首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we determined the effects of dopamine receptor agonists and antagonists on basal and ethanol-modulated β-endorphin (β-EP) secretion from hypothalamic neurons in primary cultures. Treatment with various concentrations of dopamine D1 agonist SKF 38393 and D1 antagonist SCH 23390 did not affect basal IR-β-EP release. However, dopamine D2 receptor agonist LY 141865 reduced basal immunoreactive (IR)-β-EP release in a concentration dependent manner. D2 receptor antagonist, sulpiride, on the other hand, stimulated basal IR-β-EP release and blocked LY 141865-induced inhibition of IR-β-EP release in a concentration dependent manner. When the actions of these DA receptor agents on ethanol-modulated IR-β-EP release were studied, both D1 and D2 receptor agents failed to affect ethanol-modulated IR-β-EP release. These data suggest that the endogenous secretion of β-EP from hypothalamic neurons is under the influence of an inhibitory dopaminergic system involving the D2 receptor. Furthermore, ethanol's effects on β-EP secretion are not mediated by dopamine.  相似文献   

2.
Following 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal dopamine (DA) pathway, rat caudate-putamen (CPu) neurons are supersensitive to the inhibitory effects of both D1 and D2 dopamine (DA) receptor selective agonists. In addition, both the necessity of D1 receptor stimulation for D2 agonist-induced inhibition and the synergistic inhibitory effects of D1 and D2 agonists are abolished by denervation. The present study attempted to determine the relative roles of D1 and D2 DA receptors in the development of denervation supersensitivity to DA agonists and the "uncoupling" of functional interactions between the receptors following 6-OHDA lesions of the nigrostriatal DA pathway. Beginning on the day after an intraventricular 6-OHDA (or vehicle) injection, groups of rats received daily injections of either the selective D1 receptor agonist SKF 38393 (8.0 mg/kg, s.c.), the D2 agonist quinpirole (0.5 mg/kg, s.c.), or saline for 7 days. On the day following the last agonist injection, rats were anesthetized and prepared for extracellular single cell recording with iontophoretic drug administration. Daily administration of quinpirole selectively prevented the development of D2 receptor supersensitivity, whereas daily administration of SKF 38393 prevented the development of both D1 and D2 receptor supersensitivity. In addition, D1, but not D2, agonist treatment prevented the loss of synergistic inhibitory responses typically produced by 6-OHDA lesions. Behavioral observations revealed similar effects; daily injections of SKF 38393, but not quinpirole, prevented contralateral rotational responses to the mixed D1/D2 agonist apomorphine (1.0 mg/kg, s.c.) in rats with unilateral 6-OHDA lesions of the nigrostriatal pathway. After a 4-week withdrawal from repeated D1 agonist treatment, both supersensitive inhibitory responses of CPu neurons and contralateral rotations to apomorphine were evident, indicating that the preventative effects on DA receptor supersensitivity were not permanent. These findings indicate that continued agonist occupation of striatal D1 DA receptors following DA denervation not only prevents the development of D1 DA receptor supersensitivity but also exerts a similar regulation of D2 receptor sensitivity.  相似文献   

