首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Several studies have demonstrated roles for eosinophils during innate and adaptive immune responses to helminth infections. However, evidence that eosinophils are capable of initiating an immune response to parasite antigens is lacking. The goal of the present in vitro study was to investigate the potential of eosinophils to serve as antigen-presenting cells (APC) and initiate an immune response to parasite antigens. Purified eosinophils were exposed to soluble Strongyloides stercoralis antigens, and the expression of various surface markers involved in cell activation was examined. Antigen-exposed eosinophils showed a sixfold increase in expression levels of CD69 and major histocompatibility complex (MHC) class II, a fourfold increase in levels of T-cell costimulatory molecule CD86, and a twofold decrease in levels of CD62L compared to eosinophils cultured in medium containing granulocyte-macrophage colony-stimulating factor. The ability of eosinophils to present antigen to T cells was determined by culturing them with T cells in vitro. Eosinophils pulsed with antigen stimulated antigen-specific primed T cells and CD4+ T cells to increase interleukin-5 (IL-5) production. The blocking of MHC class II expression on eosinophils inhibited their ability to induce IL-5 production by CD4+ T cells in culture. Antigen-pulsed eosinophils were able to prime na?ve T cells and CD4+ T cells in culture and polarized them into Th2 cells producing IL-5 similar to that induced by antigen-loaded dendritic cells. These results demonstrate that eosinophils are capable of activating antigen-specific Th2 cells inducing the release of cytokines and assist in the priming of na?ve T cells to initiate Th2 responses against infection. This study highlights the potential of eosinophils to actively induce immune responses against infection by amplifying antigen-specific Th2-cell responses.  相似文献   

2.
Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.  相似文献   

3.
Peptide:MHC II complexes derived from a fluorescent antigen were detected in vivo to identify the cells that present subcutaneously injected antigen to CD4 T cells. Skin-derived dendritic cells (DCs) that acquired the antigen while in the draining lymph nodes were the first cells to display peptide:MHC II complexes. Presentation by these cells induced CD69, IL-2 production, and maximal proliferation by the T cells. Later, DCs displaying peptide:MHC II complexes migrated from the injection site via a G protein-dependent mechanism. Presentation by these migrants sustained expression of the IL-2 receptor and promoted delayed type hypersensitivity. Therefore, presentation of peptide:MHC II complexes derived from a subcutaneous antigen occurs in two temporally distinct waves with different functional consequences.  相似文献   

4.
Two class I major histocompatibility (MHC) mutant mouse strains, H-2bm14 and H-2bm6, differ from the strain of origin C57BL/6 (B6, H-2b) in one and two amino acids of the H-2Db and H-2Kb molecule, respectively. The bm14 Db mutation results in specific failure of female bm14 mice to generate a cytotoxic T lymphocyte (Tc) response to the male-specific antigen H-Y. The allospecific Tc response of CD8+ B6T cells against bm6 Kb mutant spleen cells, in contrast to that against other Kb mutants, is absolutely CD4+ T helper cell dependent. Purified CD8+ T cells completely fail to respond. We now report that the inability to mount these specific immune responses is restored by the use of dendritic cells (DC) as antigen-presenting cells (APC). Comparison of MHC expression on various types of APC by cytofluorimetry and quantitative immunoprecipitation showed very high expression of class I and class II MHC molecules on DC. Strikingly, examination of class I and class II molecules by isoelectric focusing revealed qualitative differences as well. We show that the surface MHC class I molecules of DC are present in greater quantity and carry on average fewer sialic acids than the same molecules isolated from other APC types such as spleen cells, lipopolysaccharide blasts or concanavalin A blasts. That sialic acids on cell surface molecules, including MHC, may play a role in antigen presentation is suggested by our finding that removal of sialic acids, by neuraminidase, can restore specific responses to nonresponder APC as well.  相似文献   

