首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
Recent experiments raised the possibility that the lateral intraparietal area (LIP) might be specialized for saccade planning. If this was true, one would expect a decreased sensitivity to irrelevant visual stimuli appearing late in the delay period of a memory-guided delayed-saccade task to a target outside the neurons' receptive fields. We trained two monkeys to perform a standard memory-guided delayed-saccade task and a distractor task in which a stimulus flashed for 200 ms at a predictable time 300-100 ms before the end of the delay period. We used two locations, one in the most active part of the receptive field and another well outside the receptive field. We used six kinds of trials randomly intermixed: simple delayed-saccade trials into or away from the receptive field and distractor trials with saccade target and distractor both in the receptive field, both out of the receptive field, or one at each location. This enabled us to study the response to the distractor as a function of the monkey's preparation of a memory-guided delayed-saccade task. We had assumed that the preparation of a saccade away from the receptive field would result in an attenuation of the response to the distractor, i.e., a distractor at the location of the saccade goal would evoke a greater response than when it appeared at a location far from the saccade goal. Instead we found that neurons exhibited either a normal or an enhanced visual response to the distractor during the memory period when the target flashed outside the receptive field. When the distractor flashed at the location of the saccade target, the response to the distractor was either unchanged or diminished. The response to a distractor away from the target location of a memory-guided saccade was even greater than the response to the same target when it was the target for the memory-guided saccade task. Immediate presaccadic activity did not distinguish between a saccade to the receptive field when there was no distractor and a distractor in the receptive field when the monkey made a saccade elsewhere. Nonetheless the distractor had no significant effect on the saccade latency, accuracy, or velocity despite the brisk response it evoked immediately before the saccade. We suggest that these results are inconsistent with a role for LIP in the specific generation of saccades, but they are consistent with a role for LIP in the generation of visual attention.  相似文献   

2.
Neurons in the lateral intraparietal area of the monkey (LIP) have visual receptive fields in retinotopic coordinates when studied in a fixation task. However, in the period immediately surrounding a saccade these receptive fields often shift, so that a briefly flashed stimulus outside the receptive field will drive the neurons if the eye movement will bring the spatial location of that vanished stimulus into the receptive field. This is equivalent to a transient shift of the retinal receptive field. The process enables the monkey brain to process a stimulus in a spatially accurate manner after a saccade, even though the stimulus appeared only before the saccade. We studied the time course of this receptive field shift by flashing a task-irrelevant stimulus for 100 ms before, during, or after a saccade. The stimulus could appear in receptive field as defined by the fixation before the saccade (the current receptive field) or the receptive field as defined by the fixation after the saccade (the future receptive field). We recorded the activity of 48 visually responsive neurons in LIP of three hemispheres of two rhesus monkeys. We studied 45 neurons in the current receptive field task, in which the saccade removed the stimulus from the receptive field. Of these neurons 29/45 (64%) showed a significant decrement of response when the stimulus appeared 250 ms or less before the saccade, as compared with their activity during fixation. The average response decrement was 38% for those cells showing a significant (P < 0.05 by t-test) decrement. We studied 39 neurons in the future receptive field task, in which the saccade brought the spatial location of a recently vanished stimulus into the receptive field. Of these 32/39 (82%) had a significant response to stimuli flashed for 100 ms in the future receptive field, even 400 ms before the saccade. Neurons never responded to stimuli moved by the saccade from a point outside the receptive field to another point outside the receptive field. Neurons did not necessarily show any saccadic suppression for stimuli moved from one part of the receptive field to another by the saccade. Stimuli flashed <250 ms before the saccade-evoked responses in both the presaccadic and the postsaccadic receptive fields, resulting in an increase in the effective receptive field size, an effect that we suggest is responsible for perisaccadic perceptual inaccuracies.  相似文献   

