首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diminished activity within the prefrontal cortex (PFC) has been associated with many of the cognitive deficits that are observed in schizophrenia. It has been hypothesized that antipsychotic drugs (APDs) used to treat schizophrenia restore normal activity by antagonizing the dopamine (DA) D2 receptor, which is also known to modulate key ionic currents in the PFC. However, the hypothesis that an under-active cortical DA system is responsible for schizophrenic symptoms has been challenged by evidence that newer atypical APDs are weak antagonists at the D2 receptor but potent antagonists at the serotonin (5-HT) 2A receptor . This review examines how DA and 5-HT modulate cortical activity and how they may interact in ways that are relevant to schizophrenia. It is concluded that although D2 receptor antagonism remains a critical factor in restoring impaired cortical activity, effects on 5-HT receptors may act in a synergistic manner on NMDA and GABA currents to potentiate antipsychotic actions in the PFC.  相似文献   

2.
Many studies suggest that the 5-HT6 receptors are involved, along with other 5-HT receptors, in the pathophysiology and pharmacotherapy of schizophrenia. It is a putative therapeutic target of atypical antipsychotic drugs, notably clozapine, as well as some other psychotropic agents. Preferential potentiation of dopamine (DA) efflux in the medial prefrontal cortex (mPFC) and hippocampus (HIP) has been suggested to contribute to the ability of atypical antipsychotic drugs (APDs), e.g. clozapine, risperidone, olanzapine and ziprasidone, to improve cognitive function in schizophrenia. The present study demonstrated that SB-399885, a selective 5-HT6 receptor antagonist, at doses of 3 and 10 mg/kg, had no effect on cortical DA release in freely moving rats. However, both doses of SB-399885 slightly but significantly increased DA release in the HIP. Of particular interest, SB-399885, 3 mg/kg, significantly potentiated the ability of a typical antipsychotic drug haloperidol, a D2 receptor antagonist, at a dose of 0.1 mg/kg, to increase DA release in the HIP but not the mPFC. The atypical antipsychotic drug risperidone, a multireceptor antagonist, which lacks 5-HT6 receptor antagonist properties, at doses of 0.1, 0.3 and 1.0 mg/kg, produced a bell-shaped dose response effect on DA efflux in the mPFC and HIP. SB-399885 potentiated risperidone (1.0 mg/kg)-induced DA efflux in both regions. The increase in the HIP, but not the mPFC, DA efflux by 0.3 mg/kg risperidone was also potentiated by SB-399885, 3 mg/kg. These results suggest that the combined blockade of 5-HT6 and D2 receptors may contribute to the potentiation of haloperidol- and risperidone-induced DA efflux in the mPFC or HIP. The present data provides additional evidence in support of a possible therapeutic role for 5-HT6 receptor antagonism, as an addition on therapy, to enhance cognitive function in schizophrenia.  相似文献   

