首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Neurogenesis in the adult hippocampal dentate gyrus is promoted by transient forebrain ischemia. The mechanism responsible for this ischemia-induced neurogenesis, however, remains to be determined. It has been suggested that there may be a close relationship between neurogenesis and the expression of vascular endothelial growth factor, an angiogenic factor. The purpose of the present study was to examine the relationship between vascular endothelial growth factor and cell proliferation in the dentate gyrus after transient forebrain ischemia. The mRNA expression of vascular endothelial growth factor was increased in the dentate gyrus on day 1 after ischemia. Immunohistochemical analysis on day 9 after ischemia, when a significant increase in cell proliferation was seen, showed that the cerebral vessel space in the subgranular zone of the dentate gyrus had not been affected by the ischemia. Neither were the vascular densities on days 1 and 3 after ischemia altered compared with those of non-operated naïve control rats. Furthermore, the distance from the center of the proliferative cells to the nearest cerebral vessel of ischemic rats was comparable to that of the sham-operated rats. We demonstrated that transient forebrain ischemia-induced cell proliferation and differentiation to mature neurons in the hippocampal dentate gyrus was attenuated by the i.c.v. administration of a vascular endothelial growth factor receptor tyrosine kinase inhibitor. These results suggest that vascular endothelial growth factor receptor at the early period of reperfusion may contribute to neurogenesis rather than to angiogenesis in the hippocampal dentate gyrus.  相似文献   

3.
Regarding regenerative strategies early post-ischemic therapeutic interventions might have a great impact on further pathophysiological cascades. To understand the early post-ischemic events we analyzed proliferation and neurogenesis as early as on day 3 after transient global ischemia in rats. Evaluations were performed not only in the dorsal hippocampus, where post-ischemic cell death develops selectively in the cornu ammonis, subfield 1 area, but also in distant areas like the ventricle wall and the striatum. Ischemia was induced by a transient two-vessel occlusion combined with hypotension. Animals received daily i.p. injections of 5-bromo-2-deoxyuridine until decapitation 1 or 3 days after ischemia. Immunohistochemistry was performed to detect 5-bromo-2-deoxyuridine and co-labeling with cell-specific markers. Three days after ischemia, proliferation significantly increased throughout the forebrain. Early neurogenesis, detected by doublecortin labeling, on the other hand, was restricted to the neurogenic zones of the dentate gyrus and the lateral ventricle. Global ischemia reduced the overall number of doublecortin-positive cells in the dentate gyrus, particularly in the upper blade of the dentate gyrus. However, the number of newly generated doublecortin- and 5-bromo-2-deoxyuridine double-labeled cells was unchanged. The vast majority of newly generated cells were microglia/macrophages, which invaded morphologically damaged as well as undamaged regions. Astroglial cells were activated all over the forebrain by the ischemic insult. They were co-localized almost completely with nestin in many areas, yet, sparsely proliferated after the insult. Interestingly, in locally defined zones we found nestin- and glial fibrillary acidic protein-signals clearly separated. In sham-operated animals, nestin could be detected in both neurogenic zones only without co-labeling with glial markers. In conclusion, during the first days after global ischemia, cell death of cornu ammonis, subfield 1-neurons was accompanied by a massive overall proliferation and activation of microglia/macrophages, a reduction of pre-ischemia existing doublecortin-positive precursors in the dentate gyrus and a re-expression of nestin in glial fibrillary acidic protein-positive astrocytes.  相似文献   