3.
Extracellular single-unit recording and microiontophoretic techniques were used to characterize the pharmacological properties of dopamine (DA) receptors within the rat nucleus accumbens (NAc), a forebrain structure that receives a dense innervation from mesolimbic DA-containing neurons (A10 DA neurons) located in the ventral tegmental area (VTA). Of the NAc neurons tested, 75% were inhibited by microiontophoretic administration of the selective D-2 receptor agonist, LY-141865, whereas 38% were inhibited by microiontophoretic administration of the selective D-1 receptor agonist, SKF-38393. Of the 30 NAc neurons that were tested with both of these agonists, nine were inhibited by both agonists, 11 were inhibited only by LY-141865, five were inhibited only by SKF-38393, and five were not affected by either of these compounds. The inhibitory effects of LY-141865 were blocked and reversed by either intravenous or iontophoretic administration of the selective D-2 antagonist (-)-sulpiride, which, however, failed to alter the inhibitory effects of SKF-38393. In contrast, the purportedly selective D-1 antagonist, SCH-23390, selectively blocked and reversed the inhibitory effects of SKF-38393, suggesting that the two agonists were producing their inhibitory effects via distinct DA receptors. Additional experiments indicated that intravenous administration of LY-141865 caused a biphasic increase/decrease in the activity of NAc neurons. The initial rate increase was apparently due to disinhibition since it was also shown that D-2 DA receptors located on A10 DA neurons exhibited a 3-10-fold greater sensitivity to LY-141865 and DA as compared to the NAc D-2 receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Possible functional interactions between D1 and D2 dopamine (DA) receptors were examined using extracellular single-cell recording with microiontophoretic application of selective D1 and D2 receptor agonists both postsynaptically, in the rat nucleus accumbens (NAc) and caudate-putamen (CPu), and presynaptically, at impulse-regulating somatodendritic DA autoreceptors in the ventral tegmental area (A10) and substantia nigra pars compacta (A9). In addition, synthesis-modulating nerve terminal DA autoreceptors were studied in both the CPu and NAc using the gamma-butyrolactone (GBL) neurochemical model of isolated nerve terminal autoreceptor function in vivo. In both the NAc and CPu, the inhibition of neurons produced by iontophoresis of the D2 receptor agonists quinpirole or RU-24213 was attenuated by acute DA depletion via the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (AMPT). However, during iontophoresis of the selective D1 DA receptor agonist SKF 38393, the inhibitory effects of the D2 agonists were again evident, suggesting that the attenuation of D2 agonist-induced inhibition was due to decreased D1 receptor activation. In contrast, the inhibitory effects produced by the non-selective D1/D2 agonist apomorphine or by SKF 38393 were unaffected by AMPT pretreatment. Thus, D1 receptor activation appears necessary for D2 receptor-mediated inhibition of NAc and CPu neurons, whereas D2 receptor activation is not required for the inhibition produced by D1 receptor stimulation. In contrast to postsynaptic D2 receptors, the ability of DA agonists to stimulate D2 DA autoreceptors was not altered by manipulations of D1 receptor occupation. Enhancing D1 receptor stimulation with SKF 38393 or reducing D1 receptor occupation with either the selective D1 receptor antagonist SCH 23390 or AMPT failed to alter the rate-inhibitory effect of i.v. quinpirole on A9 or A10 DA neurons. Similarly, iontophoresis of SKF 38393 failed to alter the inhibitory effects of iontophoretic quinpirole. SKF 38393 also failed to affect the inhibition of GBL-induced increases in DOPA accumulation (tyrosine hydroxylase activity) produced by quinpirole in either the NAc or CPu. Furthermore, reversal of GBL-induced increases in DOPA accumulation by apomorphine or quinpirole was unaffected by pretreatment with SCH 23390. Therefore, D1 receptor occupation appears to be necessary for the expression of the functional effects of postsynaptic D2 receptor stimulation but not presynaptic D2 DA autoreceptor stimulation.  相似文献   

5.
Orexin/hypocretin neurons in the lateral hypothalamus and adjacent perifornical area (LH/PFA) innervate midbrain dopamine (DA) neurons that project to corticolimbic sites and subserve psychostimulant-induced locomotor activity. However, it is not known whether dopamine neurons in turn regulate the activity of orexin cells. We examined the ability of dopamine agonists to activate orexin neurons in the rat, as reflected by induction of Fos. The mixed dopamine agonist apomorphine increased Fos expression in orexin cells, with a greater effect on orexin neurons located medial to the fornix. Both the selective D1-like agonist, A-77636, and the D2-like agonist, quinpirole, also induced Fos in orexin cells, suggesting that stimulation of either receptor subtype is sufficient to activate orexin neurons. Consistent with this finding, combined SCH 23390 (D1 antagonist)-haloperidol (D2 antagonist) pretreatment blocked apomorphine-induced activation of medial as well as lateral orexin neurons; in contrast, pretreatment with either the D1-like or D2-like antagonists alone did not attenuate apomorphine-induced activation of medial orexin cells. In situ hybridization histochemistry revealed that LH/PFA cells rarely express mRNAs encoding dopamine receptors, suggesting that orexin cells are transsynaptically activated by apomorphine. We therefore lesioned the nucleus accumbens, a site known to regulate orexin cells, but this treatment did not alter apomorphine-elicited activation of medial or lateral orexin neurons. Interestingly, apomorphine failed to activate orexin cells in isoflurane-anaesthetized animals. These data suggest that apomorphine-induced arousal but not accumbens-mediated hyperactivity is required for dopamine to transsynaptically activate orexin neurons.  相似文献   