3.
BACKGROUND: Ziprasidone (Zeldox) is a novel antipsychotic with a unique combination of antagonist activities at monoaminergic receptors and transporters and potent agonist activity at serotonin 5-HT(1A) receptors. 5-HT(1A) receptor agonism may be an important feature in ziprasidone's clinical actions because 5-HT(1A) agonists increase cortical dopamine release, which may underlie efficacy against negative symptoms and reduce dopamine D(2) antagonist-induced extrapyramidal side effects. This study investigated the in vivo 5-HT(1A) agonist activity of ziprasidone by measuring the contribution of 5-HT(1A) receptor activation to the ziprasidone-induced cortical dopamine release in rats. METHODS: Effects on dopamine release were measured by microdialysis in prefrontal cortex and striatum. The role of 5-HT(1A) receptor activation was estimated by assessing the sensitivity of the response to pretreatment with the 5-HT(1A) antagonist, WAY-100635. For comparison, the D(2)/5-HT(2A) antagonists clozapine and olanzapine, the D(2) antagonist haloperidol, the 5-HT(2A) antagonist MDL 100,907 and the 5-HT(1A) agonist 8-OHDPAT were included. RESULTS: Low doses (<3.2 mg/kg) of ziprasidone, clozapine, and olanzapine increased dopamine release to approximately the same extent in prefrontal cortex as in striatum, but higher doses (> or =3.2 mg/kg) resulted in an increasingly preferential effect on cortical dopamine release. The 5-HT(1A) agonist 8-OHDPAT produced a robust increase in cortical dopamine (DA) release without affecting striatal DA release. In contrast, the D(2) antagonist haloperidol selectively increased striatal DA release, whereas the 5-HT(2A) antagonist MDL 100,907 had no effect on cortical or striatal DA release. Prior administration of WAY-100635 completely blocked the cortical DA increase produced by 8-OHDPAT and significantly attenuated the ziprasidone- and clozapine-induced cortical DA increase. WAY-100635 pretreatment had no effect on the olanzapine-induced DA increase. CONCLUSIONS: The preferential increase in DA release in rat prefrontal cortex produced by ziprasidone is mediated by 5-HT(1A) receptor activation. This result extends and confirms other in vitro and in vivo data suggesting that ziprasidone, like clozapine, acts as a 5-HT(1A) receptor agonist in vivo, which may contribute to its activity as an antipsychotic with efficacy against negative symptoms and a low extrapyramidal side effect liability.  相似文献   

4.
Previous research has suggested that serotonin 5-HT(2A) receptors modulate the functioning of the mesocortical dopamine (DA) pathway. However, the specific role of 5-HT(2A) receptors localized within the medial prefrontal cortex (mPFC) is not known. The present study employed in vivo microdialysis to examine the role of this receptor in the modulation of basal and K(+)-stimulated (Ca(2+)-dependent) DA release. The selective 5-HT(2A) antagonist M100,907 was infused directly into the mPFC of conscious rats. This resulted in a concentration-dependent blockade of K(+)-stimulated DA release. Intracortical application of M100,907 also blocked increases in DA release produced by the systemic administration of the 5-HT(2A/2C) agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). These findings demonstrate that local 5-HT(2A) antagonism has an inhibitory effect on stimulated, Ca(2+)-dependent DA release. They suggest that cortical 5-HT(2A) receptors potentiate the phasic release of mesocortical DA.  相似文献   

5.
The mechanism of action of novel antipsychotic drugs.   总被引:5,自引:0,他引:5  
It is no longer tenable to attribute all the antipsychotic action of antipsychotic drugs to dopamine (DA) D2 receptor blockade and subsequent development of depolarization inactivation of the mesolimbic or mesocortical DA neurons. The chief evidence for this position is that clozapine (CLOZ) does not differ from typical antipsychotic drugs in these regards but is more effective than typical neuroleptic drugs. The mechanism of action of atypical antipsychotic drugs related to CLOZ may involve reduction of dopaminergic activity in the mesolimbic system by a variety of mechanisms, including D1 and D2 receptor blockade. Relatively higher affinity for the serotonin (5HT)2 receptor than for the D2 receptor may also be important to the action of CLOZ-like compounds. Enhanced DA release in the mesocortical system may be relevant to the effectiveness of these agents in treating negative symptoms. Several other classes of new agents alter the dopaminergic system by means of alternative mechanisms. Partial DA agonists may modulate DA neurotransmission more adequately than pure antagonists by producing a mix of direct agonist and antagonistic effects. DA autoreceptor agonists and 5HT3 antagonists appear to act by diminishing the release of DA from some, but not all, DA neurons. Substituted benzamides are "pure" D2 antagonists with some in vivo selectivity for limbic D2 over striatal D2 receptors. Highly selective D1 antagonists have been proposed to produce equivalent antipsychotic activity and fewer extrapyramidal symptoms than D2 antagonists. Antagonists of the recently identified D3 receptors are being sought. Excessive stimulation of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor, leading to neurotoxicity or diminished activation of this receptor, is the target of novel approaches to treating schizophrenia. Phencyclidine (PCP) antagonists that would activate the NMDA receptor and sigma receptor antagonists are of interest as antipsychotic agents. Therapeutic strategies for treating schizophrenia, schizophrenia-related disorders, and other psychoses will likely be genuinely diverse in the next decade.  相似文献   