3.
1. We recorded from 257 neurons in the banks of the posterior third of the principal sulcus of two rhesus monkeys trained to look at a fixation point and make saccades to stimuli in the visual periphery. Sixty-six percent (220/257) discharged or were suppressed in association with one or more aspects of the tasks we used. 2. Fifty-eight percent (151/257) of the neurons responded to the appearance of a spot of light in some part of the contralateral visual field. Cells did not seem to have absolute requirements for stimulus shape, size, or direction of motion. 3. Thirty-six percent (29/79) of visually responsive neurons tested quantitatively gave an enhanced response to the stimulus in the receptive field when the monkey had to make a saccade to the stimulus when its appearance was synchronous with the disappearance of the fixation point (synchron task). Twenty-nine percent (19/57) of the neurons gave an enhanced response to the stimulus when the monkey had to make a saccade to the stimulus some time after it appeared (delayed-saccade task). In general, enhancement in the synchron task correlated well with enhancement in the delayed-saccade task. 4. Enhancement was spatially specific. It did not occur when the monkey made a saccade to a stimulus outside the receptive field even though there was a stimulus within the receptive field. 5. Twenty-three percent (27/117) of neurons studied in the delayed-saccade task gave two bursts, one at the appearance of the stimulus and a second one around the saccade. This second burst generally did not occur when the monkey made the same saccade to a remembered target, but instead required the presence of the visual stimulus, and so we describe it as a reactivation of the visual response. Reactivation was also spatially specific. 6. The latency from reactivation to the beginning of the saccade ranged from 160 ms before the saccade to the beginning of the saccade. Reactivation usually continued for several hundred milliseconds after the saccade, sometimes for the duration of the trial. 7. Reactivation and enhancement are not the same mechanism. Although some cells showed both phenomena there was no correlation between enhancement and reactivation. 8. Cells that showed reactivation in the saccade task also showed reactivation at a weaker level in a suppressed-saccade task. In this task the monkeys had to hold fixation despite the disappearance of the fixation point and the continued presence of the peripheral stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. Visual responses of caudate neurons were studied in monkeys trained to fixate on a small spot of light. A visual stimulus (another spot of light) was presented in various contexts of behavior using different behavioral paradigms. Visual receptive fields were usually large and centered on the contralateral hemifield. Among 217 neurons with visual responses, 184 were further classified into subtypes. 2. Visual responses in 64 neurons were not modulated by changing the paradigms (unconditional visual responses). In the other neurons, visual responses were dependent on the behavioral contexts in which the stimulus was presented. Three types of behavioral modulation were found. 3. A saccade-enhanced visual response (n = 37) was the one that was enhanced if the monkey made a saccade to the stimulus on its appearance. The enhancement was spatially selective: the response was depressed if the saccade was directed away from the stimulus. 4. Memory-contingent visual responses (n = 36) were present preferentially when the monkey remembered the location of the stimulus and a few seconds later made a saccade to the remembered location. Responses were greater when the location of the stimulus was randomized between trials. 5. Expectation-contingent visual responses (n = 46) were present preferentially when the stimulus came on while the monkey was not fixating another spot, and the stimulus was related directly to a reward. Unlike the other types, its receptive field included both contralateral and ipsilateral hemifields without a particular preference. 6. A small number of neurons (n = 16) showed a visual response that easily habituated. 7. Latencies of visual responses were usually between 100 and 200 ms. The latencies of the memory-contingent, expectation-contingent, and habituated visual responses tended to be longer than the others and tended to be more variable between trials. 8. Among auditory responsive neurons only a small proportion were related to the tasks. The response was greater to a contralateral sound. It was enhanced if the monkey used the sound as the cue for the future target location. 9. The results suggest that sensory responses of caudate neurons could be used to guide a subsequent sequence of learned behaviors by confirming predicted environmental states, renewing memory, or establishing a motor set.  相似文献   

