首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨Preptin对成骨细胞结缔组织生长因子(CTGF)表达的影响及其机制.方法采用人重组preptin干预人原代成骨细胞,CTGF蛋白水平用Western印迹法检测.丝裂原活化蛋白激酶p38(p38MAPK)、细胞外信号调节激酶(ERK1/2)、c-Jun氨基端激酶(JNK)及其磷酸化水平用Western印迹法检测.在preptin干预前用细胞信号阻断剂(PD98059、SP600125或SB203580)预处理阻断人成骨细胞MAPK信号转导,以分析preptin诱导人成骨细胞CTGF表达的作用机制.结果 Preptin可呈时间和剂量依赖性地促进人成骨细胞CTGF的分泌,并且preptin可诱导人成骨细胞ERK的活化,对p38MAPK或JNK无激活作用;人成骨细胞用ERK抑制剂PD98059预处理可使preptin诱导的CTGF分泌降低.结论Preptin增加CTGF的表达,并通过ERK/MAPK信号途径来介导.  相似文献   

2.
The goal of this study was to evaluate the role of mitogen-activated protein kinase (MAPK) in cytochrome P4502E1 (CYP2E1) potentiation of lipopolysaccharide or tumor necrosis factor alpha (TNF-alpha)-induced liver injury. Treatment of C57/BL/6 mice with pyrazole (PY) plus lipopolysaccharide (LPS) induced liver injury compared with mice treated with PY or LPS alone. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 or p38 MAPK inhibitor SB203580 prevented this liver injury. PY plus LPS treatment activated p38 MAPK and JNK but not extracellular signal-regulated kinase (ERK). PY plus LPS treatment triggered oxidative stress in the liver with increases in lipid peroxidation, decrease of glutathione (GSH) levels, and increased production of 3-nitrotyrosine adducts and protein carbonyl formation. This oxidative stress was blocked by SP600125 or SB203580. PY plus LPS treatment elevated TNF-alpha production, and this was blocked by SP600125 or SB203580. Neither SP600125 nor SB203580 affected CYP2E1 activity or protein levels. Treating C57/BL/6 mice with PY plus TNF-alpha also induced liver injury and increased lipid peroxidation and decreased GSH levels. Prolonged activation of JNK and p38 MAPK was observed. All of these effects were blocked by SP600125 or SB203580. In contrast to wild-type SV 129 mice, treating CYP2E1 knockout mice with PY plus TNF-alpha did not induce liver injury, thus validating the role of CYP21E1 in this potentiated liver injury. Liver mitochondria from PY plus LPS or PY plus TNF-alpha treated mice underwent calcium-dependent, cyclosporine A-sensitive swelling, which was prevented by SB203580 or SP600125. CONCLUSION: These results show that CYP2E1 sensitizes liver hepatocytes to LPS or TNF-alpha and that the CYP2E1-enhanced LPS or TNF-alpha injury, oxidant stress, and mitochondrial injury is JNK or p38 MAPK dependent.  相似文献   

3.
OBJECTIVE AND METHODS: We have previously demonstrated that mechanical loading of cardiac fibroblasts leads to increased synthesis and gene expression of the extracellular matrix protein collagen. We hypothesised that the upregulation of procollagen gene expression in cardiac fibroblasts, in response to cyclic mechanical load, is mediated by one or more members of the MAP kinase family. To test this hypothesis, the effect of mechanical load on the activation of extracellular signal-regulated kinase (ERK) 1/2, p46/54JNK, and p38MAPK was examined in rat cardiac fibroblasts. RESULTS: Peak phosphorylation of ERK 1/2, p38MAPK kinases, and p46/54JNK was observed following 10-20 min of continuous cyclic mechanical load. Mechanical load significantly increased procollagen alpha1(I) mRNA levels up to twofold above static controls after 24 h. This increase was completely abolished by the MEK 1/2 inhibitor U0126, with no effect on basal levels. In contrast, SB203580, a specific inhibitor of p38MAPK, enhanced both basal and stretch-stimulated levels of procollagen mRNA. Consistent with this finding, selective activation of the p38MAPK signalling pathway by expression of MKK6(Glu), a constitutive activator of p38MAPK, significantly reduced procollagen alpha1(I) promoter activity. SB203580-dependent increase in procollagen alpha1(I) was accompanied by ERK 1/2 activation, and inhibition of this pathway completely prevented SB203580-induced procollagen alpha1(I) expression. CONCLUSIONS: These results suggest that mechanical load-induced procollagen alpha1(I) gene expression requires ERK 1/2 activation and that the p38MAPK pathway negatively regulates gene expression in cardiac fibroblasts. These pathways are likely to be key in events leading to matrix deposition during heart growth and remodelling induced by mechanical load.  相似文献   