6.
In the present study, we investigated the effects of various serotonin (5-HT) antagonists on 5-HT's action on medial prefrontal cortical cells (mPFc) using the techniques of single cell recording and microiontophoresis. The microiontophoretic application of 5-HT (10-80 nA) produced a current-dependent suppression of mPFc cell firing and this effect was blocked by the selective 5-HT3 receptor antagonists (+/-)-zacopride, ICS 205930 and granisetron at currents of 5-20 nA. Furthermore, the intravenous (i.v.) administration of (+/-)-zacopride (5-50 micrograms/kg) markedly attenuates the suppressive action of 5-HT on mPFc cell firing. In contrast, the microiontophoresis of 5-HT1 and 5-HT2 receptor antagonists such as (+/-)-pindolol, spiperone, metergoline, and ritanserin (10-20 nA) failed to block 5-HT's effect. In fact, in some cells, spiperone and ritanserin potentiated 5-HT's action and prolonged neuronal recovery. In addition, the intravenous administration of either ritanserin (5-2,000 micrograms/kg) or metergoline (4-2,400 micrograms/kg) failed to alter 5-HT's action. The electrical stimulation of the caudal linear raphe nucleus (CLi) suppressed the spontaneous activity of 83% of the mPFc cells tested by 45 +/- 2%. This suppression was significantly attenuated by the iontophoresis of granisetron (2.5-5 nA) but not by the 5-HT2 and 5-HT1C receptor antagonist ritanserin or the relatively selective 5-HT2 receptor antagonist (+)-MDL 11,939 (10-40 nA). However, the i.v. administration of ritanserin (0.5-1.5 mg/kg) or S-zacopride (0.1 mg/kg) significantly blocked the suppression of mPFc cell firing produced by CLi stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Ichikawa J  Dai J  Meltzer HY 《Brain research》2005,1049(2):182-190
Anticonvulsant mood stabilizers, e.g., valproic acid and carbamazepine, and atypical antipsychotic drugs (APDs), e.g., clozapine, quetiapine, olanzapine, risperidone, and ziprasidone, have been reported to preferentially increase dopamine (DA) release in rat medial prefrontal cortex (mPFC), an effect partially or fully inhibited by WAY100635, a selective 5-HT(1A) antagonist. These atypical APDs have themselves been reported to be effective mood stabilizers, although the importance of increased cortical DA release to mood stabilization has not been established. The purpose of the present study was to determine whether zonisamide, another anticonvulsant mood stabilizer, as well as lithium, a mood stabilizer without anticonvulsant properties, also increases prefrontal cortical DA release and, if so, whether this release is also inhibited by 5-HT(1A) antagonism. As with valproic acid and carbamazepine, zonisamide (12.5 and 25 mg/kg) increased DA release in the mPFC, but not the NAC, an increase abolished by WAY100635 (0.2 mg/kg). However, lithium (100 and 250 mg/kg) decreased DA release in the NAC, an effect also attenuated by WAY100635 (0.2 mg/kg). Lithium itself had no effect in the mPFC but the combination of WAY100635 (0.2 mg/kg) and lithium (100 and 250 mg/kg) markedly increased DA release in the mPFC. Furthermore, M100907 (0.1 mg/kg), a selective 5-HT(2A) antagonist, abolished this increase in DA release in the mPFC. These results indicate that not all mood-stabilizing agents but only those, which have anticonvulsant mood-stabilizing properties, increase DA release in the cortex, and that the effect is dependent upon 5-HT(1A) receptor stimulation. However, the combination of lithium and 5-HT(1A) blockade may result in excessive 5-HT(2A) receptor stimulation, relative to 5-HT(1A) receptor stimulation, both of which can increase prefrontal cortical DA release.  相似文献   