5.
In the monkey frontal eye field (FEF), the sensitivity of some neurons to visual stimulation changes just before a saccade. Sensitivity shifts from the spatial location of its current receptive field (RF) to the location of that field after the saccade is completed (the future field, FF). These shifting RFs are thought to contribute to the stability of visual perception across saccades, and in this study we investigated whether the salience of the FF stimulus alters the magnitude of FF activity. We reduced the salience of the usually single flashed stimulus by adding other visual stimuli. We isolated 171 neurons in the FEF of 2 monkeys and did experiments on 50 that had FF activity. In 30% of these, that activity was higher before salience was reduced by adding stimuli. The mean magnitude reduction was 16%. We then determined whether the shifting RFs were more frequent in the central visual field, which would be expected if vision across saccades were only stabilized for the visual field near the fovea. We found no evidence of any skewing of the frequency of shifting receptive fields (or the effects of salience) toward the central visual field. We conclude that the salience of the FF stimulus makes a substantial contribution to the magnitude of FF activity in FEF. In so far as FF activity contributes to visual stability, the salience of the stimulus is probably more important than the region of the visual field in which it falls for determining which objects remain perceptually stable across saccades.  相似文献   

6.
1. We studied the activity of single neurons in the monkey frontal eye fields during oculomotor tasks designed to assess the activity of these neurons when there was a dissonance between the spatial location of a target and its position on the retina. 2. Neurons with presaccadic activity were first studied to determine their receptive or movement fields and to classify them as visual, visuomovement, or movement cells with the use of the criteria described previously (Bruce and Goldberg 1985). The neurons were then studied by the use of double-step tasks that dissociated the retinal coordinates of visual targets from the dimensions of saccadic eye movements necessary to acquire those targets. These tasks required that the monkeys make two successive saccades to follow two sequentially flashed targets. Because the second target disappeared before the first saccade occurred, the dimensions of the second saccade could not be based solely on the retinal coordinates of the target but also depended on the dimensions of the first saccade. We used two versions of the double-step task. In one version neither target appeared in the cell's receptive or movement field, but the second eye movement was the optimum amplitude and direction for the cell (right-EM/wrong-RF task). In the other the second stimulus appeared in the cell's receptive field, but neither eye movement was appropriate for the cell (wrong-EM/right-RF task). 3. Most frontal-eye-field cells discharged in the right-EM/wrong-RF version of the double-step task. Their discharge began after the first saccade and continued until the second saccade was made. They usually discharged even on occasional trials in which the monkey failed to make the second saccade. They discharged much less, or not at all, in the wrong-EM/right-RF version of the double-step paradigm. Thus most presaccadic cells in the frontal eye fields were tuned to the dimensions of saccadic eye movements rather than to the coordinates of retinal stimulation. 4. Eleven movement cells (including 1 which also had independent postsaccadic activity for saccades opposite its presaccadic movement field) were studied, and all had significant activity in the right-EM/wrong-RF task. 5. Almost all (28/32) visuomovement cells, including 12 with independent postsaccadic activity, discharged in the right-EM/wrong-RF task. None of the four that failed had independent postsaccadic activity. 6. The majority (26/40) of visual cells were responsive in the right-EM/wrong-RF task.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
 The macaque frontal eye field (FEF) is involved in the generation of saccadic eye movements and fixations. To better understand the role of the FEF, we reversibly inactivated a portion of it while a monkey made saccades and fixations in response to visual stimuli. Lidocaine was infused into a FEF and neural inactivation was monitored with a nearby microelectrode. We used two saccadic tasks. In the delay task, a target was presented and then extinguished, but the monkey was not allowed to make a saccade to its location until a cue to move was given. In the step task, the monkey was allowed to look at a target as soon as it appeared. During FEF inactivation, monkeys were severely impaired at making saccades to locations of extinguished contralateral targets in the delay task. They were similarly impaired at making saccades to locations of contralateral targets in the step task if the target was flashed for ≤100 ms, such that it was gone before the saccade was initiated. Deficits included increases in saccadic latency, increases in saccadic error, and increases in the frequency of trials in which a saccade was not made. We varied the initial fixation location and found that the impairment specifically affected contraversive saccades rather than affecting all saccades made into head-centered contralateral space. Monkeys were impaired only slightly at making saccades to contralateral targets in the step task if the target duration was 1000 ms, such that the target was present during the saccade: latency increased, but increases in saccadic error were mild and increases in the frequency of trials in which a saccade was not made were insignificant. During FEF inactivation there usually was a direct correlation between the latency and the error of saccades made in response to contralateral targets. In the delay task, FEF inactivation increased the frequency of making premature saccades to ipsilateral targets. FEF inactivation had inconsistent and mild effects on saccadic peak velocity. FEF inactivation caused impairments in the ability to fixate lights steadily in contralateral space. FEF inactivation always caused an ipsiversive deviation of the eyes in darkness. In summary, our results suggest that the FEF plays major roles in (1) generating contraversive saccades to locations of extinguished or flashed targets, (2) maintaining contralateral fixations, and (3) suppressing inappropriate ipsiversive saccades. Received: 2 February 1996 / Accepted: 26 February 1997  相似文献   