6.
Extracellular recording techniques were combined with antidromic stimulation to examine the effects of C-terminal cholecystokinin (CCK) fragments and CCK antagonists on the activity of identified mesoaccumbens dopamine (MADA) neurons in chloral hydrate-anesthetized rats. These experiments were designed to determine the receptor selectivity of sulfated CCK octapeptide (CCK-8S) effects on MADA cells. Neither CCK tetrapeptide (CCK-4) nor unsulfated CCK octapeptide (CCK-8U) significantly altered MADA cell basal firing rate or responsiveness to the inhibitory effects of the D2 DA agonist quinpirole. As reported previously for ventral tegmental area DA cells, CCK-8S produced increases or decreases in the firing rate of most MADA cells sampled. CCK-8S also enhanced the sensitivity of MADA neurons to quinpirole-induced inhibition. This increase in sensitivity to quinpirole was blocked by pretreatment with the nonselective CCK receptor antagonist proglumide and the preferential CCK-A receptor antagonist CR 1409 but not by the preferential CCK-B receptor antagonist L-365,260. The inactivity of CCK-4 and CCK-8U in these tests and the results with the antagonists suggest that the effects of CCK-8S on MADA neuronal activity are mediated by CCK-A receptors.  相似文献   

7.
The present review focuses on the hypothesized D1/D2 dopamine (DA) receptor classification, originally based on the form of receptor coupling to adenylate cyclase activity. The pharmacological effects of compounds exhibiting putative selective agonist or antagonist profiles at those DA receptors positively coupled to adenylate cyclase activity (D1 DA receptors) are extensively reviewed. Comparisons are made with the effects of putative selective D2 DA receptor agonists and antagonists, and on the basis of this work, the DA receptor classification is critically evaluated. A variety of biochemical, behavioral, and electrophysiological evidence is presented which supports the view that D1 and D2 DA receptors can interact in both an opposing and synergistic fashion. Particular attention is focused on the possibility that D1 receptor stimulation is required to enable the expression of certain D2 receptor-mediated effects, and the functional consequences of this form of interaction are considered. A hypothetical model is presented which considers how both the opposing and enabling forms of interaction between D1 and D2 DA receptors can control behavioral expression. Finally, the clinical relevance of this work is discussed and the potential use of selective D1 receptor agonists and antagonists in the treatment of psychotic states and Parkinson's disease is considered.  相似文献   

8.
Extracellular single-unit recording techniques were used to determine the effects of morphine, administered either systematically (intravenous) or locally (microiontophoresis), on ventral tegmental area (A10) dopamine (DA) neuronal activity in animals pretreated with D1 (SCH 23390) or D2 (pimozide) DA receptor antagonists. In rats pretreated with the D2 antagonist pimozide, A10 DA neurons readily entered a state of apparent depolarization block in response to either i.v. or iontophoretically applied morphine. Whether the inactivation of DA neurons was induced by systemic or local morphine, it was reversed in 22 of 27 cases by iontophoretic administration of the inhibitory amino acid transmitter gamma-aminobutyric acid (GABA), suggesting depolarization block as the underlying mechanism. Pretreatment of rats with the D1 antagonist SCH 23390 did not significantly alter the tendency of A10 DA neurons to enter apparent depolarization block in response to morphine. These data support recent behavioral evidence suggesting that the combination of systemic pimozide and ventral tegmental area morphine can result in depolarization inactivation of the mesoaccumbens DA reward system.  相似文献   

9.
Huda K  Matsunami K 《Brain research》2003,963(1-2):178-189
Neuronal activity in several brain regions is modulated by dopaminergic inputs. When single neuronal activity/20 trials of single-pulse ventrolateral thalamic (VL) stimulation was extracellularly recorded in the in vivo, anesthetized cat motor cortex, iontophoretic application of dopamine (DA) elicited either suppression or, in a fewer instances, facilitation of evoked unitary responses. The predominant inhibition exerted by DA appeared to be consistent for successive trials, and a D(1), D(2), and D(1)/D(2) receptor antagonist restored the effect, thereby reflecting a possible coexistence of two DA receptors. By contrast, only a fewer neurons' response to DA displayed facilitation, which was not attenuated by DA antagonists. Moreover, subsequent trials with receptor agonist and antagonists induced inconsistent effects. Except for the jitters, single unit spikes showed invariant latency, which was constant during all recording parameters, and the mean latency remained unchanged. The modulatory effects mediated by DA did not reveal any substantial difference between short- and long-latency responses. Both pyramidal tract neurons and non-pyramidal tract neurons, determined on the basis of antidromic potentials from the pyramidal tract, responded to DA essentially in a similar manner. It appears that DA overall inhibits cat motor cortical neuronal activity in response to VL inputs. We propose that such DAergic inhibition of thalamocortical excitation in the motor cortex could be critical for ongoing sensorimotor transformation.  相似文献   