8.
Ichikawa J  Li Z  Dai J  Meltzer HY 《Brain research》2002,956(2):349-357
Preferential increases in both cortical dopamine (DA) and acetylcholine (ACh) release have been proposed to distinguish the atypical antipsychotic drugs (APDs) clozapine, olanzapine, risperidone and ziprasidone from typical APDs such as haloperidol. Although only clozapine and ziprasidone are directly acting 5-HT(1A) agonists, WAY100635, a selective 5-HT(1A) antagonist, partially attenuates these atypical APD-induced increases in cortical DA release that may be due to combined 5-HT(2A) and D(2) blockade. However, WAY100635 does not attenuate clozapine-induced cortical ACh release. The present study determined whether quetiapine, iloperidone and melperone, 5-HT(2A)/D(2) antagonist atypical APDs, also increase cortical DA and ACh release, and whether these effects are related to 5-HT(1A) agonism. Quetiapine (30 mg/kg), iloperidone (1-10 mg/kg), and melperone (3-10 mg/kg) increased DA and ACh release in the medial prefrontal cortex (mPFC). Iloperidone (10 mg/kg) and melperone (10 mg/kg), but not quetiapine (30 mg/kg), produced an equivalent or a smaller increase in DA release in the nucleus accumbens (NAC), respectively, compared to the mPFC, whereas none of them increased ACh release in the NAC. WAY100635 (0.2 mg/kg), which alone did not affect DA or ACh release, partially attenuated quetiapine (30 mg/kg)-, iloperidone (10 mg/kg)- and melperone (10 mg/kg)-induced DA release in the mPFC. WAY100635 also partially attenuated quetiapine (30 mg/kg)-induced ACh release in the mPFC, but not that induced by iloperidone (10 mg/kg) or melperone (10 mg/kg). These results indicate that quetiapine, iloperidone and melperone preferentially increase DA release in the mPFC, compared to the NAC via a 5-HT(1A)-related mechanism. However, 5-HT(1A) agonism may be important only for quetiapine-induced ACh release.  相似文献   

9.
In the rat, postsynaptic 5-hydroxytryptamine2A receptors medial prefrontal cortex control the activity of the serotonergic system through changes in the activity of pyramidal neurons projecting to the dorsal raphe nucleus. Here we extend these observations to mouse brain. The prefrontal cortex expresses abundant 5- hydroxytryptamine2A receptors, as assessed by immunohistochemistry, Western blots and in situ hybridization procedures. The application of the 5-hydroxytryptamine2A/2C agonist DOI (100 microm) by reverse dialysis in the medial prefrontal cortex doubled the local release of 5-hydroxytryptamine. This effect was reversed by coperfusion of tetrodotoxin, and by the selective 5-hydroxytryptamine2A receptor antagonist M100907, but not by the 5-hydroxytryptamine2C antagonist SB-242084. The effect of DOI was also reversed by prazosin (alpha1-adrenoceptor antagonist), BAY x 3702 (5-hydroxytryptamine1A receptor agonist), NBQX (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate/kainic acid antagonist) and 1S,3S-ACPD (mGluR II/III agonist), but not by dizocilpine (N-methyl-d-aspartate antagonist). alpha-Amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate mimicked the 5-hydroxytryptamine elevation produced by DOI, an effect also reversed by BAY x 3702. Likewise, the coperfusion of classical (chlorpromazine, haloperidol) and atypical antipsychotic drugs (clozapine, olanzapine) fully reversed the 5-hydroxytryptamine elevation induced by DOI. These observations suggest that DOI increases 5-hydroxytryptamine release in the mouse medial prefrontal cortex through the activation of local 5-hydroxytryptamine2A receptors by an impulse-dependent mechanism that involves/requires the activation of local alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate receptors. This effect is reversed by ligands of receptors present in the medial prefrontal cortex, possibly in pyramidal neurons, which are involved in the action of antipsychotic drugs. In particular, the reversal by classical antipsychotics may involve blockade of alpha1-adrenoceptors, whereas that of atypical antipsychotics may involve 5-hydroxytryptamine2A receptors and alpha1-adrenoceptors.  相似文献   

