首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After an intraperitoneal (i.p.) injection of purified protein derivative, peritoneal macrophages from mice infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) show an enhanced respiratory burst, inhibit the intracellular proliferation of Toxoplasma gondii, and kill Listeria monocytogenes more efficiently than peritoneal macrophages from normal mice. One of the immunodominant antigens of Mycobacterium spp. is the 65-kDa heat shock protein (Hsp 65), and in the present study, we determined whether injection of this protein into mice leads to activation of their peritoneal macrophages. After an i.p. injection of Hsp 65, peritoneal macrophages from BCG-infected CBA/J mice also released more H2O2, inhibited the proliferation of T. gondii, and killed L. monocytogenes faster than peritoneal macrophages from normal mice, although Hsp 65 was less effective than purified protein derivative. When normal mice were injected with Hsp 65 suspended in saline after a booster injection with Hsp 65, their macrophages did not display enhanced antimicrobial activity, indicating that an adjuvant was required for a cellular immune response against Hsp 65. In the present study, the adjuvant dimethyl dioctadecylammonium bromide (DDA) was preferred because it contains no endotoxin or mycobacterial antigens and because it has been reported that DDA does not induce the production of gamma interferon. Peritoneal macrophages from C57BL/6 and CBA/J mice that had received a subcutaneous injection of Hsp 65 suspended in DDA followed by an i.p. booster injection of Hsp 65 suspended in saline were activated, as indicated by the enhanced production of H2O2, inhibition of the intracellular proliferation of T. gondii, and increased rate of intracellular killing of L. monocytogenes in vitro relative to that by resident peritoneal macrophages and peritoneal macrophages obtained from mice that had received ovalbumin instead of Hsp 65. The rate of phagocytosis of L. monocytogenes was not affected by Hsp 65 treatment. Despite the in vitro expression of enhanced microbicidal activity of peritoneal macrophages, no difference in the growth of L. monocytogenes in the liver and spleen between Hsp 65-treated and control mice was found.  相似文献   

2.
The induction of reactive nitrogen intermediates (RNI) and toxoplasmastatic activity of murine macrophages by recombinant gamma interferon (rIFN-gamma) is mediated by an autocrine pathway involving tumor necrosis factor alpha (TNF-alpha). To investigate whether cytokines other than TNF-alpha play a role in the activation of these effector functions, granulocyte-macrophage colony-stimulating factor (GM-CSF) was studied. Recombinant GM-CSF (rGM-CSF) could stimulate peritoneal macrophages, since this cytokine stimulated the production of prostaglandin E2 by these cells. However, rGM-CSF did not induce either the release of RNI by or the toxoplasmastatic activity of macrophages. rGM-CSF in combination with various concentrations of rIFN-gamma did not enhance these effector functions more than rIFN-gamma alone. Furthermore, neutralization of endogenously produced GM-CSF by monoclonal antibodies did not affect the release of RNI by or the toxoplasmastatic activity of rIFN-gamma-activated macrophages. Together these results indicate that GM-CSF is not involved in RNI production by and toxoplasmastatic activity of IFN-gamma-activated murine macrophages.  相似文献   

3.
Haemorrhagic shock leads to decreased proinflammatory cytokine response which is associated with an increased susceptibility to bacterial infections. In the present study, the effect of GM-CSF on lipopolysaccharide (LPS)-induced TNF-alpha release and MAPkinase activation was analysed on the background of a possible immunostimulating activity of this substance. Male BALB/c mice were bled to a mean arterial blood pressure of 50 mmHg for 45 min followed by resuscitation. Peritoneal macrophages were isolated 20 h after haemorrhage and incubated with 10 ng/ml GM-CSF for 6h before LPS stimulation. TNF-alpha synthesis was studied in the culture supernatants using ELISA. Phosphorylation of ERK, p38MAPK and IkappaBalpha was detected by Western blotting. LPS-induced TNF-alpha production of peritoneal macrophages was significantly decreased 20 h after haemorrhage in comparison to the corresponding cells of sham-operated mice. In parallel the phosphorylation of IkappaBalpha was less in LPS-stimulated peritoneal macrophages from haemorrhagic mice. LPS-induced phosphorylation of ERK1/2 was also decreased in peritoneal macrophages isolated after haemorrhagic shock. In contrast, p38MAPK was phosphorylated more intensely after LPS-stimulation in macrophages collected from shocked mice. GM-CSF incubation elevated LPS-induced TNF-alpha response of macrophages from both sham-operated and shocked mice which was accompanied by an elevated IkappaB and ERK phosphorylation. In general, GM-CSF treatment in vitro enhanced peritoneal macrophages LPS-response both in terms of TNF-alpha synthesis and IkappaB and MAPK signalling, but the levels always stayed lower than those of GM-CSF-treated cells from sham-operated animals. In conclusion, GM-CSF preincubation could partly reactivate the depressed functions of peritoneal macrophages and may therefore exert immunostimulating properties after shock or trauma.  相似文献   