4.
Kluska MM  Witte OW  Bolz J  Redecker C 《Neuroscience》2005,135(3):723-735
Stimulation of cell proliferation and neurogenesis in the adult dentate gyrus has been observed after focal and global brain ischemia but only little is known about the underlying mechanisms. We here analyzed neurogenesis in the dentate gyrus after small cortical infarcts leaving the hippocampal formation and subcortical regions intact. Using the photothrombosis model in adult rats, focal ischemic infarcts were induced in different cortical areas (sensorimotor forelimb and hindlimb cortex) and proliferating cells were labeled at days 3-14 after infarct induction with bromodeoxyuridine. At 2, 4, and 10 weeks after ischemia, immunocytochemistry was performed with immature neuronal (doublecortin), mature neuronal (neuronal nuclei antigen) and glial (calcium-binding protein beta S100beta) markers. When compared with sham-operated controls, animals with infarcts in the forelimb as well as hindlimb cortex revealed an increase in survival of newborn progenitor cells at four and 10 weeks after the insult with predominance at the ipsilateral side. Triple immunofluorescence and confocal laser scanning microscopy revealed an increase in neurogenesis in all groups that was more pronounced 10 weeks after the infarct. Application of the N-methyl-D-aspartate (NMDA)-receptor antagonist MK-801 during lesion induction significantly enhanced neurogenesis in the dentate gyrus. An even stronger increase in newborn neurons was observed after anti-inflammatory treatment with indomethacine during the first 16 days of the experiment. The present study demonstrates that small cortical infarcts leaving subcortical structures intact increase neurogenesis in the dentate gyrus and that these processes can be stimulated by N-methyl-D-aspartate receptor blockade and anti-inflammatory treatment.  相似文献   

5.
We studied hippocampal cellular proliferation and neurogenesis processes in a model of transient global cerebral ischemia in gerbils by labelling dividing cells with 5'-Bromo-2'-deoxyuridine (BrdU). Surrounding the region of selective neuronal death (CA1 pyramidal layer of the hippocampus), an important increase in reactive astrocytes and BrdU-labelled cells was detected 5 days after ischemia. A similar result was found in the dentate gyrus (DG) 12 days after ischemia. The differentiation of the BrdU+ cells was investigated 28 days after BrdU administration by analyzing the morphology, anatomic localization and cell phenotype by triple fluorescent labelling (BrdU, adult neural marker NeuN and DNA marker TOPRO-3) using confocal laser-scanning microscopy. This analysis showed increased neurogenesis in the DG in case of ischemia and triple positive labelling in some newborn cells in CA1. Seven brain hemispheres from gerbils subjected to ischemia did not develop CA1 neuronal death; hippocampus from these hemispheres did not show any of the above mentioned findings. Our results indicate that ischemia triggers proliferation in CA1 and neurogenesis in the DG in response to CA1 pyramidal neuronal death, independently of the reduced cerebral blood flow or the cell migration from subventricular zone (SVZ).  相似文献   

6.
Neurogenesis occurs continuously in the forebrain of adult mammals, but the functional importance of adult neurogenesis is still unclear. Here, using a genetic labeling method in adult mice, we found that continuous neurogenesis results in the replacement of the majority of granule neurons in the olfactory bulb and a substantial addition of granule neurons to the hippocampal dentate gyrus. Genetic ablation of newly formed neurons in adult mice led to a gradual decrease in the number of granule cells in the olfactory bulb, inhibition of increases in the granule cell number in the dentate gyrus and impairment of behaviors in contextual and spatial memory, which are known to depend on hippocampus. These results suggest that continuous neurogenesis is required for the maintenance and reorganization of the whole interneuron system in the olfactory bulb, the modulation and refinement of the existing neuronal circuits in the dentate gyrus and the normal behaviors involved in hippocampal-dependent memory.  相似文献   

7.
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that not only inhibits the Wnt signaling pathway by promoting the degradation of β-catenin but also controls cell polarity, motility, and division. APC is abundantly expressed in the adult central nervous system, but its role in adult neurogenesis remains unknown. Using conditional deletion (or knockout) of APC (APC-CKO) from glial fibrillary acidic protein (GFAP)-expressing cells including adult neural stem cells (NSCs) in the subventricular zone and hippocampal dentate gyrus, we show that APC expression by these cells is a critical component of adult neurogenesis. Loss of APC function resulted in a marked reduction of GFAP-expressing NSC-derived new neurons, leading to the decreased volume of olfactory granule cell layer. Two distinct mechanisms account for impaired neurogenesis in APC-CKO mice. First, APC was highly expressed in migrating neuroblasts and APC deletion disturbed the differentiation from Mash1-expressing transient amplifying cells to neuroblasts with concomitant accumulation of β-catenin. As a result, migrating neuroblasts decreased, whereas Mash1-expressing dividing cells reciprocally increased in the olfactory bulb of APC-CKO mice. Second, APC deletion promoted an exhaustion of the adult germinal zone. Functional NSCs and their progeny progressively depleted with age. These findings demonstrate that APC expression plays a key role in regulating intracellular β-catenin level and neuronal differentiation of newly generated cells, as well as maintaining NSCs in the adult neurogenic niche. STEM CELLS 2010;28:2053-2064.  相似文献   