10.
Chronic administration of methamphetamine (METH) elicits progressive enhancement of locomotor activity known as behavioral sensitization. We have recently shown that chronic METH enhanced METH challenge-induced increase in 5-HT levels in the prefrontal cortex and that 5-HT(1A) receptor activation attenuated this neurochemical sensitization as well as behavioral sensitization. This study examined whether the nonselective 5-HT(2) receptor antagonist, ritanserin affects METH-induced behavioral and neurochemical sensitization in mice. Ritanserin at doses of 1 and 3 mg/kg inhibited the development and expression of METH-induced behavioral sensitization in a dose-dependent manner. Furthermore, chronic administration of ritanserin for a week attenuated the maintenance of behavioral sensitization, indicating the improvement of established behavioral sensitization. Microdialysis analysis showed that chronic ritanserin inhibited the neurochemical sensitization that chronic METH enhanced METH challenge-induced increase in extracellular 5-HT levels in the prefrontal cortex. Furthermore, acute ritanserin inhibited METH challenge-induced increase in extracellular 5-HT but not DA levels in the prefrontal cortex. These results suggest that 5-HT(2) receptors are involved in METH-induced hyperactivity and behavioral sensitization in mice.  相似文献   

11.
Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.  相似文献   

12.
Many studies of schizophrenic brains indicate the dysfunction of dopamine and glutamate systems in the prefrontal and frontal cortex. It seems that better understanding of mechanisms regulating functions of these neuronal cortical systems could contribute to creation of new drugs acting in the cortex selectively. This might be profitable in cognition of dysfunction and negative symptoms in schizophrenia. This article presents preclinical data concerning the role of 5-HT1A serotonin receptors in the modulation of cortical dopamine system and in psychotomimetic effects of non-competitive NMDA receptor antagonists. Neurochemical studies have shown that 5-HT1A receptor agonists increase dopamine release in the rat prefrontal cortex on the one hand, and they inhibit the augmentation of dopamine release induced by stress or amphetamine, on the other. However, the increase of dopamine release induced by non-competitive NMDA receptor antagonists is blocked by 5-HT1A receptor antagonists. Blockade of 5-HT1A receptors seems to be important also in reduction of most psychotomimetic effects induced by non-competitive NMDA antagonists both involving (locomotor hyperactivity, working memory impair) and not involving (sensorimotor gating deficits) dopamine mechanism. Thus, binding with 5-HT1A receptors can be an important site for the regulation of cortical dopamine system, both in physiological conditions and in disregulation of the system induced by stress, psychostimulants or psychotomimetics. On the other hand, 5-HT1A receptors modulate most of psychotomimetic effects of non-competitive NMDA receptor antagonists. The above results of preclinical investigations indicate that 5-HT1A receptor can be involved in the pathology of schizophrenia, what is partly confirmed by clinical postmortem studies of schizophrenic brains. These studies showed the increase of 5-HT1A receptor density in prefrontal and frontal cortex in schizophrenic brains. It also seems that 5-HT1A receptors might be a good target for the antipsychotic drugs. Although the clinical studies have demonstrated controversial data, maybe further studies using substances with selectivity to 5-HT1A receptors would help to determine more precisely the role of these receptors in pathology and pharmacotherapy of schizophrenia.  相似文献   