4.
Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.  相似文献   

5.
The role of recombinant murine beta interferon (rMuIFN-beta) and recombinant human IFN-beta (rHuIFN-beta) in resistance to Toxoplasma gondii was examined. rMuIFN-beta protected mice against a lethal infection with the parasite. The protective effect appeared to depend on the concomitant release of gamma interferon. rMuIFN-beta did not activate murine peritoneal macrophages to inhibit or kill T. gondii whether used alone or in combination with lipopolysaccharide (LPS). rHuIFN-beta did not activate human monocyte-derived macrophages to inhibit or kill T. gondii when 5-day-old monocyte-derived macrophages were used. In contrast, significant killing of T. gondii was noted when 10-day-old monocyte-derived macrophages were used. The addition of LPS enhanced this effect. These results revealed a role for IFN-beta in the mechanisms of defense against T. gondii and suggest its potential use in the treatment of toxoplasmosis in humans.  相似文献   

6.
Although Toxoplasma gondii multiplies within normal murine alveolar and peritoneal macrophages, it is killed by normal rat alveolar and peritoneal macrophages. The killing by rat macrophages is by a nonoxidative mechanism. Studies on normal human alveolar macrophages have reported disparate results in regard to their ability to inhibit or kill T. gondii. We considered it of interest to explore further the effect of normal human alveolar and peritoneal macrophages on T. gondii. Unstimulated alveolar macrophages from each of seven individuals demonstrated a marked ability to kill or inhibit multiplication of T. gondii in vitro (e.g., the number of parasites per 100 alveolar macrophages was 31 at time zero and 2 at 18 h, whereas this value increased from 37 at time zero to 183 at 18 h in murine macrophages assayed in parallel). In quantitative assays of superoxide, alveolar macrophages released a substantial amount of superoxide when exposed to phorbol myristate acetate or to candidae. In contrast, alveolar macrophages incubated with T. gondii released no more superoxide than when in medium alone. Scavengers of superoxide anions, hydrogen peroxide, singlet oxygen, and hydroxyl radicals failed to inhibit killing of T. gondii by alveolar macrophages. Peritoneal macrophages from each of six normal women undergoing laparoscopy killed T. gondii in vitro; results of quantitative superoxide assays and scavenger experiments demonstrated that no oxidative burst was triggered in these macrophages by exposure to T. gondii. These data indicate that normal human alveolar and peritoneal macrophages can kill an intracellular parasite by nonoxidative mechanisms and suggest that these mechanisms are important in inhibition or killing of other opportunistic intracellular pathogens.  相似文献   

7.
The clinical picture of influenza A virus infections indicates that release of tumor necrosis factor-alpha (TNF-alpha) may be involved. In the present study we exposed the murine macrophage line PU5-1.8 to influenza A virus and observed a productive infection which was followed by subsequent cell death. Infection of macrophages was accompanied by TNF-alpha mRNA accumulation and TNF-alpha release. TNF-alpha production could only be induced by live virus whereas interferon release was also stimulated by inactivated virus. When virus-infected macrophages were exposed to low amounts of lipopolysaccharide (LPS; 1-10 ng/ml) TNF-alpha production was strongly potentiated. These data show that low LPS concentrations could readily trigger a high TNF-alpha release from influenza-A-virus-infected macrophages which could, at least partially, explain the serious complications of combined influenza A virus and bacterial infections.  相似文献   