5.
Class II major histocompatibility complex (MHC) expression is a hallmark of antigen presenting cells (APC). Human gastric epithelial cells (GEC) express class II MHC and this expression increases during infection with Helicobacter pylori as does the number of CD4 T cells found adjacent or in between epithelial cells. These observations suggested that human GEC act as APCs. To characterize and compare class II MHC complexes with those present in conventional APC, immunoprecipitated class II MHC from GEC and B cells, as prototypic APC, were separated by two-dimensional electrophoresis. Although the composition of class II MHC from both cell phenotypes was similar, their electrophoretic mobility differed. Methodical elimination of carbohydrates, either enzymatically with endoglycosidase-H or blocking with tunicamycin, revealed that the deviations were due to differences in glycosylation in both cell phenotypes. When deglycosylated class II MHC alpha chains, beta chains, and the invariant chain from both cell phenotypes were mixed and run in the same gel, the core proteins had identical migration patterns. Because differences in glycosylation of class II MHC proteins may affect peptide selection and/or recognition by T cells, the noted differences in glycosylation of class II MHC expressed by GEC could be important in considering their potential role as APC locally.  相似文献   

6.
Prior to the activation of CD4 (+) T cells, exogenous proteins must be digested by endo/lysosomal enzymes in antigen-presenting cells (APC) to produce antigenic peptides that are able to be presented on class II molecules of the MHC. Studies described here inspect the functional significance of cathepsin L inhibition for antigen processing and T (h) 1/T (h) 2 differentiation in experimental leishmaniasis. We first demonstrated using in vitro systems that cathepsin L is one of the candidate endo/lysosomal enzymes in processing of soluble Leishmania antigen (SLA) and that its specific inhibitor, CLIK148, modulated the processing of SLA. BALB/c mice are known to be susceptible to infection with Leishmania major. Interestingly, treatment of BALB/c mice with CLIK148 exacerbated the infection by enhancing the development of SLA-specific T (h) 2-type response such as production of IL-4 and generation of T (h) 2-dependent specific IgE/IgG1 antibodies. Moreover, addition of CLIK148 in incubation of a SLA-specific CD4 (+) T cell line with APC up-regulated the production of IL-4. However, CLIK148 did not exert any direct influence on the function of T cells themselves. Taken together, these findings suggest that treatment of host mice with CLIK148 affects the processing of SLA in APC, resulting in the potentiation of T (h) 2-type immune responses and thus leading to exacerbation of the infection. Furthermore, endo/lysosomal cathepsin L was found to be functionally distinct from previously described cathepsins B and D.  相似文献   

7.
Basophils are important effector cells, which contribute to protection against helminths and execute proinflammatory effector function during allergic inflammation. Basophils are also regulators of Th2 responses in helminth-infected hosts and in allergen-injected animals. Recently, three groups using different experimental systems have shown that basophils are antigen-presenting cells (APC), which induce Th2 cells both in vitro and in vivo. Basophils express MHC class II and CD80/86, have the potential to take-up and process protein antigen (Ag), particularly Ag-IgE complexes, and to present peptide with MHC class II and produce IL-4. However, relevance of basophils as Th2 cell-inducing APC in vivo has been challenged by several recent reports that favor the concept that basophils and DC cooperate or basophils merely amplify DC-driven Th2 cell differentiation. In this review, I summarize and discuss the data on the role of basophils as Th2 cell-inducing APC in allergy and parasite infection.  相似文献   

8.
Expression of functional IL-2 receptors on mature splenic dendritic cells   总被引:6,自引:0,他引:6  
We report here the expression of functional IL-2 receptor (IL-2R) on mature splenic dendritic cells (DC) and synergistic effect of IL-2 on IFN-gamma production by DC. IL-2 augmented IL-12-dependent IFN-gamma production by DC purified from both splenocytes of wild-type and anti-asialoGM1 Ab-treated Rag-2(-/-) splenocytes devoid of T, B, NK and NKT cells. A neutralizing mAb against IL-2Ralpha blocked such enhancing effect of IL-2 on IFN-gamma production, indicating the presence of functional IL-2R on DC. Synergistic effects of IL-2 were also observed on IFN-gamma production by DC stimulated through CD40 or MHC class II, suggesting that T cell-derived IL-2 can act on DC during antigen presentation. Furthermore, we provide evidence that DC produce IFN-gamma during interaction with allogeneic CD4(+) T cells from IFN-gamma(-/-) mice. These results suggest that IL-2 produced by naive T cells upon antigen stimulation is an important factor during Th0 to Th1 differentiation by inducing IFN-gamma from DC.  相似文献   