8.
Although many studies have appeared on the mechanisms of neurogenesis in the adult mammalian central nervous system, the challenge remains to identify the factors controlling this process. Among numerous factors, which have been described to influence neurogenesis, serotonin (5-hydroxytryptamine, 5-HT) has received considerable attention. 5-HT drug manipulations and their effects on neurogenesis have revealed that 5-HT contributes to adult neurogenesis. An interesting but relatively unexplored detail is the presence of an extensive plexus of 5-HT containing fibers in the subventricular zone, the main neurogenic brain structure besides the dentate gyrus in the hippocampal formation. A dense plexus of 5-HT fibers surrounds the subventricular zone, separating this region from the adjacent structures of the lateral ventricle. This close anatomical relationship suggests an important functional role for 5-HT in influencing cell proliferation in the subventricular zone. Here, we review the literature and propose that subependymal plexus is part of an intrinsic brain mechanism which controls the subventricular zone cell proliferative capacity by modulating 5-HT release.  相似文献   

9.
Melatonin modulates adult hippocampal neurogenesis in adult mice. Also, plasma melatonin levels and new neuron formation decline during aging probably causing cognitive alterations. In this study, we analyzed the impact of exogenous supplementation with melatonin in three key events of hippocampal neurogenesis during normal aging of mice. The analysis was performed in rodents treated with melatonin during 3, 6, 9 or 12 months. We found an increase in cell proliferation in the dentate gyrus of the hippocampus after 3, 6 and 9 months of treatment (>90%). Additionally, exogenous melatonin promoted survival of new cells in the dentate gyrus (>50%). Moreover, melatonin increased the number of doublecortin-labeled cells after 6 and 9 months of treatment (>150%). In contrast, melatonin administered during 12 months did not induce changes in hippocampal neurogenesis. Our results indicate that melatonin also modulates the neurogenic process in the hippocampus during normal aging of mice. Together, the data support melatonin as one of the positive endogenous regulators of neurogenesis during aging.  相似文献   

10.
Adult hippocampal neurogenesis in depression   总被引:3,自引:0,他引:3  
Sahay A  Hen R 《Nature neuroscience》2007,10(9):1110-1115
The development of new treatments for depression is predicated upon identification of neural substrates and mechanisms that underlie its etiology and pathophysiology. The heterogeneity of depression indicates that its origin may lie in dysfunction of multiple brain regions. Here we evaluate adult hippocampal neurogenesis as a candidate mechanism for the etiology of depression and as a substrate for antidepressant action. Current evidence indicates that adult hippocampal neurogenesis may not be a major contributor to the development of depression, but may be required for some of the behavioral effects of antidepressants. We next revisit the functional differentiation of the hippocampus along the septo-temporal axis within the context of adult hippocampal neurogenesis and suggest that neurogenesis in the ventral dentate gyrus may be preferentially involved in regulation of emotion. Finally, we speculate on how increased adult hippocampal neurogenesis may modulate dentate gyrus function to confer the behavioral effects of antidepressants.  相似文献   