8.
The ubiquitous protozoan parasite Toxoplasma gondii is a major cause of morbidity and mortality in neonates and immunocompromised hosts. Both acute invasion and reactivation of latent infection result in an inflammatory reaction with lymphocytes, macrophages, and neutrophils. The mechanisms responsible for triggering the local host response to toxoplasmosis are not fully understood. Infection of monolayers of human HeLa epithelial cells and fibroblasts with T. gondii resulted in a marked increase in the expression of interleukin-8 (IL-8)-specific mRNA and secretion of the proinflammatory and chemoattractant cytokines interleukin-8 (IL-8), GROalpha, and MCP-1. Host cell invasion and lysis were required for this response, as tachyzoite lysates alone had no effect on IL-8 secretion. IL-8 release was dependent on the release of soluble host cell factors: IL-1alpha in HeLa cells and an additional mediator in fibroblasts. HT-29 epithelial cells, which lack IL-1alpha or another IL-8-inducing activity, did not release IL-8 after infection, although they were efficiently infected with T. gondii and increased IL-8 secretion in response to added IL-1alpha. These data suggest that proinflammatory chemokine secretion is an important host cell response to toxoplasmosis and that the release of IL-1alpha and other mediators from lysed host cells is critical for this chemokine response.  相似文献   

9.
A reciprocal influence exists between mycobacteria and HIV: HIV-infected individuals are more susceptible to mycobacterial infections and, on the other hand, mycobacterial infection results inacceleration of HIV disease progression. Vgamma9/Vdelta2 T lymphocytes are known to participate in the defense against intracellular pathogens, including Mycobacterium tuberculosis. Indeed, they kill mycobacteria-infected macrophages and, upon recognition of mycobacterial Ag, release TNF-alpha and IFN-gamma, which are also up-regulators of HIV expression. To assess whether mycobacteria-activated gamma delta T lymphocytes contribute to the enhancement of HIV replication, we established an in vitro model mimicking HIV and mycobacteria co-infection with the latently HIV-infected promonocytic U1 cell line and Vgamma9/Vdelta2 peripheral lymphocytes stimulated with mycobacterial Ag. gamma delta T cell activation determined two distinct, but connected effects, namely U1cell death and HIV expression. Both effects were mainly mediated by release of TNF-alpha and IFN-gamma from activated gamma delta lymphocytes, although Fas-FasL interaction also contributed to U1 apoptosis. The final outcome on U1 survival, and thus, on HIV expression, highly depended on mycobacterial Ag concentration coupled to the differential secretory potency of gamma delta cells. In particular, the induction of viral expression prevailed at low Ag concentration and with lower cytokine production by mycobacteria-activated gamma delta cells. Notably, during the course of HIV infection, Vgamma9/Vdelta2 lymphocytes are reported to be functionally impaired and may thus indirectly influence the progression of HIV disease. In addition, a predominant inhibition of viral replication was encountered when mycobacteria-activated gamma delta T cells were co-cultured with primary HIV-infected macrophages. Thus, we suggest that specific recognition of mycobacterial Ag by gamma delta T lymphocytes in co-infected individuals may modulate viral replication through the complex array of soluble factors released.  相似文献   

10.
The heat shock proteins (HSP) gp96, Hsp70 and Hsp60 activate professional antigen-presenting cells (APC) to secrete proinflammatory cytokines and to express costimulatory molecules. Here, we analyze the impact of Hsp60 as a hypothetical danger signal on the antigen-specific activation of T cells derived from DO11.10 TCR-transgenic mice. The release of IFN-gamma, induced by the antigenic OVA(323-339)-peptide, is increased and accelerated dramatically by the addition of Hsp60 to ex vivo purified populations of T cells and peritoneal macrophages (PEC), while the antigen-specific IL-2 production or proliferation of the T cells remain unchanged. In contrast, "effector" T cells, undergoing secondary stimulation, displayed almost unchanged activation kinetics in the presence of Hsp60. The presence of Hsp60 induces IFN-gamma and up-regulation of CD69 in T cell/PEC cocultures even in the absence of antigenic peptide and this induction of IFN-gamma is strictly dependent on the ability of the macrophages to produce IL-12. Taken together, our data strongly suggest that the presence of eukaryotic mitochondrial Hsp60 allows antigen-specific IFN-gamma secretion under conditions when an antigenic stimulus alone is not sufficient to activate T cells.  相似文献   

