA screening is recommended in patients with WS.


Keywords: Williams syndrome; coeliac disease  相似文献   

19.
Random mating in the general population tends to limit the occurrence of homozygous and compound heterozygous forms of dominant hereditary disorders. Certain phenotypes, the most recognized being skeletal dysplasias associated with short stature, lead to cultural interaction and assortative mating. To this well‐known example, may be added deafness which brings together individuals with a variety of deafness genotypes, some being dominant. Waardenburg syndrome is one such autosomal dominant disorder in which affected individuals may interact culturally because of deafness. Biallelic genetic alterations for two Waardenburg genes, PAX3 and MITF have been previously recognized. Herein, we report biallelic deletions in SOX10, a gene associated with Waardenburg syndromes type II and IV. The affected fetuses have a severe phenotype with a lack of fetal movement resulting in four‐limb arthrogryposis and absence of palmar and plantar creases, white hair, dystopia canthorum, and in one case cleft palate and in the other a cardiac malformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号