10.
Extracellular single-unit recording and microiontophoretic techniques were used to characterize the pharmacological properties of dopamine (DA) receptor subtypes within the rat caudate putamen (CPu), a striatal structure that receives a dense innervation from DA neurons originating from the substantia nigra pars compacta (A9 DA neurons). Similar to the action of DA, the DA D-1 receptor agonist (+)SKF-38393 generally potentiated the activation produced by glutamate (GLU) at low ejection currents (less than or equal to 5 nA); at higher ejection currents, it depressed 97% of the CPu neurons tested. By contrast, the D-2 receptor agonist LY-171555 (quinpirole) was much less effective in affecting the firing rate of CPu cells. The selective D-1 antagonist SCH-23390, administered either intravenously or iontophoretically, completely blocked the (+)SKF-38393-induced effects on CPu cells but failed to change the depressant effects produced by either quinpirole or 5-HT. On the other hand, the selective D-2 antagonist I-sulpiride, blocked the effects induced by quinpirole but not (+)SKF-38393. These observations suggest that the D-1 and D-2 DA receptor agonists elicit their effects via distinct DA receptor subtypes. A comparison of these results with our previous results obtained from the nucleus accumbens (NAc) indicates that NAc cells are more responsive to DA D-2 agonist, whereas CPu cells are more sensitive to D-1 agonist. Therefore, D-1 receptors in the CPu may have a critical role in mediating the effect produced by DA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Microiontophoretic drug application and extracellular recording techniques were used to evaluate the effects of the selective metabotropic glutamate receptor (mGluR) agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (1S,3R-ACPD) on dopamine (DA) neurons in the substantia nigra zona compacta (SNZC) of chloral hydrateanesthetized rats. 1S,3R-ACPD had a biphasic effect on the firing rate of DA cells, initially decreasing, then increasing the firing rate. 1S,3R-ACPD also increased the burst-firing activity of DA neurons. Application of the ionotropic receptor (iGluR) agonists (R,S)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartate (NMDA) increased the firing rates of neurons which had responded to 1S,3R-ACPD, indicating that mGluRs and iGluRs reside on the same neurons. The initial inhibitory period was not antagonized by systemic haloperidol or iontophoretic bicuculline, indicating a lack of DA or γ-amino-n-butyric acid (GABA) involvement in this effect. Combined application of the AMPA or γ-amino-n-butyric acid (GABA) involvement in this effect. Combined application of the AMPA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), and the NMDA antagonist, (I)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphoric acid (CPP), at currents which antagonized AMPA and NMDA, did not antagonize either the inhibitory or excitatory effects of 1S,3R-ACPD. Application of the metabotropic antagonist (S)-4-carboxy-phenylglycine antagonized both the inhibitory and excitatory effects of 1S-3R-ACPD. These results indicate that mGluRs may play a role in the modulation of dopaminergic activity in the SNZC. Synapse 26:184–193, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The interactions between lithium and cortical dopaminergic receptors were investigated using the iontophoretic technique to record and apply dopaminergic compounds, GABA, acetylcholine and LiCl on neurons in the primary visual cortex of the rat. The main responses to dopamine (DA) or to the D1 agonist (+/- )SKF38393 on spontaneously-active (SA) or visually-driven (VD) units was a prolonged decrease in firing and a reduction in the responsiveness to pulses of acetylcholine. The D1 antagonist SCH23390, applied iontophoretically or intravenously, blocked or attenuated the inhibitory responses to both DA and (+/- )SKF38393. The D2 agonist quinpirole (LY171555) either produced only slight excitations or had no effects on both VD and SA units. The concomitant application of lithium blocked the inhibitory responses to DA and to (+/- )SKF38393 but did not modify the responsiveness to LY171555. In addition, the DA- and (+/- )SKF38393-induced decreases in responsiveness to acetylcholine were also suppressed by lithium. These effects were on dopaminergic mechanisms, since the excitatory responses to acetylcholine alone as well as the inhibitions caused by GABA were unchanged by the application of lithium. These results imply that the modifications in sensitivity to dopaminergic agents induced by lithium are mediated by dopamine D1 receptors and are discussed in relation to adenylate-cyclase.  相似文献   