13.
Antipsychotic drugs (APD)s and anticonvulsant mood-stabilizers are now frequently used in combination with one another in treating both schizophrenia and bipolar disorder. We have recently reported that the atypical APDs, e.g. clozapine and risperidone, as well as the anticonvulsant mood-stabilizers, valproic acid (VPA), zonisamide, and carbamazepine, but not the typical APD haloperidol, increase dopamine (DA) release in rat medial prefrontal cortex (mPFC). The increased DA release was partially (atypical APDs) or completely (mood-stabilizers) blocked by the serotonin (5-HT)1A receptor antagonist WAY100635. Diminished prefrontal cortical DA activity may contribute to cognitive impairment in virtually all the patients with schizophrenia and, perhaps, bipolar disorder. Thus, the enhanced release of cortical DA by these agents may be beneficial in this regard. It is, therefore, of considerable interest to determine whether combined administration of these agents augments prefrontal cortical DA release, and if so, whether the increase is dependent upon 5-HT1A receptor activation. VPA (50 mg/kg), which was insufficient by itself to increase prefrontal cortical DA release, potentiated the ability of clozapine (20 mg/kg) and risperidone (1 mg/kg) to increase DA release in the mPFC, but not in the nucleus accumbens (NAC). VPA (50 mg/kg) also potentiated haloperidol (0.5 mg/kg)-induced DA release in the mPFC; this increase was completely abolished by WAY100635 (0.2 mg/kg). These results suggest that, in combination with VPA, both typical and atypical APDs produce greater increases in prefrontal cortical DA release than either type of drug alone via a mechanism dependent upon 5-HT(1A) receptor activation. Furthermore, they provide a strong rationale for testing for possible clinical synergism of an APD and anticonvulsant mood-stabilizer in improving the cognitive deficits present in patients with schizophrenia and bipolar disorder.  相似文献   

14.
Summary Clozapine can produce greater clinical improvement in both positive and negative symptoms than typical antipsychotic drugs in neuroleptic-resistant schizophrenic patients. The clinical response may occur rapidly in some patients but is delayed in others. Clozapine has also been reported to produce fewer parkinsonian symptoms, to involve a lower risk of producing tardive dyskinesia, and to produce no serum prolactin elevations in man. It seems likely that these effects are the result of a common biological mechanism or related mechanisms, rather than unrelated effects. Other atypical antipsychotic drugs, such as melperone and fluperlapine, share at least some of these properties. A relatively low affinity for the D-2 dopamine (DA) receptor and high affinity for the 5-HT2 receptor, producing a high 5-HT2/D-2 ratio, best distinguishes atypical antipsychotics like clozapine from typical antipsychotic drugs. Through its weak antagonist action on D-2 DA receptors and a potent inhibitory effect on 5-HT2 receptors, as well as its abiltiy to increase DA and 5-HT release, clozapine may be able to permit more normal dopaminergic function in the anterior pituitary, the mesostriatal, mesolimbic and mesocortical regions. The numerous advantages of clozapine over typical neuroleptics are consistent with the primary importance of DA to the pathophysiology of schizophrenia. The secondary but still significant role of 5-HT in the action of clozapine may either be direct or via the effect of 5-HT on dopaminergic mechanisms. Some aspects of schizophrenia could be due to a dysregulation of the interaction between serotonergic and dopaminergic neurotransmission.Parts of this article were presented on the occasion of the inauguration ceremony of the Department of Psychiatry of the University of Mainz on April 2 and 3, 1987  相似文献   

15.
The present study was designed to investigate the distribution of serotonin 5-HT1A receptor protein (5-HT1A-immunoreactivity) and its localization within cortical pyramidal neurons of the rat cingulate cortex. This experimental direction was inspired by recent data showing the role of 5-HT1A receptors in the pathology of schizophrenia, and in the mechanism of action of novel antipsychotic drugs as well as by the importance of the cingulate cortex in regulation of cognitive functions. It was found that 5-HT1A-immunoreactivity was densely distributed in neuronal eyelash-like elements, and their size, shape and spatial orientation may suggest concentration of 5-HT1A-immunopositive material in the proximal fragments of axons of cortical neurons. Moreover, it was observed that these 5-HT1A-immunopositive fragments were present predominately on proximal fragments of axons of pyramidal neurons, which was evidenced by double labeling experiments using glutamate and non-phosphorylated neurofilament H as markers of the cortical pyramidal cells. The 5-HT1A receptor immunoreactivity was localized distally to the inhibitory GABAergic terminals of chandelier and basket cells surrounding the pyramidal cell bodies and occasionally surrounding short initial segment of axonal hillock of pyramidal neurons. These anatomical data indicate that 5-HT1A receptors might control the excitability and propagation of information transmitted by the pyramidal cells. Moreover, our results indicate that drugs operating via 5-HT1A receptors in the cingulate cortex might control from this level the release of glutamate in the subcortical structures. Finally, the 5-HT1A receptors present in the cingulate cortex, as demonstrated in the present study, may constitute an important target for drugs used to repair dysfunction of glutamate neurotransmission, which is observed for example in schizophrenia.  相似文献   