11.
Dephosphorylation processes of target proteins are critical to the reversible regulation of intracellular signal transduction systems. Further, brain damage such as ischemic insult induces marked changes in protein kinase activity. To study these changes more thoroughly, specific monoclonal antibodies of the A and B subunits of calcineurin (protein phosphatase 2B) were raised, and regional alterations in the immunoreactivity of calcineurin in the rat hippocampus were investigated after a transient forebrain ischemic insult causing selective and delayed hippocampal CA1 pyramidal cell damage. In normal rats it was found that both the calcineurin A and the B subunits showed high immunoreactivity in the dendritic fields of the hippocampal formation. The immunoreactivity of subunit A in the strata oriens, the radiatum of the CA1 subfield and in the stratum lucidum of the CA3 subfield was most intense, whereas the immunoreactivity in the other CA3 subfields and in the dentate gyrus was relatively low. In contrast, the dendritic fields of the hippocampal formation were equally immunoreactive to calcineurin subunit B, although the stratum lucidum of the CA3, where the mossy fibers from the dentate granule cells terminate, showed a very high immunoreactivity of the B subunit. After transient forebrain ischemia in the CA1 subfield, where selective pyramidal cell death occurred two days after this ischemia, a marked loss of immunoreactivity in both subunits was observed, along with morphological pyramidal cell damage. A recovery of the immunoreactivity of A and B subunits in the strata oriens and radiatum was later noted 30 days after ischemia. In the stratum lucidum of the CA3, the immunoreactivity of both the A and B subunits was transiently depressed from 6 to 24 h, followed by a marked immunoreactivity enhancement from four to 30 days after ischemia. Further, in the histologically intact dentate gyrus, both the immunoreactivity of the A and B subunits in the molecular layer were transiently enhanced from four to 14 days after ischemia, particularly in the supragranular layer. The results clearly indicate that the protein dephosphorylation systems were markedly altered in the whole hippocampal formation during the recirculation period following ischemia. Further, the transient depression in the calcineurin immunoreactivity seen in the mossy fiber terminals may reflect modulated synaptic activity of the dentate granule cells, which may play a pivotal role in the delayed and selective death of the CA1 pyramidal cells. Thus, calcineurin appears to be an excellent marker enzyme for the detection of neuronal activity and synaptic plasticity after brain damage, such as an ischemic insult.  相似文献   

12.
Neurogenesis in the subgranular zone of the hippocampal dentate gyrus and olfactory bulbs continues into adulthood and has been implicated in the cognitive function of the adult brain. The basal forebrain cholinergic system has been suggested to play a role in regulating neurogenesis as well as learning and memory in these regions. Herein, we report that highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive immature cells as well as neuronal nuclei (NeuN)-positive mature neurons in the dentate gyrus and olfactory bulb express multiple acetylcholine receptor subunits and make contact with cholinergic fibers. To examine the function of acetylcholine in neurogenesis, we used donepezil (Aricept), a potent and selective acetylcholinesterase inhibitor that improves cognitive impairment in Alzheimer's disease. Intraperitoneal administrations of donepezil significantly enhanced the survival of newborn neurons, but not proliferation of neural progenitor cells in the subgranular zone or the subventricular zone of normal mice. Moreover, donepezil treatment reversed the chronic stress-induced decrease in neurogenesis. Taken together, these results suggest that activation of the cholinergic system promotes survival of newborn neurons in the adult dentate gyrus and olfactory bulb under both normal and stressed conditions.  相似文献   

13.
DISC1 (Disrupted-In-Schizophrenia 1) has been associated with schizophrenia in multiple genetic studies. Studies from our laboratory have shown that Disc1, the mouse ortholog of DISC1, is highly expressed in the dentate gyrus of the hippocampus in the adult mouse brain. Because developmental dysfunction of the hippocampus is thought to play a major role in schizophrenia pathogenesis, and the dentate gyrus is a major locus for adult neurogenesis in the mouse, we investigated Disc1 expression during mouse brain development. Strikingly, Disc1 is strongly expressed in the hippocampus during all stages of hippocampal development, from embryonic day 14 through adulthood. Disc1 mRNA was detected in the dentate gyrus at all stages in which this structure was identifiable, as well as in the cornu ammonis (CA) fields of the hippocampus, the subiculum and adjacent entorhinal cortex, and the developing cerebral neocortex, hypothalamus, and olfactory bulbs, all of which also express Disc1 in the adult mouse brain. In addition, Disc1 mRNA was seen in regions of the developing mouse brain which do not express Disc1 during adulthood, regions including the bed nucleus of the stria terminalis, reticular thalamic nucleus and reuniens thalamic nucleus. These results demonstrate that Disc1 marks the hippocampus from its earliest stages, and suggest that developmental Disc1 dysfunction may lead to defects in hippocampal function that are associated with schizophrenia.  相似文献   