8.
Visual and oculomotor functions of monkey subthalamic nucleus.   总被引:7,自引:0,他引:7  
1. Single-unit recordings were obtained from the subthalamic nuclei of three monkeys trained to perform a series of visuooculomotor tasks. The monkeys were trained to fixate on a spot of light on the screen (fixation task). When the spot was turned off and a target spot came on, they were required to fixate on the target quickly by making a saccade. Visually guided saccades were elicited when the target came on without a time gap (saccade task). Memory-guided saccades were elicited by delivering a brief cue stimulus while the monkey was fixating; after a delay, the fixation spot was turned off and the monkey made a saccade to the remembered target (delayed saccade task). 2. Of 265 neurons tested, 95 showed spike activity that was related to some aspects of the visuooculomotor tasks, whereas 66 neurons responded to active or passive limb or body movements. The task-related activities were classified into the following categories: eye fixation-related, saccade-related, visual stimulus-related, target- and reward-related, and lever release-related. 3. Activity related to eye fixation (n = 22) consisted of a sustained spike discharge that occurred while the animal was fixating on a target light during the tasks. The activity increased after the animal started fixating on the target and abruptly ceased when the target went off. The activity was unrelated to eye position. It was not elicited during eye fixation outside the tasks. The activity decreased when the target spot was removed. 4. Activity related to saccades (n = 22) consisted of a phasic increase in spike frequency that was time locked with a saccade made during the tasks. The greatest increases occurred predominantly after saccade onset. This activity usually was unrelated to spontaneous saccades made outside the task. The changes in activity typically were optimal in one direction, generally toward the contralateral side. 5. Visual responses (n = 14) consisted of a phasic excitation in response to a visual probe stimulus or target. Response latencies usually were 70-120 ms. The receptive fields generally were centered in the contralateral hemifield, sometimes extending into the ipsilateral field. The receptive fields included the foveal region in seven neurons; most of these neurons responded best to parafoveal stimulation. Peripheral stimuli sometimes suppressed the activity of visually responsive neurons. 6. Activity related to target and reward (n = 29) consisted of sustained spike discharge that occurred only when the monkey could expect a reward by detecting the dimming of the light spot that he was fixating.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Subjects were required to make a saccade to a target appearing randomly 4° to the left or right of the current fixation position (1280 trials per experiment). Location cues were used to direct visual attention and start saccade preparation to one of the two locations before target onset. When the cue indicated the target location (valid trials), the generation of express saccades (visually guided saccades with latencies around 100 ms) was strongly facilitated. When the opposite location was cued (invalid trials), express saccades were abolished and replaced by a population of mainly fast-regular saccades (latencies around 150 ms). This was found with a peripheral cue independently of whether the fixation point was removed before target onset (gap condition; experiment 1) or remained on throughout the trial (overlap condition; experiment 2). The same pattern also was observed with a central cue that did not involve any visual stimulation at a peripheral location (experiment 3). In the case where the primary saccade was executed in response to the cue and the target appeared at the opposite location, continuous amplitude transition functions were observed: starting at about 60–70 ms from target onset onward, the amplitude of the cue-elicited saccades continuously decreased from 4° to values below 1°. The results are explained by a fixation-gating model, according to which the antagonism between fixation and saccade activity gives rise to multimodal distributions of saccade latencies. It is argued that allocation of visual attention and saccade preparation to one location entails a successive disengagement of the fixation system controlling saccade preparation within the hemifield to which the saccade is prepared and a partial engagement of the opposite fixation system.  相似文献   