9.
Major histocompatibility (MHC) class II heterodimers bind peptides generated by degradation of endocytosed antigens and display them on the surface of antigen presenting cells (APCs) for recognition by CD4+ T cells. Efficient loading of MHC class II molecules with peptides is catalyzed by the MHC class II-like molecule H2-M. The coordinate regulation of MHC class II and H2-M expression is a prerequisite for efficient MHC class II/peptide assembly in APCs determining both the generation of the T cell repertoire in the thymus and cellular immune responses in the periphery. Here we show that expression of H2-M and MHC class II genes is coordinately and cell type-specific regulated in splenic B cells, splenic dendritic cells (DCs) and peritoneal macrophages (Mphi) in response to proinflammatory and immunoregulatory cytokines, including GM-CSF, IFN-gamma, TGF-beta2, IL-4, IL-10 and viral IL-10. In addition, ratio-RT-PCR expression analysis of the duplicated H2-Mbeta-chain loci demonstrates for the first time that Mbl and Mb2 genes are differentially expressed in individual APC types. Mb2 is preferentially expressed in IL-4, GM-CSF, IL-10, vIL-10 and IFN-gamma stimulated splenic B cells, whereas splenic DCs express both Mb genes at almost equal levels. In contrast, peritoneal Mphi express predominantly Mb2 but stimulation with IFN-gamma induces a switch towards Mb1 expression. These data suggest a common mechanism that regulates coordinate expression of H2-M and MHC class II genes in professional APCs. Differential expression of Mb1 and Mb2, and by consequence alternative H2-M isoforms (Malphabeta1 or Malphabeta2), may influence the nature of the peptide repertoire presented by different APC types.  相似文献   

10.
The role of T-lymphocytes as antigen-presenting cells (APCs) for other T cells was investigated. Activated rabies-virus-specific human T-cell clones were shown to present peptide to class II major histocompatibility complex (MHC)-restricted T cells of a different fine specificity, resulting in lymphokine production and cell proliferation. Furthermore, purified and activated antigen-specific T cells could produce lymphokines and proliferate as a result of the addition of antigenic peptide in the absence of APC. The functional response of T cells to peptide in the absence of APC was amplified by the addition of phorbol ester (PMA) and was inhibited with antibodies specific to class II MHC or to the CD2 molecule. Experiments performed in single-cell suspension cultures using semisolid medium prepared with 1% agar demonstrate that T-cell proliferative and lymphokine responses to peptide both in the presence and absence of APC require the interaction of T-cell antigen receptor (TCR) molecules with class II MHC-peptide complexes on different cell surfaces (cell-cell contact). On the other hand, peptide self-presentation, which occurs by the binding of TCR with class II MHC-peptide complexes on the same cell surface (at the single-cell level), resulted in T-cell activation (i.e., high expression of surface CD2, CD25, and HLA-DR molecules), without proliferation or lymphokine secretion, a pattern observed in the induction of T-cell anergy by antigen. The results are discussed in terms of the role of class II MHC molecules on activated T-lymphocytes, which enable these cells to function as "professional APC" in the development of T-cell regulatory networks.  相似文献   

11.
Splenic dendritic cells are crucial for controlling the immune response to malaria by initiating a CD4 gamma interferon (IFN-γ) response early in a blood-stage infection, which contributes to parasite clearance as well as to acute-stage immunopathology. CD8 CD11chigh dendritic cells have been described previously to be important antigen-presenting cells for induction of these CD4 T cell responses in the spleens of Plasmodium chabaudi-infected mice. However, when isolated during the period of maximum parasitemia and shortly thereafter, the dendritic cells transiently lose their ability to stimulate T cells, recovering only as the parasitemia is controlled. This loss of a CD4 T cell response is also observed in vivo during this part of the infection. CD4 T cells from a T cell receptor-transgenic mouse recognizing a peptide of merozoite surface protein 1 (MSP1) injected into BALB/c mice during peak parasitemia proliferate poorly, and very few cells produce IFN-γ and interleukin-2 (IL-2), compared with transgenic T cells injected earlier in the blood-stage infection. CD8 dendritic cells at day 10 can process and present peptides on major histocompatibility complex (MHC) class II with an efficiency similar to that of dendritic cells from earlier in infection. The failure of the day 10 dendritic cells to activate MSP1-specific CD4 T cells fully in vitro is associated with reduced expression of CD86 and lower production of IL-12 rather than with induction of inhibitory DC receptors or production of IL-10.  相似文献   