4.
OBJECTIVE: To examine whether upregulation of urokinase-type plasminogen activator (u-PA), PA inhibitor-1 (PAI-1), and gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] in early knee osteoarthritis (OA) of humans occurs through 3 major mitogen-activated protein kinases (MAPK): extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase signaling pathways, and the phosphatidylinositol 3-kinase (PI3K) signaling pathway. METHODS: Enzyme linked immunosorbent assay and gelatin zymography were used to investigate the effects of ERK 1/2 inhibitor U0126, JNK and p38 inhibitor SB203580, and PI3K inhibitor LY294002 on the secretion of u-PA, PAI-1, MMP-2, and MMP-9 in early osteoarthritic tissue cultures, with or without interleukin 1alpha (IL-1alpha) and lipopolysaccharide (LPS) induction. RESULTS: Our findings were: (1) latent and active forms of MMP-9 secretion in synovial and some meniscal cultures were inhibited significantly by U0126, SB203580, and LY294002; (2) latent and active forms of MMP-2 secretion were also inhibited significantly by U0126 and LY294002, but not by SB203580, except for active MMP-2 in synovial cultures; (3) a similar observation was seen in IL-1alpha- and LPS-treated cultures; and (4) U0126, SB203580, and LY294002 significantly decreased u-PA and PAI-1 levels in all cultures in the presence or absence of IL-1alpha and LPS. CONCLUSION: MAPK ERK, JNK, and p38 signaling pathways and the PI3K signaling pathway are involved in upregulation of u-PA, PAI-1, and gelatinase expression during early development of knee OA. Thus, blocking PA/plasmin and gelatinase expression by novel physiologic and pharmacological inhibitors could be an important therapeutic or preventive approach for early OA.  相似文献   

5.
Abstract

Fibronectin fragments have been shown to up-regulate matrix metalloproteinase production in chondrocytes. We investigated the roles of mitogen-activated protein kinase (MAPK) pathways activated by the COOH-terminal heparin-binding fibronectin fragment (HBFN-f) in collagenase production by human chondrocytes in culture. In articular cartilage explant culture, HBFN-f stimulated type II collagen cleavage by collagenase in association with increased secretion of MMP-1 and MMP-13. In human articular chondrocytes, HBFN-f induced the collagenases with activation of the extracellular signal-regulated kinase (ERK), p38, and the c-Jun NH2-terminal kinase (JNK). PD98059 that inhibits the ERK pathway blocked HBFN-f-stimulated production of MMP-1 and MMP-13 in explant culture. SB203580 at 1?µM, the concentration that inhibits p38 only, partially suppressed HBFN-f-induced collagenase production, whereas at 10?µM, the inhibitor that blocks both p38 and JNK almost completely inhibited collagenase induction. PD98059 and SB203580 individually blocked HBFN-f-increased cleavage of type II collagen in the explant culture, although 10?µM SB203580 strongly inhibited the collagen cleavage compared with 1?µM of the inhibitor. These results indicate that collagenase production leading to type II collagen cleavage in cartilage explants requires ERK, p38, and JNK.  相似文献   

6.
7.
Chylomicron remnants, major lipoproteins at postprandial hyperlipidemia, have been considered to be proatherogenic lipoproteins. However, the mechanisms by which chylomicron remnants enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of chylomicron remnants on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs). We prepared chylomicrons from the lymph of gastrostomized rats fed with egg solution and obtained chylomicron remnants from the plasma of hepatectomized rats which were injected with chylomicrons. Treatment of VSMC with chylomicron remnants resulted in a significant increase of the expression of MCP-1 mRNA and protein in a time-and a dose-dependent manner. Further, chylomicron remnants activated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK1/2). Pretreatment of VSMCs with p38 MAPK inhibitors, SB203580 and SB202190, resulted in a dose-dependent inhibition of chylomicron remnants-induced MCP-1 mRNA and protein expression, whereas a MAPK kinase inhibitor, PD98059, had no effect on these responses. MCP-1 secretion by chylomicron remnants was much more pronounced than those by chylomicrons, oxidized low-density lipoproteins, or lysophosphatidylcholine. These results indicated that chylomicron remnants stimulated MCP-1 expression in VSMCs, and suggested that chylomicron remnants might contribute to the formation of atherosclerosis through this proinflammatory effect.  相似文献   