10.
Experiments on visual attention have employed both physical cues and verbal instructions to enable subjects to allocate attention at a location that becomes relevant within a perceptual or motor task some time later (cue lead time, CLT). In this study we have used valid visual peripheral cues (CLT between 100 and 700 ms) to indicate the direction and location of the next saccade. A cue is considered valid or invalid if its meaning with respect to the next saccade is correct or incorrect. A cue is called an anti- or pro-cue if the side of its presentation is opposite to or the same as the direction of the saccade required on a given trial. Correspondingly, a saccade is called an anti- or pro-saccade if it is directed to the side opposite to or the same as the stimulus presentation. A condition in which the cue and the stimulus are presented on opposite sides provides a simple way of dissociating voluntary attention allocation from automatic orienting. This paper considers the anti-cue pro-saccade task: the subjects were instructed to use the cue to direct attention to the opposite side, i.e. the location, where on valid trials the saccade target would occur. In the companion paper we have used the same physical condition, but we have reversed the instructions as to saccade direction and we have reversed the meaning of the cue, i.e. we designed a pro-cue anti-saccade task. In this first paper, the saccadic reaction times (SRTs) of pro-saccades of five adult subjects were measured in the gap paradigm (fixation point offset precedes target onset by 200 ms). With a CLT of 100 ms, valid anti-cues reduced the number of express saccades (i.e. saccades with SRTs in the range 80–120 ms) significantly compared with the control values (no cues). Valid anti-cues with increasingly long CLTs (100–700 ms) resulted in an increasing incidence of anticipatory saccades and saccades with longer SRTs (more than 120 ms), while the frequency of express saccades remained below the control value. When cue and saccade target were dissociated in location or in both location and direction, the effects of the cueing revealed a much lower spatial selectivity as compared to the effects that have been described for voluntary attention allocation by means of central cues. The results suggest that voluntary allocation of attention and cue-induced automatic orienting not only have different time courses but also have opposite effects on the generation of express saccades, and different spatial selectivities. A possible neuronal basis of these results is discussed considering related findings from electrophysiological studies in monkeys. Received: 27 March 1997 / Accepted: 17 December 1997  相似文献   