14.
Alzheimer's disease (AD) is an age-related, progressive and irreversible neurodegenerative disease that results in the loss of selected neurons throughout the basal forebrain, amygdala, hippocampus, and cortical area as well as progressive deficits of cognition and memory. The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is one of the regions where adult neurogenesis occurs in mammals, including humans and non-human primates. The new granule cells, which are the primary excitatory neurons in the DG, contribute to the processes of learning and memory. The changes in neurogenesis observed during the initial stages and progression of AD suggest that the modulation of the new production of neurons at neurogenic sites may exert profound effects on hippocampal function. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin contribute to the modulation of neurogenesis in the adult hippocampus, thereby affecting hippocampal function. This review focuses on the role of BMP4 and Noggin in the control of the stem and precursor cells in the adult hippocampus during AD and their potential as a possible therapeutic strategy for AD sufferers. It is helpful to extend the understanding of the control of stem cells in the normal and diseased hippocampus.  相似文献   

15.
Neurogenesis plays a role in many physiological (memory formation) and pathological (stroke, depression) processes. However the mechanisms of postnatal stem cell proliferation and neurogenesis are still poorly understood. We characterized early neurogenesis in vitro in rat organotypic hippocampal slice cultures. Proliferation was assessed by bromodeoxyuridine incorporation, neurogenesis by bromodeoxyuridine-double labeling with doublecortin or beta-III tubulin. We showed for the first time that in addition to the dentate gyrus organotypic hippocampal slice cultures include a second neurogenic zone: the posterior periventricle, which is a part of the lateral ventricle wall. This structure lining the stratum oriens contained Nestin+ precursors. We could identify morphological and functional differences between dentate gyrus and posterior periventricle precursor populations. Our data demonstrate that basic fibroblast growth factor treatment induced a fast but short-lasting neurogenic response in the dentate gyrus while the posterior periventricle showed a more pronounced and long lasting neurogenic effect of basic fibroblast growth factor. Thus two neurogenic zones with different neurogenic properties were identified in organotypic hippocampal slice cultures.  相似文献   

16.
Sim YJ  Kim SS  Kim JY  Shin MS  Kim CJ 《Neuroscience letters》2004,372(3):256-261
In the present study, the effect of treadmill exercise on short-term memory, apoptotic neuronal cell death, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils was investigated. Step-down inhibitory avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 and 5-bromo-2'-deoxyuridine (BrdU) were used. Ischemia was induced by the occlusion of both common carotid arteries (CCA) of gerbils for 5 min. Gerbils in exercise groups were forced to run on a treadmill for 30 min once a day for 10 consecutive days. Such treadmill exercise improved short-term memory by suppressing the ischemia-induced apoptotic neuronal cell death in the dentate gyrus. In addition, treadmill running suppressed the ischemia-induced cell proliferation in the dentate gyrus. The present results suggest that treadmill exercise overcomes the ischemia-induced apoptotic neuronal cell death and thus facilitates the recovery following ischemic cerebral injury.  相似文献   