8.
The rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located, is a central site via which angiotensin II (Ang II) elicits its pressor effect. We tested the hypothesis that NADPH oxidase-derived superoxide anion (O2*-) in the RVLM mediates Ang II-induced pressor response via activation of mitogen-activated protein kinase (MAPK) signaling pathways. Bilateral microinjection of Ang II into the RVLM resulted in an angiotensin subtype 1 (AT1) receptor-dependent phosphorylation of p38 MAPK and extracellular signal-regulated protein kinase (ERK)1/2, but not stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), in the ventrolateral medulla. The Ang II-induced p38 MAPK or ERK1/2 phosphorylation was attenuated by application into the RVLM of a NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), an antisense oligonucleotide that targets against p22phox or p47phox subunit of NADPH oxidase mRNA, or the superoxide dismutase mimetic tempol. DPI or antisense p22phox or p47phox oligonucleotide treatment also attenuated the AT1 receptor-dependent increase in O2*- production in the ventrolateral medulla elicited by Ang II at the RVLM. Functionally, Ang II-elicited pressor response in the RVLM was attenuated by DPI, tempol, or a p38 MAPK inhibitor, SB203580. The AT1 receptor-mediated enhancement of the frequency of glutamate-sensitive spontaneous excitatory postsynaptic currents induced by Ang II in RVLM neurons was also abolished by SB203580. These results suggest that NADPH oxidase-derived O2*- underlies the activation of p38 MAPK or ERK1/2 by Ang II in the ventrolateral medulla. Furthermore, the p38 MAPK signaling pathway may mediate Ang II-induced pressor response via enhancement of presynaptic release of glutamate to RVLM neurons.  相似文献   

9.
The existing literature indicates a crucial role of p38 MAP (mitogen-activated protein) kinase (p38MAPK) and its downstream target MAPKAP kinase 2 (MK2) in ischemic preconditioning (IPC). Accordingly, deletion of MK2 gene should abolish the cardioprotective ability of IPC. Interestingly, we were able to partially precondition the hearts from MK2(-/-) knockout mice suggesting the existence of an as yet unknown alternative downstream target of p38MAPK. A recent study from our laboratory also determined a crucial role of CREB (cyclic AMP response element binding protein) in IPC. Since CREB is a downstream target of MSK-1 (mitogen- and stress-activated protein kinase-1) situated at the crossroad of ERK (extracellular receptor kinase) and p38MAPK signaling pathways, we reasoned that MSK-1 could be a downstream molecular target for p38MAPK and ERK signaling in the IPC hearts. To test this hypothesis, the rat hearts were subjected to IPC by four cyclic episodes of 5 min ischemia and 10 min reperfusion. As expected, IPC induced the activation of ERK1/2, p38MAPK, MK2 and HSP (heat shock protein) 27 as evidenced by their increased phosphorylation; and the inhibition of p38MAPK with SB203580 almost completely, and the inhibition of ERK1/2 with PD098059 partially, abolished cardioprotective effects of IPC. Inhibition of MSK-1 with short hairpin RNA (shRNA) also abolished the IPC-induced cardioprotection. SB203580 partially blocked the effects of MSK-1 suggesting that MSK-1 sits downstream of p38MAPK. shRNA-MSK-1 blocked the contribution of both p38MAPK and ERK1/2 as it is uniquely situated at the downstream crossroad of both of these MAP kinases. Although MSK-1 sits downstream of both ERK1/2 and p38MAPK, ERK1/2 activation appears to play less significant role compared to p38MAPK, since its inhibition blocked MSK activation only partially. Consistent with these results, shRNA-MSK-1 blocked the partial PC in MK2(-/-) hearts, and in combination with SB203580, completely abolished the PC effects in the wild-type hearts. The IPC-induced survival signaling was almost completely inhibited with SB203580, and only partially with PD 098059 as evidenced from the inhibition patterns of IPC induced activation of CREB, Akt and Bcl-2. Again SB203580 alone or in combination with shRNA-MSK-1 inhibited IPC induced survival signal comparatively, suggesting that MSK-1 exists downstream of p38MAPK. Taken together, these results indicate for the first time MSK-1 as an alternative (other than MK2) downstream target for p38MAPK, which also transmits survival signal through the activation of CREB.  相似文献   