12.
We investigated the need for CD4+ helper T (Th) cells in the induction of murine cytotoxic T lymphocyte (Tc) responses across minor or major histocompatibility (MHC) antigenic differences with either normal spleen cells (NSC) or purified dendritic cells (DC) as antigen-presenting cells (APC). Generation of a secondary in vitro class II MHC-specific Tc response was totally CD4+ Th cell-dependent with both types of APC. Likewise, male antigen (H-Y)-primed class II mutant bm12 T cells, which do not respond to H-Y presented on NSC, do respond to H-Y presented on DC in a completely CD4+ Th cell-dependent fashion. All other Tc responses, including primary anti-class I MHC, primary anti-class I + II MHC plus anti-minor H, and secondary C57BL/6 (B6) anti-H-Y, although not completely CD4+ Th cell dependent, were greatly augmented in the presence of CD4+ Th cells, but only with NSC as APC. In contrast, with DC as APC these responses were entirely or largely CD4+ Th cell independent. Similarly, H-Y primed class I MHC mutant bm14 T cells, which do not respond to H-Y presented on NSC, do respond to H-Y presented on DC in a completely CD4+ Th cell-independent fashion. The combined results indicate that DC can directly present class I MHC alloantigen or class I MHC plus nominal antigen (e.g. minor H) to CD8+ cells and generate a Tc response by these cells without the requirement for CD4+ Th cells.  相似文献   

13.
MHC class II molecules play a central role in the control of adaptive immune responses through selection of the CD4(+) T cell repertoire in the thymus and antigen presentation in the periphery. Inherited susceptibility to autoimmune disorders such as multiple sclerosis, rheumatoid arthritis and IDDM are associated with particular MHC class II alleles. Advent of HLA transgenic mice has helped us in deciphering the role of particular HLA DR and DQ class II molecules in human autoimmune diseases. In mice, the expression of class II is restricted to professional antigen-presenting cells (APC). However, in humans, class II is also expressed on T cells, unlike murine T cells. We have developed new humanized HLA class II transgenic mice expressing class II molecules not only on APC but also on a subset of CD4(+) T cells. The expression of class II on CD4(+) T cells is inducible, and class II(+) CD4(+) T cells can present antigen in the absence of APC. Further, using EAE, a well-established animal model of MS, we tested the functional significance of these class II(+) CD4(+) T cells. DR3.AEo transgenic mice were susceptible to proteolipid protein(91-110)-induced EAE and showed CNS pathology accompanied by widespread inflammation and demyelination seen in human MS patients, suggesting a role for class II(+) CD4(+) T cells in the pathogenesis.  相似文献   

14.
When antigen-specific T cells are pulsed by antigen-presenting cells (APC) in the presence of HIV they are functionally deleted following subsequent exposure to syngeneic APC in the absence of HIV. Recombinant soluble HIV envelope (gp120) is able to induce a similar effect which, unlike that induced by HIV, is reversible. Neither HIV nor gp120 affect the ability to respond to IL-2. Thus it is only antigen-specific responses involving the T cell receptor pathways and CD4/MHC class II interaction that appear to be inhibited by HIV-1 and gp120. Furthermore, the functional impairment caused by HIV-1 is specific to the T cells that respond to the antigen in co-culture with HIV, as there is no apparent effect on 'bystander'-activated T cells specific for another antigen. Antigen-specific T cell lines may be deleted by a signalling mechanism which involves molecules other than gp120/CD4 but still requires MHC class II restriction.  相似文献   