13.
BACKGROUND: Basic research indicates a role for dopamine (DA) D1 antagonism in the treatment of schizophrenia. Clinical trials have not confirmed any role. Besides the defining second messenger (adenylyl cyclase [AC]), DA D1 receptors are linked to other effectors (e.g., phospholipase C [PLC]). Differing actions of DA D1 antagonists upon differing effectors could explain conflicting results between the lab/clinic. METHODS: In a monkey model in which behavioral effects of DA D1 antagonists/agonists have been well characterized we examined: 1) SKF 83959, biochemically, a DA D1 antagonist, behaviorally a DA D1 agonist, and 2) SKF 83822, biochemically, a DA D1 agonist, which, unlike all previously tested DA D1 agonists, does not also stimulate PLC. SKF 83959 and SKF 83822 were given alone and combined with DA D1 and D2 agonists, antagonists, and dextroamphetamine (AMP). RESULTS: SKF 83959 acted as a DA D1 agonist (induced oral dyskinesia given alone, counteracted DA D1 antagonist [NNC 756], induced dystonia, and did not inhibit AMP induced behaviors). SKF 83822, unlike previously studied DA D1 agonists, did not induce dyskinesia, but resulted in a state of extreme arousal and locomotor activation without stereotypy, effectively counteracted by NNC 756, but not by SKF 83959 nor raclopride (DA D2 antagonist).CONCLUSIONS: It is hypothesized that: 1) dyskinesia is linked to PLC stimulation; 2) DA D1 agonism can play a role in the induction of psychosis, via a mechanism linked neither to AC nor PLC, and 3) DA D1 antagonists differ in antipsychotic potential, possibly via this unidentified mechanism.  相似文献   

14.
We have analysed the action of the neuromodulatory catecholamine, dopamine (DA), on the lumbar locomotor network using an isolated in vitro newborn rat spinal cord preparation. We have also attempted to determine the respective contribution of the D1- and D2-like receptors on the dopamine-mediated effects. Bath application of DA-induced slow locomotor-like rhythmic activity (cycle-period 20-30 s) in ventral motor roots. Bursts were alternating between segmental right and left side and between ipsilateral flexor and extensor units. This rhythm was blocked by D1 (SCH-23390) and D2 (raclopride, sulpiride) receptor antagonists, but was unaffected by the dopamine-beta-hydroxylase blocker, fusaric acid, thereby ruling out indirect noradrenaline-mediated effects. The D1 agonist, SKF-81297 induced prolonged slow rhythmic bursting, while the selective D2 agonists, quinpirole and quinelorane, had no effect. DA and the D1 agonist, SKF-81297 also increased the period and burst amplitude of N-methyl-d-l-aspartate-induced locomotor activity. The effects of dopamine and SKF-81297 on the N-methyl-d-l-aspartate-induced rhythm were long-lasting; persisting for 1 hour after washout. The DA action was blocked by MDL-12 330 A, an inhibitor of adenylate cyclase, suggesting the involvement of cAMP. Together these results indicate that dopamine can exert neuromodulatory actions on mammalian motor networks via short-lasting permissive influences and a newly reported, long-lasting modulation of motor network activity.  相似文献   

15.
Gladwell SJ  Coote JH 《Brain research》1999,818(2):262-407
Regions of the thoraco-lumbar spinal cord containing sympathetic preganglionic neurones are rich in dopamine terminals. To determine the influence of this innervation intracellular recordings were made from antidromically identified sympathetic preganglionic neurones in (400 micrometers) transverse neonatal rat spinal cord slices. Dopamine applied by superfusion caused a slow monophasic hyperpolarisation in 46% of sympathetic preganglionic neurones, a slow monophasic depolarisation in 28% of sympathetic preganglionic neurones and a biphasic effect consisting of a slow depolarisation followed by a slow hyperpolarisation or vice-versa in 23% of sympathetic preganglionic neurones. Three percent of sympathetic preganglionic neurones did not respond to the application of dopamine. Low Ca2+/high Mg2+ Krebs solution or TTX did not change the resting membrane potential but abolished the slow depolarisation elicited by dopamine, indicating this was synaptic and did not prevent the dopamine induced hyperpolarisation. The dopamine induced slow hyperpolarisation was mimicked by the selective D1 agonists SKF 38393 or SKF 81297-C and blocked by superfusion with the D1 antagonist SCH 23390. It was not prevented by superfusion of the slices with alpha1 or alpha2 or beta-adrenoceptor antagonists, whereas the inhibitory or excitatory actions of adrenaline were prevented by alpha1 or alpha2 antagonists, respectively. The dopamine induced slow depolarisation occurring in a sub-population of sympathetic preganglionic neurones was mimicked by quinpirole, a D2 agonist, and blocked by haloperidol, a D2 antagonist. Haloperidol did not block the dopamine induced hyperpolarisations. Dopamine also induced fast synaptic activity which was mimicked by a D2 agonist and blocked by haloperidol. D1 agonists did not elicit fast synaptic activity.  相似文献   