16.
Changes in dopamine (DA) D(1), D(2), D(3), and D(4) receptors and serotonin 5-HT(1A) and 5-HT(2A) receptors in rat forebrain regions were autoradiographically quantified after continuous infusion of JL 13 [(5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine fumarate] for 28 days with osmotic minipumps and compared with the effects of other typical (fluphenazine) and atypical (clozapine, olanzapine, and risperidone) antipsychotic drugs from previous studies. Similar to other typical and atypical antipsychotics, JL 13 increased labeling of D(2) receptors in medial prefrontal cortex (MPC) and hippocampus (HIP) and D(4) receptors in nucleus accumbens (NAc), caudate-putamen (CPu), and HIP. In addition, JL 13 increased 5-HT(1A) and decreased 5-HT(2A) receptors in MPC and dorsolateral frontal cortex (DFC), an effect shared by atypical antipsychotics, and may contribute to their psychopharmacological properties. Clozapine and JL 13, but not other antipsychotics, spared D(2) receptors in CPu, which may reflect their ability to induce minimal extrapyramidal side effects. In addition, JL 13 but not other typical and atypical antipsychotic drugs increased abundance of D(1) receptors in CPu and NAc. JL 13 as well as other antipsychotic agents did not alter levels of forebrain D(3) receptors. An atypical-like profile of JL 13 on DA and 5-HT receptor subtypes should encourage further development of this compound as a novel atypical antipsychotic drug.  相似文献   

17.
Intracellular recordings were made from pyramidal neurons in layers V and VI of the rat medial prefrontal cortex in slice preparations to investigate the effect of the serotonin 5-HT2A,2C receptor agonist (-)-1-2,5-dimethoxy-4-bromophenol-2-aminopropane (DOB) and 5-hydroxytryptamine (5-HT) on N-methyl-D-aspartate (NMDA)-induced responses. Bath application of either DOB or 5-HT [in the presence of antagonists to 5-HT1A, 5-HT3 and gamma-aminobutytric acid (GABA) receptors] produced a concentration-dependent biphasic modulation of the NMDA responses. They facilitated and inhibited NMDA responses at low (相似文献   

18.
1. Systemic administration of PCP (7.5 mg/kg, i.p.) produced a greater increase in extracellular DA levels in the mPFC than in the STR and NAC, as determined by in vivo microdialysis of awake, freely moving rats. Preferential activation by PCP of prefrontal DA neurons may be, at least in part, the basis for the pathophysiology of PCP-induced psychosis as well as schizophrenia. 2. Recent studies suggest a possible involvement of 5-HT2A receptors in the pathophysiology and treatment of schizophrenia. This study was designed to examine whether and how 5-HT2A receptors modulate PCP-induced DA release in the mPFC. 3. The 5-HT2A/2C receptor agonist (+/-)-DOI (2.5 mg/kg, but not 0.75 mg/kg, i.p.), administered 60 min prior to PCP, significantly attenuated the PCP-induced increase in extracellular DA levels. Pretreatment of the 5-HT2A/2C receptor antagonist ritanserin (1.0 and 5.0 mg/kg, i.p.), administered 60 min prior to PCP, did not influence the PCP-induced increase. When administered alone, neither DOI (2.5 mg/kg) nor ritanserin (1.0 mg/kg) affected basal extracellular DA levels in the mPFC. 4. The NMDA receptor antagonist MK-801 (1.0 mg/kg, i.p.) also increased extracellular DA levels in the mPFC, but this effect was unaffected by pretreatment with DOI (2.5 mg/kg). 5. These results suggest that the stimulation of 5-HT2A/2C receptors may inhibit DA release in the mPFC when it is facilitated by PCP. Other than the NMDA receptor-mediated mechanism may also be involved in the neurochemical interaction between 5-HT2A receptors and PCP in the mPFC.  相似文献   