15.
Like dendritic cells (DC), activated B cells are effective antigen-presenting cells (APC) for na?ve CD4 cells due to their expression of MHC class II and multiple costimulatory molecules. We showed previously that CD4 cells primed in B cell-deficient micro MT) mice undergo more limited expansion than in normal animals after immunization with keyhole limpet hemocyanin. Here we report that in the absence of B cells, priming of effectors with the capacity to produce the Th2 cytokines, IL-4, IL-5 and IL-13, was profoundly reduced whereas the development of effectors that secrete the Th1 cytokine IFN-gamma was much less affected. A blockade of IL-12 reduced priming of IFN-gamma-secreting effectors but did not reverse the IL-4, IL-5, or IL-13 deficiency of the response. CD4 cell expansion and priming for Th2 cytokines in micro MT mice was reconstituted by adoptive transfer of activated splenic B cells, which were present throughout the primary response. However, transfer of splenic DC from either control or micro MT mice also supported development of Th2 cytokine responses, indicating that an APC deficit rather than a unique contribution of B cells accounted for diminished effector priming. We conclude that CD4 cell expansion must be sustained via APC for the development of Th2 cytokine-secreting effectors in vivo and that in responses to protein antigen, B cells can be a crucial population to serve in this role. The results suggest that the level of APC engagement can not only determine the extent of effector expansion, but also the overall Th1/Th2 cytokine balance.  相似文献   

16.
Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagas' disease, interferes with the host immune response to establish a persistent infection. In this report, we demonstrate that macrophages infected with T. cruzi are unable to effectively present antigens to CD4 T cells. The interference is due to defective antigen-presenting cell (APC) function, as antigen-independent stimulation of the T cell in the presence of infected macrophages is not affected. The defect is distal to antigen processing and is not due to decreased major histocompatibility complex (MHC) class II expression, decreased viability, defective peptide loading in the infected macrophages, nor absence of CD28 co-stimulation. There was a role for gp39:CD40 co-stimulation during antigen presentation to the T cells we studied, but the expression of CD40 on T. cruzi-infected macrophages was not decreased. Antigen-specific adhesion between macrophages and T cells was reduced by infection. Equivalent levels of the adhesion molecules lymphocyte function-associated antigen-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1 or very late antigen-4 are found on infected and uninfected APC, suggesting that reduced expression of these adhesion molecules was not responsible for the defect in antigen-specific adhesion. The defective T cell:macrophage adhesion may be due to the reduced expression of other adhesion molecules or other changes in the cell induced by infection. Interfering with MHC class II antigen presentation in infected macrophages may help T. cruzi to blunt the immune response by the host.  相似文献   

17.
Antigen-coupled antigen-presenting cells (APC) serve as potent tolerogens for inhibiting immune responses in vivo and in vitro, apparently by providing an antigen-specific signal through the TCR in the absence of co-stimulation. Although this approach has been well studied in rodents, little is known about its effects on human T cells. We evaluated the specificity and mechanisms of tolerization of human T cells in vitro using monocyte-enriched adherent cells that were pulsed with antigen and treated with the cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (ECDI). Autologous antigen-coupled APC selectively tolerized T cells of the T(h)1 but not T(h)2 lineage through a mechanism that involved both antigen-specific and antigen-non-specific elements. The tolerization process was dependent on the ECDI and antigen concentration, and the coupling time, and was reflected by initial up-regulation of CD25. However, upon re-stimulation with fresh APC and antigen, tolerized T(h)1 cells failed to proliferate or to produce T(h)1 cytokine message or secreted protein, had decreased expression of CD25, CD28 and B7 and increased expression of MHC class II molecules, and demonstrated an enhanced commitment to apoptosis. T(h)1 cell tolerization could be prevented by adding anti-CD28 antibody, IL-2 or untreated APC at the same time as the ECDI/antigen-coupled APC, or reversed by adding anti-CD28 antibody or IL-2 upon re-stimulation with fresh APC plus antigen. Thus, the tolerizing effect of ECDI/antigen-coupled APC on human T(h)1 cells appears to involve a reversible anergy mechanism leading to apoptosis, whereby the targeted T cells receive full or partial activation through the TCR, without coordinate co-stimulation. These data suggest dichotomous signaling requirements for inactivating cells of the T(h)1 and T(h)2 lineages that may have important implications for treatment of T(h)1-mediated autoimmune or inflammatory diseases.  相似文献   