11.
The intracellular pathogen Listeria monocytogenes replicates mainly in resting macrophages and hepatocytes residing in infected tissues. Both innate and acquired resistance strongly depend on activation of listericidal capacities of macrophages by gamma interferon (IFN-gamma) produced by natural killer cells and T lymphocytes. In contrast to macrophages, hepatocytes have been considered to serve purely as a cellular habitat, prolonging survival of the pathogen in the host. By using an immortalized murine hepatocyte line, the relationship between L. monocytogenes and this cell type has been analyzed in more detail. Our data reveal that hepatocytes are able to eradicate listeriolysin-deficient (avirulent) L. monocytogenes but fail to control growth of listeriolysin-expressing (virulent) L. monocytogenes organisms. Following stimulation with IFN-gamma, hepatocytes gained the capacity to restrict growth of virulent L. monocytogenes, although less efficiently than the highly listericidal IFN-gamma-activated macrophages. Hepatocytes costimulated with a combination of IFN-gamma, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) expressed the highest antilisterial activities. Although IFN-gamma-stimulated hepatocytes produced demonstrable levels of reactive nitrogen intermediates (RNI), the results of inhibition studies do not support a major role for these molecules in antilisterial hepatocyte activities. In contrast, inhibition of RNI produced by macrophages neutralized their antilisterial effects. IFN-gamma-stimulated, L. monocytogenes-infected hepatocytes expressed TNF-alpha mRNA, suggesting that they are a source of this cytokine during listeriosis. These studies suggest a novel function for hepatocytes in listeriosis: first, IFN-gamma-stimulated hepatocytes could contribute to listerial growth restriction in the liver, and second, through secretion of proinflammatory cytokines, they could promote phagocyte influx to the site of listerial growth.  相似文献   

12.
13.
We aimed to reveal the regulatory function of macrophage scavenger receptor-A (MSR-A) in proinflammatory cytokine production by macrophages stimulated with mycobacterial cord factor (CF). By the culture with CF, MSR-A (+/+) alveolar macrophages and Kupffer cells produced TNF-alpha/MIP-1alpha in a time- and dose-dependent manner. However, the amounts of cytokines produced by them were much less compared to those produced by MSR-A (-/-) macrophages. Consistent with this, treatment of MSR-A (+/+) macrophages with anti-MSR-A antibody increased TNF-alpha production. Binding of CF to MSR-A was demonstrated by measuring the binding affinity. These results indicate that CF binds MSR-A, and MSR-A down-regulates TNF-alpha/MIP-1alpha production by activated macrophages, suggesting the role of this receptor in suppression of excessive inflammatory responses during mycobacterial infection.  相似文献   

14.
Murine bone marrow-derived macrophages were infected with a panel of virulent isolates of Mycobacterium tuberculosis including laboratory strains Erdman and H37Rv and various clinical isolates in order to determine the sensitivity of each of these strains to the antimycobacterial activities of macrophage-generated reactive nitrogen intermediates (RNI). All of the M. tuberculosis strains grew in murine bone marrow-derived macrophages; however, gamma interferon-primed macrophages limited the initial growth of intracellular bacilli. Some of the mycobacterial strains, including Erdman, were killed over the first 4 days of infection, as evidenced by significant decreases in the number of viable intracellular bacilli determined by a CFU assay. Other mycobacterial strains were not killed during this same period, and some isolates, including CSU 24 and CSU 31, grew steadily in activated macrophages. The accumulation of nitrite on infected monolayers was measured, and it was found that inhibitory levels of RNI did not vary among infections with the different strains. Nitrite tolerance was determined in a cell-free system for each of the strains in order to compare susceptibilities of the strains to RNI. All of the strains tested were killed by levels of RNI generated by the acidification of 10 mM NaNO2 to pH 6.5 or 5.5, and the strains exhibited a range of tolerance to lower concentrations of RNI. No correlations were observed between such cell-free RNI tolerances and the capacity of bacilli to resist macrophage RNI-mediated killing. These results indicate that under stringent conditions, RNI can kill M. tuberculosis, but that under less harsh, more physiological conditions, the effects of RNI range from partial to negligible inhibition.  相似文献   