10.
目的 探讨preptin对人成骨细胞增殖和分化的影响及其信号途径.方法 体外培养人成骨细胞,用10-10、10-9、10-8和10-7mol/L preptin干预24 h,以[3H]脱氧胸腺嘧啶苷掺入法分析细胞增殖,用分光光度计法测定细胞碱性磷酸酶(ALP)活性判断细胞分化程度.Western印迹法检测细胞外信号调节激酶(ERK)、p38丝裂原活化蛋白激酶(p38MAPK)和c-Jun氨基末端激酶(JNK)的磷酸化水平.并在preptin干预前以ERK抑制剂(PD98059)、p38 MAPK抑制剂(SB203580)和JNK抑制剂(SP600125)预处理,观察preptin诱导人成骨细胞增殖和分化的途径.结果 Preptin剂量依赖地增加人成骨细胞的增殖和ALP活性,10-9mol/L浓度时达最大效应(均P<0.01).Preptin刺激人成骨细胞ERK的磷酸化,对p38MAPK和JNK无作用.PD98059阻断preptin刺激的成骨细胞增殖及ALP活性增加(均P<0.05),而SP600125和SB203580无此效应.结论 Preptin通过ERK途径促进人成骨细胞的增殖和分化.  相似文献   

11.
12.
13.
CD40 is a 48kDa phosphorylated transmembrane glycoprotein that belongs to the tumor necrosis factor receptor superfamily and may play a role in formation of atherosclerotic plaques. Here, we investigated the effect of chylomicron remnants on CD40 expression in the human premonocytic cell line, THP-1 cells. Chylomicron remnants upregulated the expression of CD40 protein and mRNA in a dose- and time-dependent manner. Further, chylomicron remnants increased the generation of reactive oxygen species as determined by an increasing level of 2',7'-dichlorofluorescein. Pretreatment with the antioxidant, N-acetylcysteine, inhibited chylomicron remnant-induced CD40 protein expression by 60%. On the other hand, chylomicron remnants transiently increased the phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with the MAPK kinase inhibitor, U0126, completely inhibited chylomicron remnants-induced CD40 protein expression, whereas the p38 MAPK inhibitor, SB203580, had no effect. Pretreatment with N-acetylcysteine had no effect on chylomicron remnant-induced ERK 1/2 phosphorylation. These data suggest that CD40 expression stimulated by chylomicron remnants in THP-1 cells is dependent on ERK 1/2-mediated pathway, which is followed by redox-sensitive mechanism-dependent and independent pathway. Thus, chylomicron remnants may contribute to the formation of atherosclerotic plaques via their immunological and proinflammatory effects.  相似文献   

14.
15.
Fibronectin fragments have been shown to up-regulate matrix metalloproteinase production in chondrocytes. We investigated the roles of mitogen-activated protein kinase (MAPK) pathways activated by the COOH-terminal heparin-binding fibronectin fragment (HBFN-f) in collagenase production by human chondrocytes in culture. In articular cartilage explant culture, HBFN-f stimulated type II collagen cleavage by collagenase in association with increased secretion of MMP-1 and MMP-13. In human articular chondrocytes, HBFN-f induced the collagenases with activation of the extracellular signal-regulated kinase (ERK), p38, and the c-Jun NH2-terminal kinase (JNK). PD98059 that inhibits the ERK pathway blocked HBFN-f-stimulated production of MMP-1 and MMP-13 in explant culture. SB203580 at 1µM, the concentration that inhibits p38 only, partially suppressed HBFN-f-induced collagenase production, whereas at 10µM, the inhibitor that blocks both p38 and JNK almost completely inhibited collagenase induction. PD98059 and SB203580 individually blocked HBFN-f-increased cleavage of type II collagen in the explant culture, although 10µM SB203580 strongly inhibited the collagen cleavage compared with 1µM of the inhibitor. These results indicate that collagenase production leading to type II collagen cleavage in cartilage explants requires ERK, p38, and JNK.  相似文献   

16.
We previously reported that oxidized low-density lipoprotein (Ox-LDL)-induced expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) via PKC, leading to activation of phosphatidylinositol-3 kinase (PI-3K), was important for macrophage proliferation [J Biol Chem 275 (2000) 5810]. The aim of the present study was to elucidate the role of extracellular-signal regulated kinase 1/2 (ERK1/2) and of p38 MAPK in Ox-LDL-induced macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages assessed by [3H]thymidine incorporation and cell counting assays was significantly inhibited by MEK1/2 inhibitors, PD98059 or U0126, and p38 MAPK inhibitors, SB203580 or SB202190, respectively. Ox-LDL-induced GM-CSF production was inhibited by MEK1/2 inhibitors but not by p38 MAPK inhibitors in mRNA and protein levels, whereas recombinant GM-CSF-induced macrophage proliferation was inhibited by p38 MAPK inhibitors but enhanced by MEK1/2 inhibitors. Recombinant GM-CSF-induced PI-3K activation and Akt phosphorylation were significantly inhibited by SB203580 but enhanced by PD98059. Our results suggest that ERK1/2 is involved in Ox-LDL-induced macrophage proliferation in the signaling pathway before GM-CSF production, whereas p38 MAPK is involved after GM-CSF release. Thus, the importance of MAPKs in Ox-LDL-induced macrophage proliferation was confirmed and the control of MAPK cascade could be targeted as a potential treatment of atherosclerosis.  相似文献   