18.
Conjugation of the T cell receptor (TCR) with antigen/MHC proteins must be accompanied by conjugation of T cell counterreceptors (CD28 or CTLA-4) with costimulatory molecules CD80 or CD86 (B7-1 or B7-2) on antigen presenting cells (APC) to avert T cell anergy, and to provide essential signals for T cell activation and cytokine production. However, T cells and APC express changing patterns of counterreceptors and costimulatory molecules during the immune response. To determine the involvement of CD80 and CD86 in costimulation of T cell cytokine production, T cells were incubated with peritoneal exudate macrophages, which express CD80 and CD86, and stimulated in vitro for 48 or 72 hrs with anti-CD3 in the presence or absence of blocking antibody to CD80 or CD86. Alternatively, enriched anti-CD3 stimulated T cells were costimulated with antibody to CD28 and CTLA-4. Production of T cell IL-2, IL-4, and IL-5 was depressed in the presence of anti-CD86 but not anti-CD80. Production of IFN-γ was significantly blocked by either anti-CD80 and anti-CD86. Anti-CD28 was a potent costimulator of IFN-γ and IL-2 production, but a less potent costimulator of IL-4 and IL-5 production. The data suggest that T cell counterreceptors and APC costimulatory molecules act with varying efficacies at stimulating production of T cell cytokines.  相似文献   

19.
Conjugation of the T cell receptor (TCR) with antigen/MHC proteins must be accompanied by conjugation of T cell counterreceptors (CD28 or CTLA-4) with costimulatory molecules CD80 or CD86 (B7-1 or B7-2) on antigen presenting cells (APC) to avert T cell anergy, and to provide essential signals for T cell activation and cytokine production. However, T cells and APC express changing patterns of counterreceptors and costimulatory molecules during the immune response. To determine the involvement of CD80 and CD86 in costimulation of T cell cytokine production, T cells were incubated with peritoneal exudate macrophages, which express CD80 and CD86, and stimulated in vitro for 48 or 72 hrs with anti-CD3 in the presence or absence of blocking antibody to CD80 or CD86. Alternatively, enriched anti-CD3 stimulated T cells were costimulated with antibody to CD28 and CTLA-4. Production of T cell IL-2, IL-4, and IL-5 was depressed in the presence of anti-CD86 but not anti-CD80. Production of IFN-γ was significantly blocked by either anti-CD80 and anti-CD86. Anti-CD28 was a potent costimulator of IFN-γ and IL-2 production, but a less potent costimulator of IL-4 and IL-5 production. The data suggest that T cell counterreceptors and APC costimulatory molecules act with varying efficacies at stimulating production of T cell cytokines.  相似文献   

20.
Previous studies have provided evidence that myelin basic protein (MBP)-specific rat T cells acquire antigen via transfer of preformed peptide/MHC class II complexes from splenic antigen-presenting cells (APC). The purpose of the present study was to determine how T cells acquire peptide/MHC class II complexes from APC in vitro. Our results show that a MHC class II+ T cell line, R1-trans, released MHC class II-bearing vesicles that directly stimulated MBP-specific CD4+ T cells. Vesicles expressing complexes of MHC class II and MBP were also specifically cytotoxic to MBP-specific T cells. Surviving T cells acquired MHC class II/antigen complexes from these vesicles by a mechanism that did not require protein synthesis but depended on specific TCR interactions with peptide/self MHC complexes. Furthermore, MBP/MHC class II-bearing vesicles enabled T cells to present MBP to other T cell responders. These studies provide evidence that APC release vesicles expressing preformed peptide/MHC class II complexes that interact with clonotypic TCR, allowing MHC class II acquisition by T cells. Vesicular transport of antigen/MHC class II complexes from professional APC to T cells may represent an important mechanism of communication among cells of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号