16.
In the striatum, dopamine (DA) exerts a major modulatory influence on voltage- and ligand-gated currents. Previously we have shown that DA modulates glutamatergic neurotransmission and that the direction of this modulation depends on, among other factors, the glutamate and DA receptor subtypes activated. These effects also involve DA-induced alterations in voltage-gated Ca(2+) currents. In the present experiments, the effects of Ca(2+) channel blockers on DA and D1 receptor-dependent potentiation of N-methyl-D-aspartate (NMDA) responses were examined in vitro in striatal slices using current clamp recording techniques. DA or D1 receptor agonists consistently enhanced NMDA responses. Cadmium and the more selective L-type Ca(2+) channel antagonists nifedipine and methoxyverapamil reduced the potentiation of NMDA responses by DA or D1 receptor activation. Furthermore, studies using Ca(2+) imaging with Fluo-3 in cultured cortical or dissociated striatal neurons demonstrated that DA and D1 agonists increased intracellular Ca(2+) transients induced by NMDA. These as well as previous findings indicate that in striatal neurons at least two mechanisms contribute to the enhancement of NMDA responses by DA receptor activation, facilitation of voltage-gated Ca(2+) currents and D1 receptor activation of the cAMP-protein kinase A cascade. The existence of multiple mechanisms leading to a similar outcome allows a certain degree of redundancy in the consequences of DA modulation.  相似文献   

17.
The interaction of the cholecystokinin octapeptide (CCK-8) with dopamine (DA) and dopamine agonists on neurons in the nucleus accumbens was investigated using single unit recording and iontophoretic techniques in urethane-anaesthetized rats. Neurons in the nucleus accumbens were activated by single pulse stimulation of amygdala. Using seven-barrel microelectrodes, the effects of iontophoretic application of CCK-8, DA, dopamine D1 and/or D2 receptor agonists (SKF 38393 and LY 171555 respectively) were compared. The iontophoretic application of DA, LY 171555 and LY 171555 + SKF 38393 attenuated by 50-60% the excitatory responses of accumbens neurons to electrical stimulation of basolateral amygdala whereas SKF 38393 attenuated the response by less than 30%. The iontophoretic application of CCK reduced these attenuating effects of DA, LY 171555 and SKF 38393 + LY 171555. With CCK there was a rather small reduction of the attenuating effect of SKF 38393. These observations provide additional electrophysiological evidence of the interaction of CCK and dopamine and suggest that the interaction is associated mainly with dopamine D2 mechanisms.  相似文献   

18.
In the dorsal lateral geniculate nucleus (dLGN), GABA(C) receptors seems to be specifically expressed by local GABAergic interneurons. Although the presence of GABA(C) receptors has been demonstrated, a quantitative estimation of their contribution to inhibition in dLGN is lacking. Because the amount of inhibition mediated by these receptors might reflect their functional importance we performed whole-cell patch clamp recordings from dLGN cells acutely dissociated from brain slices. We focally applied the GABA receptor agonist muscimol and quantified effects mediated through either GABA(C) or GABA(A) receptors. Because their basic dendritic morphology was preserved, we tried to morphologically differentiate between thalamocortical cells and local interneurons. In the majority of multipolar cells, representing thalamocortical projection neurons, the specific GABA(A) receptor antagonist bicuculline completely blocked muscimol induced currents. In contrast, in most of the bipolar cells, representing interneurons, bicuculline blocked only 70-80% of the muscimol induced currents. The remaining currents were blocked by co-application of TPMPA, a specific GABA(C) receptor antagonist, or picrotoxin, an unspecific GABA(A) and GABA(C) receptor blocker. The latter neurons were also sensitive to the selective GABA(C) receptor agonist cis-aminocrotonic acid. These results indicate that in those dLGN neurons that express GABA(C) receptors, these receptors contribute considerably to GABAergic inhibitory inputs.  相似文献   