11.
Primate frontal eye fields. I. Single neurons discharging before saccades   总被引:25,自引:0,他引:25  
We studied the activity of single neurons in the frontal eye fields of awake macaque monkeys trained to perform several oculomotor tasks. Fifty-four percent of neurons discharged before visually guided saccades. Three different types of presaccadic activity were observed: visual, movement, and anticipatory. Visual activity occurred in response to visual stimuli whether or not the monkey made saccades. Movement activity preceded purposive saccades, even those made without visual targets. Anticipatory activity preceded even the cue to make a saccade if the monkey could reliably predict what saccade he had to make. These three different activities were found in different presaccadic cells in different proportions. Forty percent of presaccadic cells had visual activity (visual cells) but no movement activity. For about half of the visual cells the response was enhanced if the monkey made saccades to the receptive-field stimulus, but there was no discharge before similar saccades made without visual targets. Twenty percent of presaccadic neurons discharged as briskly before purposive saccades made without a visual target as they did before visually guided saccades, and had weak or absent visual responses. These cells were defined as movement cells. Movement cells discharged much less or not at all before saccades made spontaneously without a task requirement or an overt visual target. The remaining presaccadic neurons (40%) had both visual and movement activity (visuomovement cells). They discharged most briskly before visually guided eye movements, but also discharged before purposive eye movements made in darkness and responded to visual stimuli in the absence of saccades. There was a continuum of visuomovement cells, from cells in which visual activity predominated to cells in which movement activity predominated. This continuum suggests that although visual cells are quite distinct from movement cells, the division of cell types into three classes may be only a heuristic means of describing the processing flow from visual input to eye-movement output. Twenty percent of visuomovement and movement cells, but fewer than 2% of visual cells, had anticipatory activity. Only one cell had anticipatory activity as its sole response. When the saccade was delayed relative to the target onset, visual cells responded to the target appearance, movement cells discharged before the saccade, and visuomovement cells discharged in different ways during the delay, usually with some discharge following the target and an increase in rate immediately before the saccade. Presaccadic neurons of all types were actively suppressed following a saccade into their response fields.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Previous studies of visually responsive neurons in the frontal eye fields have identified a selection process preceding saccades during visual search. The goal of this experiment was to determine whether the selection process corresponds to the selection of a conspicuous stimulus or to preparation of the next saccade. This was accomplished with the use of a novel task, called search-step, in which the target of a singleton visual search array switches location with a distracter on random trials. The target step trials created a condition in which the same stimulus yielded saccades either toward or away from the target. Visually responsive neurons in frontal eye field selected the current location of the conspicuous target even when gaze shifted to the location of a distractor. This dissociation demonstrates that the selection process manifest in visual neurons in the frontal eye field may be an explicit interpretation of the image and not an obligatory saccade command.  相似文献   

13.
When the eyes fixate at a point in a visual scene, small saccades rapidly shift the image on the retina. The effect of these microsaccades on the latency of subsequent large-scale saccades may be twofold. First, microsaccades are associated with an enhancement of visual perception. Their occurrence during saccade target perception could, thus, decrease saccade latencies. Second, microsaccades are likely to indicate activity in fixation-related oculomotor neurons. These represent competitors to saccade-related cells in the interplay of gaze holding and shifting. Consequently, an increase in saccade latencies would be expected after microsaccades. Here, we present evidence for both aspects of microsaccadic impact on saccade latency. In a delayed response task, participants made saccades to visible or memorized targets. First, microsaccade occurrence up to 50 ms before target disappearance correlated with 18 ms (or 8%) faster saccades to memorized targets. Second, if microsaccades occurred shortly (i.e., <150 ms) before a saccade was required, mean saccadic reaction time in visual and memory trials was increased by about 40 ms (or 16%). Hence, microsaccades can have opposite consequences for saccade latencies, pointing at a differential role of these fixational eye movements in the preparation of saccade motor programs.  相似文献   

14.
Gaze-evoked blinks are contractions of the orbicularis oculi (OO)-the lid closing muscle-occurring during rapid movements of the head and eyes and result from a common drive to the gaze and blink motor systems. However, blinks occurring during shifts of gaze are often suppressed when the gaze shift is made to an important visual stimulus, suggesting that the visual system can modulate the occurrence of these blinks. In head-stabilized, human subjects, we tested the hypothesis that the presence of a visual stimulus was sufficient, but not necessary, to modulate OO EMG (OOemg) activity during saccadic eye movements. Rapid, reorienting movements of the eyes (saccades) were made to visual targets that remained illuminated (visually guided trials) or were briefly flashed (memory-guided trials) at different amplitudes along the horizontal meridian. We measured OOemg activity and found that the magnitude and probability of OOemg activity occurrence was reduced when a saccade was made to the memory of the spatial location as well as to the actual visual stimulus. The reduced OOemg activity occurred only when the location of the target was previously cued. OOemg activity occurred reliably with spontaneous saccades that were made to locations with no explicit visual stimulus, generally, back to the fixation location. Thus the modulation of gaze-evoked OOemg activity does not depend on the presence of visual information per se, but rather, results from an extraretinal signal.  相似文献   