17.
OBJECTIVE: Here we investigated the role of spleen tyrosine kinase (Syk) in the migration induced by platelet-derived growth factor (PDGF) in rat aortic smooth muscle cells (RASMC). METHODS: Cell migration was determined using a Boyden chamber, by wound-healing, and by aortic ring assays. Activity of Syk, mitogen-activated protein kinase (MAPK), and heat shock protein 27 (HSP27) were tested using immunoblotting with kinase inhibitors and small interference RNAs. RESULTS: PDGF-BB induced binding of Syk to the PDGFbeta receptor and increased the phosphorylation of Syk and migration in RASMC. These effects of PDGF-BB were inhibited by piceatannol, an inhibitor of Syk. PDGF-BB increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and HSP27, which were significantly inhibited by piceatannol and in Syk-knockdown cells. The p38 MAPK inhibitor SB203580 and ERK1/2 inhibitor PD98059 inhibited the migration, which was further inhibited by the combination of these inhibitors. SB203580, but not PD98059, inhibited the phosphorylation of HSP27 induced by PDGF-BB in RASMC. PDGF-BB-induced migration was attenuated in HSP27-knockdown cells. Kinase inhibitors and Syk-knockdown diminished PDGF-BB-induced sprout outgrowth in the aortic ring assay. CONCLUSIONS: These results imply that Syk is an upstream signal of the p38 MAPK/HSP27 and ERK1/2 pathways that contributes to PDGF-BB-mediated migration in RASMC.  相似文献   

18.
19.
目的探讨p38MAPK信号通路在胰高血糖素样肽1(GLP-1)拮抗人脐静脉内皮细胞凋亡中的作用。方法实验分为对照组、糖基化终末产物(AGE)组、GLP-1组、AGE+GLP-1组、AGE+SB203580组、AGE+GLP-1+SB203580组及AGE+GLP-1+L-NAME组,Western blot检测p-p38MAPK/p38MAPK、磷酸化内皮型一氧化氮合酶/内皮型一氧化氮合酶(p-eNOS/eNOS)蛋白表达情况,NO检测试剂盒(一步法)检测NO含量,DCFH-DA荧光探针检测细胞活性氧(ROS)含量,Annexin V/PI流式检测细胞凋亡率。结果与AGE组相比,GLP-1预处理可诱导p-p38MAPK蛋白表达下降(P=0.000);与对照组比较,GLP-1或p38 MAPK抑制剂(SB203580)预处理后,受AGE抑制的eNOS蛋白表达或诱导的ROS水平分别显著升高(P=0.004)或下降(P=0.000);GLP-1预处理后,因AGE诱导的细胞凋亡率显著降低(P=0.000),而加入L-NAME后,GLP-1的抗凋亡作用显著减弱(P=0.002);GLP-1预处理后,细胞NO含量较单纯AGE组明显升高(P=0.000),而予以L-NAME后,细胞NO含量显著降低(P=0.011)。结论GLP-1可抑制p38 MAPK信号通路的活化,拮抗AGE对血管内皮细胞的氧化损伤;上调eNOS蛋白的表达,拮抗AGE诱导的内皮细胞NO生成障碍及细胞凋亡,从而延缓糖尿病合并动脉粥样硬化的发生发展。  相似文献   

20.
Whether p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascades are required for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF) accumulation in RAW 264.7 murine macrophages exposed to lipopolysaccharide (LPS) plus recombinant interferon-gamma (rIFN-gamma) was investigated. By use of Western blotting for iNOS detection and ELISA for quantitation of TNF secretion, three selective inhibitors of these pathways were tested (the p38 inhibitors SB202190 and SB203580 and the MEK 1,2/ERK inhibitor PD98059). Dose-related inhibition of iNOS production was demonstrated when inhibitors were added 1 h before, simultaneously with, or 1 h after LPS plus rIFN-gamma stimulation. In contrast, inhibition of TNF secretion was observed only when cells were preincubated with these agents. Thus, both the p38 and ERK pathways are involved in the up-regulation of iNOS and TNF production by murine macrophages, and specific inhibitors of these pathways block macrophage iNOS production even when added 1 h after activation of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号