17.
Barker JM  Galea LA 《Neuroscience》2008,152(4):888-902
Estradiol has been shown to have neuroprotective effects, and acute estradiol treatment enhances hippocampal neurogenesis in the female brain. However, little is known about the effects of repeated administration of estradiol on the female brain, or about the effects of estradiol on the male brain. Gonadectomized male and female adult rats were injected with 5-bromo-2-deoxyuridine (BrdU) (200 mg/kg), and then 24 h later were given subcutaneous injections of either estradiol benzoate (33 mug/kg) or vehicle daily for 15 days. On day 16, animals were perfused and the brains processed to examine cells expressing Ki-67 (cell proliferation), BrdU (cell survival), doublecortin (young neuron production), pyknotic morphology (cell death), activated caspase-3 (apoptosis), and Fluoro-Jade B (degenerating neurons) in the dentate gyrus. In female rats, repeated administration of estradiol decreased the survival of new neurons (independent of any effects on initial cell proliferation), slightly increased cell proliferation, and decreased overall cell death in the dentate gyrus. In male rats, repeated administration of estradiol had no significant effect on neurogenesis or cell death. We therefore demonstrate a clear sex difference in the response to estradiol of hippocampal neurogenesis and apoptosis in adult rats, with adult females being more responsive to the effects of estradiol than males.  相似文献   

18.
The generation of new neurons in the adult mammalian brain has been documented in numerous recent reports. Studies undertaken so far indicate that adult hippocampal neurogenesis is related in a number of ways to hippocampal function.Here, we report that subjecting adult rats to fractionated brain irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21 days after irradiation, the animals with blocked neurogenesis performed poorer than controls in a hippocampus-dependent place-recognition task, indicating that the presence of newly generated neurons may be necessary for the normal function of this brain area. The animals were never impaired in a hippocampus-independent object-recognition task. These results are in line with other reports documenting the functional significance of newly generated neurons in this region. As our irradiation procedure models prophylactic cranial irradiation used in the treatment of different cancers, we suggest that blocked neurogenesis contributes to the reported deleterious side effects of this treatment, consisting of memory impairment, dysphoria and lethargy.  相似文献   

19.
背景:研究表明跑台运动能促进健康大鼠海马的神经细胞再生。 目的:观察跑台运动对脑缺血再灌注模型大鼠海马神经再生和血管内皮生长因子mRNA表达的影响。 方法:用线栓法阻塞大脑中动脉以建立单侧脑缺血再灌注模型大鼠,将建模成功大鼠随机分为跑台运动组和安静对照组,另设假手术组。安静对照组和假手术组大鼠安静饲养,跑台运动组进行7 d跑台运动。跑台运动组和安静对照组大鼠在每天跑台运动前腹腔注射5-溴脱氧尿嘧啶核苷溶液。 结果与结论:免疫组织化学染色结果显示,跑台运动组大鼠双侧海马及齿状回5-溴脱氧尿嘧啶核苷阳性表达细胞数量显著多于安静对照组(P < 0.01)。实时荧光定量PCR检测结果显示,跑台运动组大鼠海马血管内皮生长因子mRNA表达水平显著高于安静对照组和假手术组(P < 0.05)。结果证实,跑台运动能够明显促进脑缺血再灌注大鼠海马神经细胞的再生并上调海马组织血管内皮生长因子的表达。  相似文献   

20.
Molecular mechanisms by which stroke increases neurogenesis have not been fully investigated. Using neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat subjected to focal cerebral ischemia, we investigated the Notch pathway in regulating proliferation and differentiation of adult neural progenitor cells after stroke. During proliferation of neural progenitor cells, ischemic neural progenitor cells exhibited substantially increased levels of Notch, Notch intracellular domain (NICD), and hairy enhancer of split (Hes) 1, which was associated with a significant increase of proliferating cells. Blockage of the Notch pathway by short interfering ribonucleic acid (siRNA) against Notch or a γ secretase inhibitor significantly reduced Notch, NICD and Hes1 expression and cell proliferation induced by stroke. During differentiation of neural progenitor cells, Notch and Hes1 expression was downregulated in ischemic neural progenitor cells, which was coincident with a significant increase of neuronal population. Inhibition of the Notch pathway with a γ secretase inhibitor further substantially increased neurons, but did not alter astrocyte population in ischemic neural progenitor cells. These data suggest that the Notch signaling pathway mediates adult SVZ neural progenitor cell proliferation and differentiation after stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号