15.
Neuronal activity in macaque supplementary eye field (SEF) is enhanced during performance of the antisaccade task. This could be related to the selection of targets by a difficult rule (move to a location diametrically opposite the cue) or to conflict between the automatic tendency to look at the cue and the voluntary intention to look away. To distinguish between rule- and conflict-based mechanisms of enhancement, we monitored neuronal activity in the SEF during performance of a delayed response task in which monkeys selected saccade targets in response to peripheral visual cues. In spatial trials, the monkey had to select as target the location marked by the cue. In color trials, the monkey had to select as target the location associated with the color of the cue. 'Color-congruent' trials resembled spatial trials in that saccades were directed to the location occupied by the cue. Nevertheless, many SEF neurons were sensitive to the rule being used, with the majority firing more strongly under the color-rule condition. 'Color-incongruent' trials resembled 'color-congruent' trials in that a color rule guided target selection. Nevertheless, many SEF neurons were sensitive to the spatial relation between cue and saccade, with the majority firing more strongly on trials in which they were incongruent. We conclude that neuronal activity in the SEF is enhanced in connection both with the use of a more difficult rule and with conflict.  相似文献   

16.
Neurons in both the lateral intraparietal area (LIP) of the monkey parietal cortex and the intermediate layers of the superior colliculus (SC) are activated well in advance of the initiation of saccadic eye movements. To determine whether there is a progression in the covert processing for saccades from area LIP to SC, we systematically compared the discharge properties of LIP output neurons identified by antidromic activation with those of SC neurons collected from the same monkeys. First, we compared activity patterns during a delayed saccade task and found that LIP and SC neurons showed an extensive overlap in their responses to visual stimuli and in their sustained activity during the delay period. The saccade activity of LIP neurons was, however, remarkably weaker than that of SC neurons and never occurred without any preceding delay activity. Second, we assessed the dependence of LIP and SC activity on the presence of a visual stimulus by contrasting their activity in delayed saccade trials in which the presentation of the visual stimulus was either sustained (visual trials) or brief (memory trials). Both the delay and the presaccadic activity levels of the LIP neuronal sample significantly depended on the sustained presence of the visual stimulus, whereas those of the SC neuronal sample did not. Third, we examined how the LIP and SC delay activity relates to the future production of a saccade using a delayed GO/NOGO saccade task, in which a change in color of the fixation stimulus instructed the monkey either to make a saccade to a peripheral visual stimulus or to withhold its response and maintain fixation. The average delay activity of both LIP and SC neuronal samples significantly increased by the advance instruction to make a saccade, but LIP neurons were significantly less dependent on the response instruction than SC neurons, and only a minority of LIP neurons was significantly modulated. Thus despite some overlap in their discharge properties, the neurons in the SC intermediate layers showed a greater independence from sustained visual stimulation and a tighter relationship to the production of an impending saccade than the LIP neurons supplying inputs to the SC. Rather than representing the transmission of one processing stage in parietal cortex area LIP to a subsequent processing stage in SC, the differences in neuronal activity that we observed suggest instead a progressive evolution in the neuronal processing for saccades.  相似文献   

17.
We report on our efforts to establish an animal model for the development and testing of a cortical visual prostheses. One-hundred-fifty-two electrodes were implanted in the primary visual cortex of a rhesus monkey. The electrodes were made from iridium with an activated iridium oxide film, which has a large charge capacity for a given surface area, and insulated with parylene-C. One-hundred-fourteen electrodes were functional after implantation. The activity of small (2-3) neuronal clusters was first recorded to map the visually responsive region corresponding to each electrode. The animal was then trained in a memory (delayed) saccade task, first with a visual target, then to a target defined by direct cortical stimulation with coordinates specified by the stimulating electrode's mapped receptive field. The SD of saccade endpoints was approximately 2.5 larger for electrically stimulated versus visual saccades; nevertheless, when trial-to-trial scatter was averaged out, the correlation between saccade end points and receptive field locations was highly significant and approached unity after several months of training. Five electrodes were left unused until the monkey was fully trained; when these were introduced, the receptive field-saccade correlations were high on the first day of use (R = 0.85, P = 0.03 for angle, R = 0.98, P < 0.001 for eccentricity), indicating that the monkey had not learned to perform the task empirically by memorizing reward zones. The results of this experiment suggest the potential for rigorous behavioral testing of cortical visual prostheses in the macaque.  相似文献   