15.
Toll-like receptors (TLR) are crucial for an efficient antifungal defense. We investigated the differential recognition of blastoconidia and hyphae of Candida albicans by TLRs. In contrast to Candida blastoconidia, which stimulated large amounts of gamma interferon (IFN-gamma), the tissue-invasive Candida hyphae did not stimulate any IFN-gamma by human peripheral blood mononuclear cells (PBMC) or murine splenic lymphocytes. After stimulation with blastoconidia, the production of IFN-gamma was TLR4 dependent, as shown by the significantly decreased IFN-gamma production in anti-TLR4-treated PBMC and in splenic lymphocytes from TLR4-defective ScCr mice. In addition, peritoneal macrophages from ScCr mice produced less tumor necrosis factor alpha (TNF-alpha) than macrophages of control mice did when stimulated with Candida blastoconidia, but not with hyphae, indicating that TLR4-mediated signals are lost during hyphal germination. In contrast, macrophages from TLR2 knockout mice had a decreased production of TNF-alpha in response to both Candida blastoconidia and hyphae. Candida hyphae stimulated production of interleukin-10 through TLR2-dependent mechanisms. In conclusion, TLR4 mediates proinflammatory cytokine induction after Candida stimulation, whereas Candida recognition by TLR2 leads mainly to anti-inflammatory cytokine release. TLR4-mediated proinflammatory signals are lost during germination of Candida blastoconidia into hyphae. Phenotypic switching during germination may be an important escape mechanism of C. albicans, resulting in counteracting host defense.  相似文献   

16.
We compared the abilities of gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and sensitized murine lymph node lymphocytes to activate syngeneic murine peritoneal macrophages to inhibit the growth of intracellular Mycobacterium bovis BCG in vitro. IFN-gamma could activate antimycobacterial defense only when added to macrophage cultures prior to their infection with BCG. TNF-alpha was without any effect. In contrast, BCG-sensitized lymphocytes could induce antimycobacterial defenses when added after macrophages had been infected with BCG. The cell-mediated effect required direct contact between effector lymphocytes and the targets (BCG-infected macrophages), as revealed in studies in which these cell populations were separated by a semipermeable membrane. Cyclosporin A, which inhibits the production of relevant macrophage-activating lymphokines, did not abrogate the ability of sensitized lymphocytes to activate antimycobacterial effects in infected macrophages. Furthermore, only BCG-sensitized lymphocytes, and not Listeria-sensitized lymphocytes, could activate the antimycobacterial effects. These lymphocytes were not cytotoxic to the infected macrophages. The presence of anti-TNF-alpha antibody in cocultures reduced the antimicrobial effects. We propose that the activation of antimycobacterial defense in macrophages can occur by direct physical contact with sensitized lymphocytes. This process may be due to lymphocyte membrane-associated TNF-alpha, as we previously demonstrated in our studies of antileishmanial defense.  相似文献   

17.
The histone-like protein (HlpA) is highly conserved among streptococci. After lysis of streptococci in infected tissues, HlpA can enter the bloodstream and bind to proteoglycans in the glomerular capillaries of kidneys, where it can react with antibodies or stimulate host cell receptors. Deposits of streptococcal antigens in tissues have been associated with localized acute inflammation. In this study, we measured the ability of purified HlpA (5 to 100 microg/ml), from Streptococcus mitis, to induce the production of proinflammatory cytokines by cultured, murine peritoneal macrophages. The release of tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) was time and concentration dependent and was not diminished by the presence of polymyxin B. Exposure of macrophages to a mixture of HlpA and lipoteichoic acid resulted in a synergistic response in the production of both TNF-alpha and IL-1. Stimulation with a mixture of HlpA and heparin resulted in reduced cytokine production (50% less IL-1 and 76% less TNF-alpha) compared to that by cells incubated with HlpA alone. The inclusion of antibodies specific to HlpA in macrophage cultures during stimulation with HlpA did not affect the quantity of TNF-alpha or IL-1 produced. These observations suggest that streptococcal histone may contribute to tissue injury at infection sites by promoting monocytes/macrophages to synthesize and release cytokines that initiate and exacerbate inflammation. Streptococcus pyogenes, which can infect tissues in enormous numbers, may release sufficient amounts of HlpA to reach the kidneys and cause acute poststreptococcal glomerulonephritis.  相似文献   