19.
BACKGROUND: Ziprasidone (Zeldox) is a novel antipsychotic with a unique combination of antagonist activities at monoaminergic receptors and transporters and potent agonist activity at serotonin 5-HT(1A) receptors. 5-HT(1A) receptor agonism may be an important feature in ziprasidone's clinical actions because 5-HT(1A) agonists increase cortical dopamine release, which may underlie efficacy against negative symptoms and reduce dopamine D(2) antagonist-induced extrapyramidal side effects. This study investigated the in vivo 5-HT(1A) agonist activity of ziprasidone by measuring the contribution of 5-HT(1A) receptor activation to the ziprasidone-induced cortical dopamine release in rats. METHODS: Effects on dopamine release were measured by microdialysis in prefrontal cortex and striatum. The role of 5-HT(1A) receptor activation was estimated by assessing the sensitivity of the response to pretreatment with the 5-HT(1A) antagonist, WAY-100635. For comparison, the D(2)/5-HT(2A) antagonists clozapine and olanzapine, the D(2) antagonist haloperidol, the 5-HT(2A) antagonist MDL 100,907 and the 5-HT(1A) agonist 8-OHDPAT were included. RESULTS: Low doses (<3.2 mg/kg) of ziprasidone, clozapine, and olanzapine increased dopamine release to approximately the same extent in prefrontal cortex as in striatum, but higher doses (> or =3.2 mg/kg) resulted in an increasingly preferential effect on cortical dopamine release. The 5-HT(1A) agonist 8-OHDPAT produced a robust increase in cortical dopamine (DA) release without affecting striatal DA release. In contrast, the D(2) antagonist haloperidol selectively increased striatal DA release, whereas the 5-HT(2A) antagonist MDL 100,907 had no effect on cortical or striatal DA release. Prior administration of WAY-100635 completely blocked the cortical DA increase produced by 8-OHDPAT and significantly attenuated the ziprasidone- and clozapine-induced cortical DA increase. WAY-100635 pretreatment had no effect on the olanzapine-induced DA increase. CONCLUSIONS: The preferential increase in DA release in rat prefrontal cortex produced by ziprasidone is mediated by 5-HT(1A) receptor activation. This result extends and confirms other in vitro and in vivo data suggesting that ziprasidone, like clozapine, acts as a 5-HT(1A) receptor agonist in vivo, which may contribute to its activity as an antipsychotic with efficacy against negative symptoms and a low extrapyramidal side effect liability.  相似文献   

20.
Extraretinal projections onto neurons in the dorsal lateral geniculate nucleus (dLGN) play an important role in modifying sensory information as it is relayed from the visual thalamus to neocortex. The dLGN receives dopaminergic innervation from the ventral tegmental area; however, the role of dopamine in synaptic transmission in dLGN has not been explored. In the present study, whole cell recordings were obtained to examine the actions of dopamine on glutamatergic synaptic transmission. Dopamine (2-100 microm) strongly suppressed excitatory synaptic transmission in dLGN relay neurons that was evoked by optic tract stimulation and mediated by both N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. In contrast, dopamine did not alter inhibitory synaptic transmission arising from either dLGN interneurons or thalamic reticular nucleus neurons. The suppressive action of dopamine on excitatory synaptic transmission was mimicked by the D(2)-like dopamine receptor agonist bromocriptine (2-25 microm) but not by the D(1)-like receptor agonist SKF38393 (10-25 microm). In addition, the dopamine-mediated suppression was antagonized by the D(2)-like receptor antagonist sulpiride (10-20 microm) but not by the D(1)-like receptor antagonist SCH23390 (5-25 microm). The dopamine-mediated decrease in evoked excitatory postsynaptic current amplitude was accompanied by an increase in the magnitude of paired-pulse depression. Furthermore, dopamine also reduced the frequency but not the amplitude of miniature excitatory postsynaptic currents. Taken together, these data suggest that dopamine may act presynaptically to regulate the release of glutamate at the retinogeniculate synapse and modify transmission of visual information in the dLGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号