18.
Summary Saslow (1967) and Fischer and Ramsperger (1984) found that saccadic reaction time (SRT) depends on the interval between the fixation point offset and the target onset. Using a continuously visible fixation point, we asked whether a similar function would be obtained if subjects attended to a peripherally viewed point extinguished at variable intervals before or after the target onset. The interval was varied between -500ms (i.e., attention stimulus offset after saccade target onset = overlap trials) and 500ms (i.e., attention stimulus offset before saccade target onset = gap trials). The results show a constant mean SRT of about 240 ms for overlap trials, and a U-shaped function with a minimum of 140 ms, at a gap duration of 200 ms, for gap trials. These findings suggest that saccadic latencies do not depend on the cessation of fixation per se, but rather on the disengagement of attention from any location in the visual field. The time required for subjects to disengage their attention is approximately 100 ms. This disengaged state of attention — during which short latency (express) saccades can be made — can be sustained only for a gap duration of 300 ms. At longer gap durations mean SRTs increase again.  相似文献   

19.
In programming motor acts, the brain must consider both internal and external noise sources: inherent variation in sensory estimates and changes within the environment. An interesting question in motor control is how reliable responses can be programmed in the face of noise and how these two noise sources interact. We study this by investigating the generation of sequences of predictive saccades to visual targets. First, eight normal subjects tracked targets that alternated at a pacing frequency (0.9 Hz) that promoted predictive behavior, for 300 trials. When tracking this perfectly periodic stimulus, there was variability in the timing of the saccades (intersaccade intervals) that was distributed around the interval of the stimulus (556 ms). We used this inherent variability to set the timing of subsequent stimuli; subjects completed three additional sessions in which the variance of the stimulus timing (the interstimulus intervals) had the same (1.0 SD), less (0.5 SD), or more (2.0 SD) variability than the subject displayed when tracking the perfectly periodic stimulus. Despite changes in stimulus timing variability, variance of the response timing (intersaccade intervals) was equal to the variance of the stimulus plus "inherent variance" (response variance when tracking a perfectly periodic stimulus). Examining the correlations between saccade latency and interstimulus interval, this relationship is interpreted as a tradeoff between reliance on previous saccade performance (intertrial correlations) and reliance on the current stimulus.  相似文献   

20.
The prospect of reward evoked by external stimuli is a central element of goal-oriented behavior. To elucidate behavioral effects of reward expectation on saccade latency, we employed a visually guided saccade task with asymmetrical reward schedule. The monkey had to make an immediate saccade to a peripheral visual target in every trial, but was rewarded for a correct saccade to only one of four possible target positions. Reward availability was predictable on the basis of the spatial position of the target throughout a daily session. Compared with the condition where all positions were rewarded with a smaller amount, the mean saccade latency in the asymmetrical reward schedule was significantly shorter when the saccade was made toward the position associated with reward than when it was directed to no-reward positions. Furthermore, a divergence-point analysis on cumulative latency distributions showed that the expectation of reward facilitated saccades at all latency ranges. In contrast, the expected lack of reward delayed the initiation of saccades with latencies longer than about 200 ms, irrespective of whether the saccade was made to a position orthogonal or opposite to the reward position. For saccades with latencies of more than approximately 240 ms, an additional delay was observed when the saccade was made to a position opposite, as compared to orthogonal, to the reward position. These results suggest that the facilitation by predictive reward is mediated by a preparatory process that is location-specific, whereas the inhibition by the absence of reward takes about 200 ms after the target onset to become effective and is initially location nonspecific but turns location-specific over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号