18.
The effects of synthetic analogue of peptide hormone thymulin, which is normally produced by thymic epithelial cells, on immune cells activity and blood cytokine profile had been studied in male NMRI mice with acute inflammation induced by injection of lipopolysaccharide from gram-negative bacteria (LPS, 250 microg/100 g of body weight). Inflammation induced by LPS resulted in accumulation of several plasma pro-inflammatory cytokines, IL-1 beta, IL-2, IL-6, TNF-alpha, interferon-gamma, and also IL-10, anti-inflammatory cytokine. Thymulin previously injected in dose of 15 microg/100 g body weight, prevented the accumulation of proinflammatory cytokines in plasma. Thymulin also prevented LPS-induced up-regulation of production of several cytokines by spleen lymphocytes and peritoneal macrophages. Added in vitro, thymulin decreased the peak of TNF-alpha production in macrophages cultivated with LPS. In addition, thymulin lowered the peak of Hsp70 production induced by LPS treatment. The results indicate that thymulin having significant anti-inflammatory effect may be promising in clinical application.  相似文献   

19.
Macrophage oxidative metabolism and intracellular Toxoplasma gondii   总被引:2,自引:0,他引:2  
We explored the mechanisms by which Toxoplasma gondii avoids destruction by the oxidative metabolism of normal macrophages. Unelicited murine peritoneal macrophages were infected with T. gondii and exposed to different experimental conditions. As endpoints we used measurement of hydrogen peroxide (H2O2) release and intracellular reduction of nitroblue tetrazolium dye (NBT). Three main observations were made. Firstly, different T. gondii preparations (live or dead, opsonized or not) failed to trigger the respiratory burst. Combined challenges also showed that a primary T. gondii infection was able to block H2O2 release triggered by heat-killed (HK)-Candida albicans. The H2O2 release, however, once triggered by HK-C. albicans, was not inhibited by a subsequent challenge with T. gondii. Secondly, when a respiratory burst was obtained in T. gondii-infected macrophages--for instance by stimulation with phorbol myristate acetate (PMA)--the toxic oxygen metabolites (as determined by the NBT reduction test) did not seem to reach the vacuoles containing the parasite. Thirdly, when a respiratory burst occurred in T. gondii-infected macrophages, the intracellular development of T. gondii did not seem to be affected. In conclusion, we hypothesize that T. gondii is not damaged by the macrophage oxidative metabolism because the parasite fails to encounter toxic oxygen metabolites. The killing of intracellular T. gondii, as it is commonly observed in activated macrophages, does not appear oxygen-dependent.  相似文献   

20.
Heat shock protein 72 (Hsp72), a canonical intracellular molecular chaperone, may also function as an extracellular danger signal for the innate immune system. To further delineate the biological role of Hsp72 in the innate immune system, we generated two truncated versions of the full length human Hsp72 (N-terminus Hsp72, amino acids 1-430; and C-terminus Hsp72 amino acids 420-641) and directly compared their ability to activate cells from the macrophage/monocyte lineage. In RAW 264.7 macrophages transfected with a NF-κB-dependent luciferase reporter plasmid, C-terminus Hsp72 was a more potent inducer of NF-κB activity than N-terminus Hsp72, and this effect did not seem to be secondary to endotoxin contamination. C-terminus Hsp72-mediated activation of the NF-κB pathway was corroborated by increased activation of IκB kinase, degradation of IκBα, and increased NF-κB-DNA binding. C-terminus Hsp72 was a more potent inducer of tumor necrosis factor-α (TNFα) expression in RAW 264.7 macrophages and in primary murine peritoneal macrophages from wild-type mice. C-terminus Hsp72 did not induce TNFα expression in primary murine peritoneal macrophages from Toll-like receptor (TLR4) mutant mice, indicating a role for TLR4. In human THP-1 mononuclear cells, C-terminus Hsp72 induced tolerance to subsequent LPS stimulation, whereas N-terminus Hsp72 did not induce tolerance. Finally, control experiments using equimolar amounts of N-terminus or C-terminus Hsp72 demonstrated a higher biological potency for C-terminus Hsp72. These data demonstrate that the ability of human Hsp72 to serve as an activator for cells of the macrophage/monocyte lineage primarily lies in the C-terminus region spanning amino acids 420-641.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号