19.
The atypical antipsychotic drugs (APDs) clozapine, olanzapine, risperidone, and ziprasidone preferentially increase dopamine (DA) release in rat medial prefrontal cortex (mPFC). These effects have been shown to depend upon potent 5-HT(2A) relative to weak D(2) antagonism, and 5-HT(1A) agonism as well. Atypical APDs also increase acetylcholine (ACh) release in the mPFC, but not the nucleus accumbens (NAC) or striatum (STR), whereas typical APDs such as haloperidol, S(-)-sulpiride and thioridazine do not produce either effect in the mPFC. This study examined the role of 5-HT(1A) agonism, 5-HT(2A) and D(2) antagonism, and the combination thereof, in the ability of clozapine to increase ACh release in rat mPFC. R(+)-8-OH-DPAT (0.2 mg/kg), a 5-HT(1A) agonist, WAY100635 (0.2-0.5 mg/kg), a 5-HT(1A) antagonist, and DOI (0.6-2.5 mg/kg), a 5-HT(2A/2C) agonist, increased ACh release in the mPFC, whereas M100907 (0.03-1 mg/kg), a 5-HT(2A) antagonist, did not. DOI (2.5 mg/kg) and M100907 (0.1 mg/kg) had no effect on ACh release in the NAC or STR. WAY100635 and M100907 inhibited the ability of R(+)-8-OH-DPAT and DOI, respectively, to increase ACh release in the mPFC. WAY100635, which inhibits clozapine-induced DA release in the mPFC, failed to inhibit clozapine (20 mg/kg)-induced ACh release in that region. Similarly, the combination of M100907 and haloperidol (0.1 mg/kg), which enhances DA release in the mPFC, failed to increase ACh release in that region. These results suggest that 5-HT(1A) agonism and 5-HT(2A) antagonism, as well as DA release, contribute minimally to the ability of clozapine, and perhaps other atypical APDs, to increase ACh release in the mPFC.  相似文献   

20.
Combined serotonin (5-HT)(2A) and dopamine (DA) D(2) blockade has been shown to contribute to the ability of atypical antipsychotic drugs (APDs) to increase DA release in rat medial prefrontal cortex (mPFC). We provide additional support for this hypothesis by examining the effect of the selective 5-HT(2A) antagonist M100907 plus haloperidol, a potent D(2) antagonist APD, on DA release in the mPFC and nucleus accumbens (NAC). Haloperidol (0.01-1.0 mg/kg) produced an inverted U-shaped increase in DA release in the mPFC, with a significant increase only at 0.1 mg/kg. Haloperidol (0.1 and 1.0 mg/kg) significantly increased DA release in the NAC. M100907 (0.1 mg/kg) by itself had no effect on DA release in either region. This dose of M100907 potentiated the ability of low (0.01-0.1 mg/kg), but not high dose (0.3-1.0 mg/kg) haloperidol to increase mPFC DA release, whereas it abolished the effect of both 0.1 and 1.0 mg/kg haloperidol on NAC DA release. These results suggest that the relatively higher ratio of 5-HT(2A) to D(2) antagonism may contribute to the potentiation of haloperidol-induced mPFC DA release, whereas 5-HT(2A) antagonism can diminish haloperidol-induced NAC DA release, even when combined with extensive D(2) antagonism, which may not be synergistic with 5-HT(2A) antagonism in the mPFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号